Nova Scotia Power Inc. 2012 Annual Capital Expenditure Plan

REDACTED

November 2, 2011

ACE Plan Foreword

Nova Scotia Power's (NSPI, the Company) Annual Capital Expenditure (ACE) Plan reflects the Company's long-term objective to transform our business to a cleaner generation mix in order to meet evolving emission standards and to improve the reliability of the power system.

The Company remains focused on its transition to a generation portfolio that includes a greater portion of long-term, stable-priced renewable energy. However, electricity from fossil fuels and existing hydro generation continue to provide the majority of energy to the system. Maintaining and improving the dependability and operation of NSPI's thermal and hydro generating units assists in preserving lower current fuel prices and optionality as well as power system stability.

Preserving the current hydro generation fleet is also necessary for the Company to achieve Renewable Energy Standards (RES) compliance targets for 2015 and beyond as well as provincial and federal greenhouse gas (GHG) regulations. In addition, a significant portion of the capital investment in hydro is specifically related to risk management associated with dam structures.

While Nova Scotia Power's strategic direction remains consistent with generation portfolio transformation and customer reliability, the ACE Plan capital investment outlook for 2012 - 2016 reflects the uncertainty the Company is managing in terms of energy demand and increasingly restrictive air emission regulations. At the time of this filing, the NewPage Port Hawkesbury paper mill is not operating. Like all Nova Scotians, we are hopeful that the mill, which we believe is a valuable asset to Nova Scotia, will resume operations in the near term. The prudent course of action, though, is to have plans in place should the mill remain closed.

This potential industrial load reduction, coupled with pending federal GHG regulations that include prescribed retirements for fossil-fueled generating plants, has resulted in a number of changes to our 5 year capital outlook, as compared to 2011. Key changes include:

- Nova Scotia Power's planned investment in wind energy will shift by two years, so that any new wind would be developed in 2014/2015, and be in service in 2015, consistent with existing Renewable Energy Standard regulations.
- Investments in the Lingan Generating Station's Unit #2 will be minimized to reflect the fact that this would be the most likely unit to close under the scenario of reduced load, coupled with proposed federal GHG regulations.
- The plan includes deferral of future fast acting generation until the renewable energy integration study work is completed and increased certainty around the introduction of additional wind generation is apparent.

Nova Scotia Power continues to advance capital investments to improve customer reliability such as the new Harbour East transmission line, which involved extensive stakeholder consultation to resolve a load growth challenge and additions of redundant transformers into large customer density substations.

Similar to last year's ACE Plan, the 2012 plan includes detailed justification for all projects for which Nova Scotia Power is seeking approval. Where appropriate, these detailed justifications include cost support, economic analysis and detailed estimates.

Continuing to invest in our existing assets means better reliability, enhanced efficiency and improved customer service. Our customers will benefit from existing and future renewable generation that reduces our dependence on foreign solid fuels and saves customers money in the medium to long term.

Our company recognizes that transforming our power generation fleet to more renewable energy and investing in our transmission and distribution assets to improve reliability is a significant investment on behalf of our customers. In preparing and delivering this program we are focused on safety, environmental regulations, cost control and operational excellence over the long term. Our 2012 ACE Plan also includes our estimate of the effect of the Plan on future revenue requirement, as requested by the UARB and various stakeholders.

Nova Scotia Power respectfully requests UARB approval of the 2012 ACE Plan.

How the ACE Plan is Structured

The **Overview** section of this document provides the reader with a view of NSPI's overall capital expenditure plan.

It begins by providing a graph detailing the previous year's capital investments, projections for the current year and a forecast of the company's capital spend for the next four years.

A chart is provided to illustrate the breakdown of NSPI's 2012 ACE Plan. The budget for 2012 is separated into the following components:

- Capital item approval sought through the ACE 2012 process (including routine capital projects)
- A forecast of capital items to be submitted for approval later in 2012
- 2012 Carryover Projects; these are multi-year projects approved in prior years with spending occurring in 2012.
- Capital Items Less Than \$250k. Pursuant to a legislative change to the Public Utilities Act effective May 11, 2010, capital expenditures with a value up to \$250,000 may be made by a public utility, without formal approval of the Nova Scotia Utility and Review Board (Section 35 of the Public Utilities Act).
- Point Aconi Capital Items. Pursuant to Section 36 of the Public Utilities Act, investment in the Point Aconi Generating Station does not require Board approval.

Following this graphical summary of NSPI's ACE Plan, the Company provides lists of projects which are included in each of these sections. The 2012 capital investment of the Company is further categorized by Justification Criteria and by spending category (i.e. new spending, carryover spending and routine capital spending).

Following this summary view, the capital items are then presented in the ACE Plan by functional area in the **Capital Functions** section of the document.

Additionally, the Company's Routine Capital program is provided in this area of the Plan. NSPI's Routine Capital program is an annual allocation of capital to fund repetitive individual capital replacements. These are capital spending items that are regularly needed for routine capital maintenance of the utility's assets. Routine Capital programs are included in the capital program in a pooled approach to reduce the administrative costs associated with identifying and approving individual Routine Capital projects and to provide NSPI with the flexibility required to effectively manage smaller, consistent scope utility capital projects from one year to the next. The overall Routine Capital Program is presented along with a breakdown of each project within the program and a multi-year overview of the program.

The next five sections, Generation, Integrated Customer Service, Transmission, Distribution and General Plant provide the reader with details of each capital project for which the Company is seeking Board approval in 2012.

A Glossary of Terms follows the presentation of NSPI's capital projects. The NSPI 2012 Quick Reference Sheet provides the reader with the Company's Allowance for Funds Used During Construction and Overhead rates used in the development of the 2012 capital budget.

The Plan concludes with a final section providing, for reference only, NSPI's **2012 Depreciation** Rates.

Table of Contents

1	Ove	rview	8
	1.1	Annual Capital Expenditure (ACE) Plan for 2012-2016	8
	1.2	Summary of 2012 ACE Plan Spending by Approval Category for 2012	. 10
	1.3	2012 ACE Plan Capital Items Submitted for Approval	. 11
	1.4	2012 ACE Plan Capital Items Forecast for Subsequent Approval	. 14
	1.5	2012 ACE Plan Capital Items with Estimated Total Project Cost of Less Than \$250,000	. 16
	1.6	2012 ACE Plan Capital Items – Point Aconi Generating Station	. 19
	1.7	2012 Capital Spending by Justification Criteria	. 20
	1.8	Capital Categories	. 22
	1.9	Capital Functions	. 24
	1.10	2011 ACE Capital Items Deferred / Cancelled	. 26
	1.11	2011 ACE Plan UARB Directives	. 30
2	Rou	tine Capital Items	. 46
	2.1	Routine Capital Spending by Function	. 46
	2.2	Routine Capital Spending by Function Yr/Yr	. 47
	2.3	2012 Routine Capital Spending Project Breakdown Yr/Yr	. 48
	2.4	Routine Capital Spending Variances	. 51
	2.5	Routine Capital Spending Project Details	. 52
3	Gen	eration	. 67
	3.1	Generation Five Year Plan and Highlights	. 67
	3.2	Generation Carry-over Capital Spending Summary	. 68
	3.3	Generation New 2012 Capital Items for ACE Approval	. 70
	3.4	Generation Capital Items Presented by Investment Category and Asset Class	. 71
	Gen I	eration CIs 1-31 Hydro CIs 1 - 9 Steam CIs 10 - 31	
4	Integ	rated Customer Service	696
	4.1	Integrated Customer Service – Capital Projects Presented by Investment Category	698
5	Trans	smission	707
	5.1	Transmission – Five-year Plan and Highlights	707
	5.2	Transmission – Carry-over capital Spending Summary	708

	5.3	Transmission – New 2012 Capital items for ACE Approval	. 709
	Tran	smission CIs 1 - 21	
6	Distr	ibution	. 904
	6.1	Distribution – Five-year Plan and Highlights	. 904
	6.2	Distribution – Carry-over Capital spending Summary	. 905
	6.3	Distribution – New 2012 Capital Items for ACE Approval	. 906
	Dist	ribution CIs 1 - 21	
7	Gene	eral Plant	1144
	7.1	General Plant – Five-year Plan and Highlights	1144
	7.2	General Plant Carry-over Capital Spending Summary	1145
	7.3	General Plant – New 2012 Capital Items for ACE Approval	1146
	Gene	eral Plant CIs 1 - 8	
8	Glos	sary of Terms	1184
9	NSP	I 2012 Quick Reference Sheet	1186
10	2012	2 Depreciation Rates	1187

1 Overview

1.1 Annual Capital Expenditure (ACE) Plan for 2012-2016 (*Millions of Dollars*)

F = Forecast, B=Budget in above figure

Highlights of Nova Scotia Power Inc.'s (NSPI) 2012 to 2016 capital plan:

- The proposed capital budget for 2012 is \$330.3 Million, which includes several items that have a subsequent approval process and includes items that do not specifically require UARB approval.
- The 2012 ACE Plan is comprised of new, carry-over and routine capital items. The ACE Plan includes capital items submitted for Nova Scotia Utility and Review Board (UARB, Board) approval through the ACE Plan proceeding, capital items that NSPI anticipates submitting for individual approval in 2012 and capital items that do not require UARB approval.

- 2012 capital spend for new capital items (including routines) submitted for UARB approval in this ACE Plan totals \$142.8 Million. The total capital investment for these capital items is \$144.1 Million. Detailed descriptions and justification for each new item are included in this document, summarized by capital function.
- Routine Capital spending represents \$81.6 Million of total spending in 2012 and is for replacement of equipment ("like-for-like" replacement), additions to existing equipment base resulting from system growth and the addition of customers to the system.
- The total investment for 2012 capital items that do not require UARB approval is \$21.4 Million. These investments include projects totaling less than \$250 Thousand and capital investments in the Point Aconi Generating Station.
- Carryover projects comprise \$85.8 Million of total spending in 2012. The Port Hawkesbury Biomass Project constitutes approximately \$56 Million of the carryover spend. This project was approved by the UARB in 2010.
- Projects totaling an additional \$80.4 Million of spend in 2012 (\$212.6 Million Project Total Forecast) will be brought forward later in 2012 for separate approval.

Capital item justifications are based on the Capital Expenditure Justification Criteria (CEJC) as approved by the Board in 1995 with minor revisions per the 1997 filing. The CEJC provides the Board with assurance that NSPI is using sound economic, financial and technical criteria to ensure that its capital expenditures provide the maximum benefit to its customers. NSPI is working with UARB staff to update the CEJC.

NOTE: Figures presented in the ACE document reflect whole numbers, which may cause \$0.1 Million in rounding differences on some line items.

1.2 Summary of 2012 ACE Plan Spending by Approval Category for 2012

The following table provides the proposed 2012 capital investment by approval category for NSPI's ACE filing. This Application seeks UARB approval of the 2012 capital routines and other 2012 projects, which total \$142.8M of spend in 2012. Certain items do not require UARB approval, but are included in the Company's annual capital plan for context. The 2012 ACE Budget also includes spending on multi-year projects that were previously approved by the UARB.

2012 ACE Budget (<i>Millions of Dollars</i>)	2012 UARB Approval Request (\$M)	UARB Approval Not Required (\$M)	Capital Items Forecast for Later Filing & Approval in 2012 (\$M)	Capital Projects with 2012 Carryover (\$M)	2012 ACE Plan (\$M)
Capital Item Approval Sought through the 2012 ACE Process (Including Routine Capital Projects)	142.8				142.8
Capital Items Submitted for Later Approval in 2012			80.4		80.4
2012 Carryover Projects				85.8	85.8
Capital Items Less Than \$250K		10.9			10.9
Point Aconi New Capital Spend		10.4			10.4
2012 ACE Plan	\$142.8	\$21.4	\$80.4	\$85.8	\$330.3

* Figures represent 2012 spend

1.3 2012 ACE Plan Capital Items Submitted for Approval

This table provides the list of Capital Items for which NSPI seeks UARB Approval by this Application, totaling \$142.8M of spending in 2012 and total spending of \$144.1M.

Tab #	CI#	Project Title	2012 Budget	Project Total
Hydro				
G01	40282	HYD- St Margaret's Bay - Coon Pond Dam Refurbishment	\$2,595,361	\$2,595,361
G02	31204	HYD - Dickie Brook - Donahoe Lake Dam Refurbishment	1,597,494	1,597,494
G03	41143	HYD - St Margarets Bay - Tidewater Surge Tank Refurbishment	1,211,641	1,211,641
G04	39042	HYD - Sheet Harbour - Ten Mile Lake Dam Decommissioning	1,018,923	1,018,923
G05	41138	HYD - Black River - Hollow Bridge Surge Tank Refurbishment	930,048	930,048
G06	23125	HYD - Sissiboo Falls - Electrical Equipment Replacement	845,755	845,755
G07	41127	HYD - Nictaux - Headcover Replacement	219,362	525,680
G08	41145	HYD - Mersey - Upper Lake Falls Rip Rap Replacement	516,420	516,420
G09	41140	HYD Sissiboo Falls - Tailrace Concrete Refurbishment	314,412	314,412
Total New H	Ivdro Spendi	inσ	\$9 249 417	\$9 555 735
10tal Ite w 1	iyuro spenu	g	φ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	φ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Steam				
G10	41229	LIN - Cable Spreading Rooms Fire Protection	\$918,292	\$918,292
G11	41228	TUC - Unit 3 Turbine HP Impulse Blades Replacement	882,152	882,152
G12	28674	TRE6 - Human Machine Interface (HMI) Upgrade	867,805	867,805
G13	39923	TUC - Generator Excitation and AVR System Replacement	141,183	844,543
G14	37611	LIN3 - Generator Excitation & AVR System Replacement	819,469	819,469
G15	41441	TRE - Siding Replacement (Phase 2)	608,916	608,916
G16	41507	TRE6 - Air Heater Refurbishment	553,438	553,438
G17	41303	TRE6 - Waterwall Panel Replacements	548,225	548,225
G18	41549	TRE5- Main Steam Attemperator Replacement	535,227	535,227
G19	40655	LIN - Pulverizer Refurbishment	461,279	461,279
G20	41121	LIN - Cooling Water (CW) Pump Refurbishment	447,687	447,687
G21	40256	POT - Plant Siding Replacement	392,601	392,601
G22	41511	TRE6 - Condenser Waterbox and Cooling Water (CW) Piping Refurbishment	392,172	392,172
G23	41503	TRE6 - Steam Turbine Control Valve Refurbishment	359,507	359,507
G24	41508	TRE6 - Turbine/Generator Fire Protection	347,079	347,079
G25	41584	POT Vacuum Pump Replacement	332,994	332,994
G26	28645	TRE6 - Turbine Controls Power Supplies Replacement	321,691	321,691
G27	38163	TRE6 Pulverizer Refurbishments	311,074	311,074
G28	41251	TUC3 - Turbine High Pressure (HP) Cylinder Fastener Replacement	275,729	275,729
G29	41620	TUC3 Turbine Generator Fire Protection	272.743	272.743
G30	41561	POT - Maintenance Facilities Refurbishment	258.558	258.558
G31	41124	LIN-Cooling Water (CW) Screen Refurbishment	251,544	251,544
Total New S	team Spendi	ng	\$10,299,366	\$11,002,726
Total New G	eneration S	nending	\$19 548 783	\$20 558 461

Nova Scotia Power Inc. 2012 Annual Capital Expenditure Plan

r	Гab #	CI#	Project Title	2012 Budget
Transn	nission			
T01	41387	2012 Transmission Line Insulator Replacements	\$3,619,166	\$3,619,166
T02	41432	L7009 Lidar Upgrades & Maintenance	2,942,809	2,942,809
T03	41517	L6535 Lidar Upgrades & Maintenance	\$2,361,250	\$2,361,250
T04	41348	2012 Protection Upgrades Onslow	2,274,015	2,274,015
T05	41430	2012 Substation Recloser Replacement	2,120,686	2,120,686
T06	41426	2012 Transmission Switch & Breaker Upgrades	2,000,849	2,000,849
T07	41429	2012 Substation PCB Equipment Removal	1,854,665	1,854,665
T08	41535	2012 Steel Tower Painting	1,270,605	1,270,605
T09	41844	Reinsulate Transmission Lines L8004 & L7005	1,139,264	1,139,264
T10	41434	Procure Additional 42 MVA Spare Transformer	1,043,984	1,043,984
T11	41399	2012 Substation Insulator & Cutout Replacements	800,013	800,013
T12	41437	104H-T62 Kempt Road Transformer Rewind	790,201	790,201
T13	41589	22N-Church St Replace 25 kV Bus and Feeder Exit	734,302	734,302
T14	41386	2012 Pole Retreatment	556,017	556,017
T15	41551	Glentosh Substation Footing Remediation	552,201	552,201
T16	41391	L6025 Spar Arm Reinforcement	489,925	489,925
T17	41422	Onslow Spares Storage Upgrades	415,661	415,661
T18	41439	Mobile Refurbishments 5P & 6P	367,409	367,409
T19	41438	85S-Wreck Cove Cable Termination Replacement	291,194	291,194
T20	41362	7H Beaufort Switchgear Retirement	278,071	278,071
T21	41390	7V Methals Hydro Transformer Replacement	258,506	258,506
Total N	lew Trans	smission Spending	\$26,160,795	\$26,160,795
		* ×		
Distrib	ution		*2 506 706	#2 506 706
D01	41392	2012 Distribution Cutout Replacements	\$2,596,796	\$2,596,796
D02	41349	2012 Off Koad To Koadside	884,809	884,869
D03	41398	2012 Padmount Transformer Replacements	827,340	827,340
D04	41359	79V-402 Feeder Load Reduction	/9/,3/8	/9/,3/8
D05	41383	2012 Halitax Underground Feeder Replacement	596,760	596,760
D06	41351	2012 Distribution Automation	553,965	553,965
D07	41353	2012 Downline Recloser Additions	543,284	543,284
D08	41355	2012 Remote Communication on Reclosers	536,258	536,258
D09	41339	2012 Distribution Feeder Ties	492,873	492,873
DIO	41325	Replacement of 3H and 6H Reclosers	465,327	465,327
DII	41360	82V-423 Hardwood Lands Deteriorated Plant Replacement	437,192	437,192
DI2	41389	8H Fairview Conversion	417,695	417,695
DI3	41384	2012 Feeder Exit Cable Replacement	374,542	374,542
DI4	41338	20H-301 Targeted Feeder Replacement	371,361	3/1,361
D15	41333	16N-301 Stewiacke Reconductor	353,467	353,467
D16	41327	103W-311 Gold River Reconductor Phase 2	310,296	310,296
D17	41393	2012 Automatic Sleeve Replacements	287,831	287,831
D18	41337	1N-405 Targeted Feeder Replacement	283,892	283,892
D19	41341	1H-Water Street New Feeder	280,657	280,657
D20	41363	88W New Feeder	269,616	269,616
D21	41356	35V-312 Windsor Causeway	252,137	252,137
<u>Total N</u>	lew Distri	bution Spending	\$11,933,535	\$11,933,535

Tab #	CI#	Project Title		2012 Budget	Project Total
General I	Plant				
GP01	40649 PeopleSoft (Hu	man Resource Management)		\$403.131	\$633.487
GP02	41424 PeopleSoft Self	Service Module		413.859	413.859
GP03	41425 Cognos Upgrad	le		186,933	254,413
Total New Co	omputers Spending			\$1,003,923	\$1,301,759
Quita ga Barfa					
GP04	41433 2012 New RTI	Deployment	\$1,062,700		\$1.062.700
GP05	41428 2012 RTU Cap	ital Replacement	314,026		314,026
Total Outage	l Outage Performance		\$1,376,725		\$1,376,725
Furniture &	Fixtures				
GP06	41763 Warehouse Rac	king System	\$262,402		\$262,402
Total Furnitı	ıre & Fixtures		\$262,402		\$262,402
Telecommun	ications				
GP07	41419 2012 Replace M	Aicrowave Radio System	\$601,339		\$601,339
GP08	41420 Upgrade Multip	blexer Network Manager	294,571		294,571
Total New To	elecommunications Spe	nding	\$895,910		\$895,910
Total New G	eneral Plant Spending		\$3,538,960		\$3,836,796
Total Routin	e Capital Spending		\$81,606,479	:	\$81,606,479
Total Capital	Items for which Appr	oval is Sought	\$142,788,552	\$	144,096,067

1.4 2012 ACE Plan Capital Items Forecast for Subsequent Approval

The following table identifies projects that are not yet ready for submission to the UARB, and that NSPI anticipates will be filed for approval in late 2011 and throughout 2012, totaling \$80.4 Million of 2012 spending on projects that are currently estimated at approximately \$212.6 Million. The budget numbers indicated below are estimates – NSPI requires additional time and effort to develop specific project budget proposals. This aspect of the Company's filing is designed to provide a general indication of anticipated 2012 projects as requested by the Board.

CI#	Project Title	2012 Budget	Project Total
Hydro			
38868	HYD Marshall Falls Hydro Station	\$2,815,495	\$18,233,184
40309	HYD - St. Margaret's Bay - Tidewater Pipeline Replacement	7,704,424	7,704,424
31245	HYD - St. Margaret's Bay - Sandy Lake Dam Refurbishment	5,579,410	5,579,410
39543	HYD - U&U Ladder Upgrades	364,417	1,132,830
41126	HYD Annapolis - Sluiceway and Powerhouse Stop Log Refurbishment	1,115,739	1,115,739
41806	HYD - Big Falls - #6 Refurbishment	497,566	497,566
	Total New Hydro Spending for Subsequent Approval	\$18,077,053	\$34,263,154
Steam			
39932	TRE - Ash Site Phase 2 Development	\$4,563,325	\$5,783,337
18448	TUC - Cooling Water System Biofouling Control	2,752,157	2,752,157
39566	LIN2 Steam Turbine Last Stage Blades Replacement	601,589	1,815,030
31583	LIN2 L-1 Steam Turbine Blading Replacement	833,163	1,077,882
39926	TUC - Unit 3 Generator Excitation and AVR System Replacement	742,715	881,456
40330	LIN2 HT Fastener Replacement	532,691	760,741
41233	LIN3 Boiler Refurbishment	755,711	755,711
41235	LIN1 Boiler Refurbishment	749,186	749,186
41595	POT - Sternson PLC Replacement	596,976	596,976
41234	LIN4 Boiler Refurbishment	494,102	494,102
41248	TUC - Lube Oil Storage Building	288,657	288,657
41516	TRE6 - Stack Breaching Inlet Ductwork Refurbishment	252,948	252,948
	Total New Steam Spending for Subsequent Approval	\$13,163,219	\$16,208,182
	Total New Generation Spending for Subsequent Approval	\$31,240,272	\$50,471,336

CI#	Project Title	2012 Budget	Project Total
π			
1 ransmission		¢ 011 410	\$7.950 CCO
41519	Harbour East 158 KV Transmission Line	\$ 211,410	\$7,859,009
40317	Additional water Street Transformer & Low Side 25 KV Breakers	2,307,400	3,947,034
41520	Harbour East Substation - Eastern Passage	394,305	3,490,007
40322	New Prospect Road Substation	3,153,291	3,184,409
41537	Amnerst 138KV Substation	1,808,362	2,781,762
41555	Spare wind Farm Generator Transformer	2,535,465	2,535,465
41553	Dartmouth East Transformer Addition	2,307,615	2,307,615
40321	Install Canaan Road to Prospect Road Transmission Line	2,104,620	2,182,578
40323	Canaan Road Line Terminal	967,187	1,004,202
41552	131H Lucasville Transformer Addition	1,893,150	1,893,150
41536	2012 Reliability Technologies Transmission	8/7,747	958,276
41550	Spare 30MVA 69KV 25/12KV Transformer	728,999	859,852
41522	138kV Line Terminal at Dartmouth East Substation	40,743	788,149
40310	Circuit Switcher Additions	680,990	680,990
	Total New Transmission Spending for Subsequent Approval	\$20,071,349	\$34,473,158
Distribution			
40320	LED Street Light Conversion	\$5,739,651	\$100.000.000
41534	2012 Reliability Technologies Distribution	2.423.179	2,496,069
41540	99V Highbury Rd New Feeders	1 093 229	1 093 229
41797	Brier Island Crossing	1,006,642	1,006,642
40224	78W-301 Second Peninsula	406 598	406 598
40224		400,570	400,570
	Total New Distribution Spending for Subsequent Approval	\$10,669,298	\$105,002,537
Conoral Plan	t		
40314	Capital Improvements Data Centre	\$7 176 866	\$8 128 617
40314	Pasidential AMI Dilot	2 050 853	3 403 557
41045	Commercial AMI Pilot	2,939,833	3 100 132
41700	OMS Upgrade 2011	2,528,594	2 602 516
40278	Field Mobility System	1,870,390	2,002,510
40048	MS Sharanoint Distform Lingrada	250 501	1,704,810
40303	Field Office Dhone System Deplecement	559,501 822.051	822.051
40299	Street Light & Area Management & System bility	800,104	800,104
41557	Street Light & Area Management & Sustainability	809,104	809,104
40/43	NSPI Intranet	/0,151	049,205
41403	GIS Enterprise License Agreement	90,643	418,128
	Total New General Plant Spending for Subsequent		
	Approval	\$18,402,964	\$22,635,077
	Total Capital Itams for Subsequent Approval	¢80 363 664	\$212 582 100
	i viai vapitai fichis ivi subscutchi ADDI UVai	000.000.004	J414.J04.107

1.5 2012 ACE Plan Capital Items with Estimated Total Project Cost of Less Than \$250,000

This table includes capital items with a total project cost of less than \$250,000. In accordance with Section 35 of the Public Utilities Act, these projects do not require UARB approval.

CI#	Project Title	2012 Budget	Project Total
Hydro			
41141	HYD - Sissiboo Grand Lake Spillway Refurbishment	\$181,972	\$181,972
41133	HYD - Standby Generator Replacement	153,699	153,699
17653	HYD Uniacke Lake Dam Decomissioning	119,266	119,266
41137	HYD - Gulch Powerhouse Window Replacement	102,978	102,978
41131	HYD - Relay Testing Equipment	67,727	67,727
41136	HYD - Gisborne Roof Hatch Replacement	38,552	38,552
	L L	,	,
	Total Hydro Items Less Than \$250,000	\$664,194	\$664,194
Steam			
41226	LIN Boiler Feed Pump Recirculation Piping and Valve Replacement	\$233.206	\$233.206
41238	TUC - Asbestos Abatement Program	227.423	227.423
41122	LIN 4 Battery & Charger Replacement	210.704	210.704
41514	TRE6 - Condenser Actuator Replacements	208,589	208,589
41125	LIN - Common Water (CW) Piping Replacement	198,076	198,076
41236	TUC - Cooling Water (CW) Piping Refurbishment	197,626	197,626
41523	TRE6 - 6F and 6G Conveyor Belt Replacement	197,020	193,117
41524	TRE6 - Motor control Centre (MCC) Room Fire Protection	173 605	173 605
41157	I IN4 Air Heater Baskets Renlacement	173,005	173,005
41525	TRE5 - 5-1 Pulverizer Refurbishment	170,250	170,873
41446	POT- Emergency response team (FRT) room ungrade	165 646	165 646
41531	TRF - Ashestos Abatement	160 565	160 565
31262	LIN - Unit 1-2 Stack Insulation Replacement	158 427	158 427
28697	TRE6 - Stack Lighting System Ungrade	155 535	155,535
39950	TRE5 - 5-2 Cooling Water (CW) Screen Refurbishment	154 308	154 308
41250	TUC2- South Boiler Feed Pump (BEP) Refurbishment	153 940	153 940
41230	TRE6 - AkV Switchgear Room Fire Protection	151,152	151,040
386/3	TRE6 - 6B Ely Ash Compressor Replacement	151,152	151,152
41150	LIN 4160V and 600V Motor Pafurbichment	150,049	150,04
41150	TDE6 Bottom Ash Chain Danlacement	1/18/251	148 251
41526	TRE - Boltom Ash Cham Replacement	140,231	140,231
41320	DOT Ash Call Copping Call D	147,033	147,033
41404	TUC2 Cooling Water (CW) Dump Pofurbishment	143,979	145,979
41243	TDE6 Cool Ecodor Value Deplecement	140,001	140,001
39933 41220	TLICE West Cas Compressor Defurbishment	130,310	130,310
41239	TDE5 Cool Durcharatte Darlagement	130,399	130,399
39931	DOT E halt Eine Distantion System Defusionment	135,329	135,529
41500	PUT E-beit Fire Protection System Refurbishment	152,088	132,088
41266	TUC2 - CEM Upgrade	131,642	131,642
41260	IUC2- H2 Dryer Replacement	127,932	127,932
41448	POT - Screen wash System Refurbishment	121,385	121,385
41444	PUI - Asbestos Abatement	120,755	120,755
41645	IKE6 - Bottom Ash Seal Replacement	120,240	120,240
41149	LIN - 4kV and 600V Breaker Refurbishment	116,470	116,470
41275	TUC2- ACW Strainer Replacement	114,909	114,909

Nova Scotia Power Inc. 2012 Annual Capital Expenditure Plan

CI#	Project Title	2012 Budget	Project Total
37402	POT - Coal Crusher Vibratory Feeder Refurbishment	\$114,191	\$114,191
41669	POT - HVAC Equipment Replacement	106,848	106,848
40060	TRE5 - 4kV Motor Refurbishment	103,806	103,806
14521	POT - Biofoulant Control System Upgrade	98,986	98,986
41594	POT - Lab Upgrades Phase 2	97,943	97,943
41267	TUC - Fire Protection System Foam Tank Replacement	94,872	94,872
41568	POT - Electrostatic Precipitator Supervisory System Upgrade	94,848	94,848
41278	TUC2- Condensate Extraction Pump Refurbishment	93,871	93,871
41261	TUC1- Direct Current (DC) Exciter Refurbishment	91,617	91,617
41532	TRE6 - 4kV Motor Refurbishment	85,048	85,048
41151	LIN3 - Polisher Resin Replacement	82,777	82,777
28152	TRE6 - Bottom Ash Overhead Door Replacement	81,004	81,004
41543	TRE6 - Motor Control Centre (MCC) Starter Replacements	80,558	80,558
41274	TUC3 - Water Treatment Plant Anion & Cation Tank Refurbishment	76,878	76,878
41268	TUC - 4kV and 600V Breaker Refurbishment	75,267	75,267
41279	TUC - 4KV Motor Refurbishment	74,826	74,826
37022	POT - 129V Battery Charger Replacement	74,578	74,578
30862	TRE5 - Boiler Thermoprobe Upgrade	74,366	74,366
41533	TRE6 - Boiler Thermoprobe Upgrade	74,126	74,126
41544	TRE6 - O2 Sensor Replacement	72,171	72,171
41277	TUC2 - Stack Breeching Seal Replacement	61,402	61,402
41545	TRE5 - O2 Sensor Replacement	56,924	56,924
41271	TUC2 - Instrument Air Receiver Replacement	55,180	55,180
41272	TUC2 - Turning Gear Worm Shaft Replacement	54,508	54,508
41591	POT - Induced Draft (ID) Fan Bearings Cooling System Upgrade	53,805	53,805
41585	POT - Pulverizer Exhauster Lubrication Cooling System Upgrade	51,072	51,072
41546	TRE5 - 4kV Breaker Refurbishment	40,854	40,854
41547	TRE6 - 4kV Breaker Refurbishment	40,854	40,854

	Total Steam Items Less Than \$250,000	\$7,523,966	\$7,523,966
	Total Generation Items Less Than \$250,000	\$8,188,160	\$8,188,160
Transmission			
41395	8H Fairview Switchgear Retirement	\$213,288	\$213,288
41592	88W New Recloser and Relocate 88W-322	111,171	111,171
	Total Transmission Items Less Than \$250,000	\$324,459	\$324,459
Distribution			
40219	2011 Recloser Control Replacements	\$216,786	\$216,786
41334	16N-301 Targeted Feeder Replacement	214,378	214,378
41388	7H Beaufort Conversion	174,253	174,253
41340	5N-301 Targeted Feeder Replacement	172,695	172,695
41354	519N-201 Partial Feeder Voltage Conversion to 25KV	164,814	164,814
41431	1C-411/22C-404 Transfer Scheme	149,850	149,850
41329	11W-202 Voltage Conversion to 12 kV	98,382	98,382
41343	81S-302 Targeted Feeder Replacements	96,642	96,642
41344	81S-305 Targeted Feeder Replacements	80,992	80,992
41326	103C-311 Targeted Feeder Replacements	74,612	74,612
41332	15S-302 Targeted Feeder Replacements	73,023	73,023
41397	2012 Padmount Switchgear Replacement	67,738	67,738

CI#	Project Title	2012 Budget	Project Total
41345	82S-303 Targeted Feeder Replacements	61.625	61.625
41342	81S-301 Targeted Feeder Replacements	50.632	50.632
41328	103W-312 Targeted Feeder Replacements	47,851	47,851
	Total Distribution Items Less Than \$250,000	\$1,744,274	\$1,744,274
General P	ant		
40651	Fuelworx (Fuel Management)	\$219,874	\$219,874
41404	Multiplexer Group Replacement	146,131	146,131
41421	Telecommunication 48VDC Battery & Charger Replacements	114,694	114,694
41443	Web Filtering Security	99,161	99,161
41442	Advanced Laptop Security Encryption and Firewalls	98,380	98,380
	Total General Plant Items Less Than \$250,000	\$678,240	\$678,240
	Total Capital Items Less Than \$250,000	\$10,935,132	\$10,935,132

1.6 2012 ACE Plan Capital Items – Point Aconi Generating Station

This table provides the Pt. Aconi capital projects for 2012. These projects do not require UARB Approval.

CI#	Project Title	2012 Budget	Project Total	
41074	POA Ash Call Site Comping	\$4 652 680	\$1 652 690	
41074	POA - Asil Cell Sile Capping	\$4,032,080 710,520	\$4,032,080 710,520	
41043	POA Combustor Watwall Panel Penlacement	505 357	505 357	
41000	POA Structural Steel Refurbishment	405 364	405 364	
41079	POA Turbing Vibration Monitoring Penlacement	308 030	308 030	
41054	POA = Center Drain Replacement	302 188	302 188	
41078	POA-Sidewall Feeder Replacement	297 394	297 394	
41588	POA - Cooling Water (CW) Pump Refurbishment	278 820	278 820	
41567	POA - Loon Seal Fluidizing Nozzle Replacement	246 949	246 949	
41051	POA - HV Bushing Capital Spare	235 399	235 399	
40032	POA - Boiler Feed Pump Refurbishment	235,577	220,577	
41569	POA - DCMS Ungrades	194 780	194 780	
41055	POA - LIPS Inverter Chargers Replacement	162 865	162 865	
41621	POA_{-} Turbine Thrust Bearing Replacement	136 159	136 159	
41021	POA Boiler Arrowhead Replacement	124 728	124 728	
41570	POA Bayerse Air Fan Benlacement	107 983	107.083	
41080	POA Cool Coto Ungrado	107,903	107,985	
41080	POA - Coal Board Daving Panlacoment	102,912	102,912	
41081	POA - Coal Road Faving Replacement	101,050	101,050	
41367	POA - Auviliary Poilar Mud Drum Steam Coil Ungrada	100,001	100,001	
41077	POA- Auxiliary Boller Mud Drulli Stealin Coll Opgrade	100,234	100,234	
41033	POA - Carbon Suphur Anaryzer Repracement	91,100	91,100	
41075	POA - Plant Access Upgrade	90,004	90,004	
41050	POA - Plant Access Opgrade	80,051 80,102	88,051 80,102	
41030	POA - Sciew Cooler Cover and Trough Replacement	80,105	80,105	
41048	POA - Cooling water (Cw) Screen Returbishment	80,001	80,001	
41571	POA-High Pressure Piping and Valve Insulation Upgrade	79,123	79,123	
41082	POA-2012 Valve Reludishment Program	70,443	70,443	
41000	POA - Heated Storage Upgrade	/1,2/5	/1,2/5	
41047	POA - 4KV & 600V Breaker Returbishment	64,/56	64,756	
41071	POA - Bottom Asn Drag Chain Replacement	62,741	62,741	
41083	POA - Boiler Expansion Joint Replacement	61,821	61,821	
41076	POA - B Train Cation and Anion Resin Replacement	60,501 52,916	60,501 52,916	
41046	POA - 4KV Motor Returbishment	53,810	53,816	
41059	POA - Coal Chute and Reclaim Refurbishment	50,040	50,040	
41052	POA - Cracker Soft Start Installation	42,434	42,434	
41057	POA - Sootblower Refurbishment	40,143	40,143	
41597	POA - Inline Sodium Analyzer Replacement	40,131	40,131	
	Total Point Aconi New Spending	\$10,428,244	\$10,428,244	
	Point Aconi Carryover Spending	-	-	
	Point Aconi Routine Spending (Included in overall Routine			
	Program)	\$458,588	\$458,588	
	Total Point Aconi Canital Spending	\$10.886.832	\$10.886.832	

1.7 2012 Capital Spending by Justification Criteria (*Millions of Dollars*)

Items in the 2012 ACE Plan have been developed using the Capital Expenditure Justification Criteria documents of 1995 and 1997. Definitions of the various criteria referenced in the following table are included in these documents.

		Individual		Less	Items for		
	2012	Project	Routine	than	Later		Pt.
Justification Criteria	Budget	Approval	Spend	\$250K	Filing	Carryover	Aconi
Distribution System**	\$72.5	\$ 11.9	\$ 48.0	\$ 1.7	\$ 10.7	\$ 0.1	\$ -
Thermal	41.3	8.2	4.7	5.2	7.8	5.1	10.3
Work Support**	34.7	3.5	14.6	0.7	12.9	3.0	-
Hydro	29.8	6.7	2.4	0.5	17.7	2.5	-
Health and Safety	7.8	4.7	-	1.6	0.9	0.6	-
Transmission Plant	68.1	26.2	11.1	0.3	20.1	10.4	-
Environmental	64.0	-	0.7	0.9	4.9	57.5	-
Metering Equipment	6.9	-	-	-	5.5	1.3	0.1
System Design	3.4	-	-	-	-	3.4	-
Facilities/Land & Right-of-							
Way	2.0	-	0.2	-	-	1.8	-
Total	\$ 330.3	\$ 61.2	\$ 81.6	\$ 10.9	\$ 80.4	\$ 85.8	\$ 10.4

** Details of justification sub-criteria are provided on the following page.

1.7.1	2012 Capital Spending by Justification Sub-Criteria	
	(Millions of Dollars)	

		Individual		Loss	Itoms for	
Justification Sub-	2012	Project	Routine	than	Later	
Criteria	Budget	Approval	Spend	\$250K	Filing	Carryover
Distribution System						
Requirement to Serve	\$ 29.7	\$ 0.3	\$ 28.1	\$ 0.2	\$ 1.1	\$ -
Pole Strength	8.6	-	8.6	-	-	-
Joint Use	0.9	-	0.9	-	-	-
Deteriorated Conductor	2.3	1.3	-	-	1.0	-
Equipment Replacement	11.1	4.6	-	0.3	6.1	-
Outage Performance	7.5	4.1	-	1.0	2.4	-
Overloaded Equipment	1.8	1.6	-	0.2	-	-
System Protection	0.1	-	-	-	-	0.1
Other Distribution	10.4		10.4			
System Total	10.4 \$ 72.5	- \$ 11 9	10.4 \$ 48.0	<u> </u>	- \$ 10 7	-
10(a)	ψ12.0	ψ11./	φ τυ.υ	φ 1	ψ 10.7	ψυ.Ι
Work Support						
Buildings	\$ 4.3	\$ -	\$ 3.0	\$ -	\$ -	\$ 1.4
Furniture & Fixtures	0.3	0.3	-	-	-	-
Telecommunications	6.4	0.9	0.9	0.3	4.4	-
Computers / IT	13.5	1.0	2.6	0.4	8.5	1.0
Tools & Equipment	1.3	-	1.3	-	-	-
Vehicles	6.8	-	6.8	-	-	-
Equipment Replacement	2.0	1.4	-	-	-	0.6
Other	0.1	-	0.1	-	-	-
Total	\$ 34.7	\$ 3.5	\$ 14.6	\$ 0.7	\$ 12.9	\$ 3.0

1.8 Capital Categories

NSPI classifies capital expenditures by Function and/or Justification Criteria. NSPI also classifies capital expenditures by Category: New Items, Carryover Items, and Routine Capital Items. For further clarification, each of these latter categories is divided into sub-categories.

1. New Items

This category includes new, non-routine capital items.

- (a) New Items with 2012 Completion This category includes all new, non-routine capital items scheduled to start in 2012 and finish in 2012.
- (b) New Items with Subsequent Completion This category includes all new, non-routine capital items scheduled to start in 2012, but which will be completed beyond 2012.
- 2. Carryover Items

This category includes items that have been previously approved by the UARB.

- (a) Carryover Items with 2012 Completion Includes items that will be completed during 2012.
- (b) Carryover Items with Subsequent Completion Includes items that will be completed beyond 2012.
- 3. Routine Capital Items

This category is for recurring annual capital expenditures.

- (a) Replacement equipment (like-for-like replacement).
- (b) Additions to existing equipment base resulting from power system growth.
- (c) The addition of customers to the power system.

(Millions of Dollars)

2012 ACE Budget Estimated Commitment

	Previous Spending	2012 ACE Budget	Subsequent Spending	Total Estimated Commitment
New Items				
With 2012 Completion	-	\$137.7	-	\$137.7
With Subsequent	-	25.3	\$34.9	60.2
Completion				
	0.0	162.9	34.9	197.8
Carryover Items				
With 2012 Completion	308.4	20.9	-	329.3
With Subsequent	147.9	64.9	12.5	225.4
Completion				
	458.9	85.8	12.5	557.2
Routine Items	-	81.6	-	81.6
Total	\$456.3	\$330.3	\$47.5	\$834.0

Please refer to category definitions on the previous page.

1.9 Capital Functions

Capital expenditures are categorized into functions for accounting and depreciation purposes. Each category has a different service life.

- **Generation** Generation includes all items for NSPI's generation facilities. This includes replacements and additions to Thermal, Hydro, Wind, Tidal and Gas Turbine plants.
- **Transmission** Transmission includes items for replacement, reinforcement or expansion of the transmission system, which transmits electrical energy from the generation plants, the NB/NSPI interconnection and throughout the province. Transmission includes energy transmitted at 69 kV level or higher.
- **Distribution** Distribution includes replacement of and additions to equipment for delivering electric energy from points on the transmission system to customers served at voltages below 69 kV.
- **General Plant** General Plant includes computer infrastructure and communication equipment, which comprise the majority of capital expenditures incurred under this function. Other items such as furniture, office equipment and capital tools are also included under this function.

The General Plant function also includes vehicles, that is, replacement and additions to transportation and work vehicles, and construction equipment.

The General Plant function also includes all buildings except generating and substation facilities. It primarily pertains to customer service, work depot and head office facilities.

1.9.1 Total Annual Capital Expenditures by Function

(Millions of Dollars)

Year	2007	Actu 2008	als 2009	2010	Forecast 2011 (as of O3)	ACE Plan 2012	2013	Fore 2014	cast 2015	2016
Generation	\$47.2	\$78.5	\$165.0	\$385.0	\$157.7	\$141.7	\$97.3	\$132.1	\$300.3	\$132.6
Transmission	19.4	18.0	22.7	45.1	62.0	68.1	69.4	79.4	90.8	121.2
Distribution	44.5	47.6	52.3	59.6	61.0	72.5	80.0	81.0	73.9	76.9
General Plant	14.5	23.2	39.6	58.1	56.5	48.1	22.2	20.5	20.6	20.9
Total	\$125.6	\$167.3	\$279.7	\$547.8	\$337.2	\$330.3	\$268.9	\$313.0	\$485.7	\$351.7

1.9.2 2011 Capital Spending by Function

(Millions of Dollars)

1.10 2011 ACE Capital Items Deferred / Cancelled

CI Number	Project Title	2011 ACE Project Total	Cancelled / Deferred
Generation			
38947	Co-Firing Biomass NS government policy change on biomass co-firing eliminated the opportunity to advance this project as previously contemplated.	\$11,998,380	Cancelled
40555	Baghouse #1 The completion of the mercury emission compliance plan in the first half of 2011 indicated the addition of baghouses was not the least cost alternative based on current air pollutant regulations.	6,944,483	Cancelled
40557	Baghouse #2 The completion of the mercury emission compliance plan in the first half of 2011 indicated the addition of baghouses was not the least cost alternative based on current air pollutant regulations.	6,521,853	Cancelled
37611	LIN3 - Generator Excitation & AVR System Replacement The original execution plan for this project included equipment supply and installation by the Original Equipment Manufacturer (OEM). The project was deferred to investigate options for non-OEM solutions that provided the same or better performance in a cost-effective manner. NSPI is planning to proceed with a non-OEM solution in 2012.	1,254,995	Deferred
31583	LIN2 L-1 Steam Turbine Blading Replacement The proposed Reduction of Carbon Dioxide Emissions from Coal-Fired Generation of Electricity Regulations are Federal Government Regulations that are anticipated to come into effect on July 1, 2015. The proposed Regulations, made under the Canadian Environmental Protection Act,1999 (CEPA 1999), would apply a performance standard to new coal-fired electricity generation units and to old units that have reached the end of their useful life. New units are units that start producing electricity commercially on or after July 1, 2015. Old units are, in general, defined as units that have reached their end of useful life date, which is the later of 45 years from the units' commissioning dates or the end of their power purchase agreement (PPA). As a result of these proposed Regulations and their potential impact to Lingan Unit #2, this project has been cancelled.	1,028,340	Cancelled
39566	LIN2 Steam Turbine Last Stage Blades Replacement The proposed Reduction of Carbon Dioxide Emissions from Coal-Fired Generation of Electricity Regulations are Federal Government Regulations that are anticipated to come into effect on July 1, 2015. The proposed Regulations, made under the Canadian Environmental Protection Act,1999 (CEPA 1999), would apply a performance standard to new coal-fired electricity generation units and to old units that have reached the end of their useful life. New units are units that start producing electricity commercially on or after July 1, 2015. Old units are, in general, defined as units that have reached their end of useful life date, which is the latter of 45 years from the units' commissioning dates or the end of their power purchase agreement (PPA). As a result of these proposed Regulations and their potential impact on Lingan Unit #2, this project has been deferred until an inspection is performed in late 2011.	1,025,771	Deferred

38944	LIN - Unit 2 Rotor Rewind The proposed Reduction of Carbon Dioxide Emissions from Coal-Fired Generation of Electricity Regulations are Federal Government Regulations that are anticipated to come into effect on July 1, 2015. The proposed Regulations, made under the Canadian Environmental Protection Act,1999 (CEPA 1999), would apply a performance standard to new coal-fired electricity generation units and to old units that have reached the end of their useful life. New units are units that start producing electricity commercially on or after July 1, 2015. Old units are, in general, defined as units that have reached their end of useful life date, which is the latter of 45 years from the units' commissioning dates or the end of their power purchase agreement (PPA). As a result of these proposed Regulations and potential impact to Lingan Unit #2, this project has been deferred and may be cancelled pending an upcoming inspection.	675,528	Deferred
40032	POA - Boiler Feed Pump Refurbishment A pump performance test completed in 2011 determined that refurbishment of this pump could be deferred until 2012.	216,815	Deferred
37885	POT - Lubrication and Chemical Storage Bids received were higher than budgeted and resulted in re-evaluation of the project scope. Re-evaluation of the project scope and detailed project estimate is ongoing and the project will be brought forward for approval once this re-evaluation is complete.	191,666	Deferred
40297	TRE5 - Boiler House Tundish Drains Upon further investigation, it was determined that replacement of the drains is not required at this time.	133,979	Cancelled
38108	POT - AVR Refurbishment The original execution plan for this project included equipment supply and installation by the Original Equipment Manufacturer (OEM). The project was deferred due to investigating options for non-OEM solutions that provided the same or better performance in a cost-effective manner. Investigation of non-OEM options and completion of preliminary engineering will be completed in 2012 and NSPI is planning to bring this capital item forward for approval in 2013.	128,270	Deferred
30044	POT - Ash cell capping Cell C Cell C is currently being used for coal storage, which prohibits the capping process. The project has been deferred until such time that Cell C is no longer used for coal storage.	117,423	Deferred
37544	TRE5 - Coal MCC Transformer Replacement Further evaluation of this project determined that the level of PCBs in the transformers does not support replacement of the transformers at this time.	85,361	Deferred
28152	TRE6 - Bottom Ash Overhead Door Replacement The scope of this project was finalized in 2011 and the project will be completed in 2012.	61,066	Deferred
38542	TRE - Service Air Compressor Other sources of service air were evaluated and eliminated the need for an additional service air compressor.	40,333	Cancelled

Transmission

40322	New Prospect Road Substation NSPI Expects to file the Application for this Project in November, 2011.	3,068,581	Deferred
40311	50MVA Mobile Substation Transformer This project is being re-evaluated to determine the type and size of the mobile.	1,598,007	Deferred
40321	Install Canaan Road to Prospect Road Transmission Line NSPI Expects to file the Application for this Project in November, 2011.	2,024,763	Deferred
40285	2011 Transmission Substation Insulator & Cutout NSPI Expects to file the Application for this Project in November, 2011.	1,500,000	Deferred
40296	2011 Transmission Steel Tower Painting This work was cancelled due to dissatisfaction with the market response. In 2012 NSPI plans to expand market solicitation.	587,142	Cancelled
40323	Canaan Road Line Terminal NSPI Expects to file the Application for this Project in November, 2011.	738,632	Deferred
25575	Reliability Keltic Drive New Feeder NSPI Expects to file the Application for this Project in November, 2011.	1,205,023	Deferred
40203	103W-311 Gold River Phase 1 NSPI Expects to file the Application for this Project in November, 2011.	434,415	Deferred
Distribution			
40224	78W-301 Second Peninsula This project was deferred pending a decision by a new customer as to whether 3 phase service is required.	1,010,713	Deferred
40219	2011 Recloser Control Replacements This project was deferred as work focused on addressing failures realized at substations.	216,786	Deferred
40227	2011 Off Road to Roadside NSPI Expects to file the Application for this Project in November, 2011.	2,500,000	Deferred
40320	LED Street Light Conversion This project was deferred pending issuance of NS Government Regulations.	100,000,000	Deferred
General Plant			
40314	Data Centre Further evaluation of this project determined that the scope requires review. NSPI expects to bring this project forward for approval in 2012.	4,800,000	Deferred
32304	AMI Hardware and Software Installation Further evaluation of this project determined that the scope requires refinement. In 2012, NSPI expects to bring 2 separate AMI projects forward for Board approval.	30,694,639	Cancelled

40278	OMS Upgrade 2011 The project scope is being currently being reviewed and NSPI expects to file the application for this project by year end, 2011.	2,050,951	Deferred
40299	Field Office Phone System Replacement	833,557	Deferred
	This projevct has been deferred until a wireless strategy for field workers is completed. An interim solution will be implemented for more rural locations that have reached end of life.		
40373	CIS Replacement	204,100	Cancelled
	A review of the system performance and business requirements for the Customer Information System has determined that the current system did not require the original investment proposed in 2011.		
40302	Extended Video Conference Systems	190,467	Cancelled
	This project was cancelled as new internet based applications are currently being trialed.		
40365	MS Sharepoint Platform Upgrade	908,174	Deferred
	NSPI Expects to file the Application for this Project in November, 2011.		

1.11 2011 ACE Plan UARB Directives

1.11.1 Directive 7 - Approximate Impact of 2012 ACE Plan on Revenue Requirement

In accordance with the 2011 ACE Plan UARB Directive, NSPI has developed an estimate of the impact that the 2012 ACE Plan would have on Revenue Requirement over the time frame 2013 - 2016.

In order to prepare this, NSPI used the General Rate Application 2012 Test Year filed with the Board in the spring of 2011 and adjusted only the numbers affected by the capital program: Capital costs, Depreciation, Capital Cost Allowance, Applied Overhead (AO) and AFUDC. While this does provide an approximate Revenue Requirement, it is important to note the limitations of this methodology. This narrow revenue calculation does not show other things occuring in the business that could have a significant impact on the Revenue Requirement.

One important consideration that is not addressed in the Revenue Requirement below is the impact on Revenue Requirement should capital projects not be completed (e.g. increased fuel costs may result if a particular item were not completed). The Economic Analysis Models (EAM) used to decide whether a capital project is the best option for customers includes this type of analysis; this is not included in the calculations provided below.

In calculating the Revenue Requirement, no changes were made to any other assumptions from the 2012 GRA filing including the following: load, fuel, OMG except capital related, regulatory amortizations, tax rates and depreciation rates. The only changes related to the capital program are involving Depreciation, AFUDC, Capital Cost and Capital Cost Allowance.

	Estimated revenue requirement	Estimated revenue
	increase based on full capital	requirement increase
	program including capital	based on 2012 ACE Plan
Year	already approved	capital items not approved
2013	\$58M	\$11M
2014	\$30M	\$16M
2015	\$9M	\$13M
2016	\$23M	(\$6M)

A large part of the Revenue Requirement associated with 2013 is related to projects that have already been approved by the Board in past ACE Plan applications, the largest being the Port Hawkesbury Biomass Project. It is anticipated that in 2013 this project will be in service, increasing depreciation, reducing AFUDC significantly and lowering Capital Cost Allowance.

Caution should be exercised as changes in assumptions or actual experience can have a material effect on the revenue requirements provided in this forecast.

1.11.2 Directive 9- Summary of 2012 ACE Plan Capital Items Related to NERC and/or NPCC Standards

CI#	Project Title	2012 ACE Plan	Total Estimate	Related Capital items2012 & +/- 2 Years
40233	2011 Protection Upgrades TUC	\$2,513,370	\$3,998,885	2010 - 38266 2010 Protection Upgrades \$313,331 2011 - 40231 Protection Upgrades Lakeside \$1,609,905 2012 41348 Protection Upgrades Onslow \$2,274,015 2013 - 41347 Protection Upgrades Brushy Hill \$1,873,614
41348	2012 Protection Upgrades Onslow	2,274,015	2,274,015	2010 - 38266 2010 Protection Upgrades \$313,331 2011 - 40231 Protection Upgrades Lakeside \$1,609,905 2011 - 40233 2011 Protection Upgrades TUC \$3,928,932 2013 - 41347 Protection Upgrades Brushy Hill \$1,873,614
40231	2011 Protection Upgrades LAK	1,536,649	1,579,848	2010 - 38266 2010 Protection Upgrades \$313,331 2011 - 40231 Protection Upgrades Lakeside \$1,609,905 2011 - 40233 2011 Protection Upgrades TUC \$3,928,932 2013 - 41347 Protection Upgrades Brushy Hill \$1,873,614
Regulat	tory Compliance Total	\$6,324,034	\$7,852,748	

1.11.3 Directive 11 – Project Rankings

NSPI Capital Projects are ranked according to the following criteria:

- Health and Safety: Operating Permits, Personnel Safety
- Regulatory Compliance: Renewable Energy Standards, GHG Regulations, Air
- Emission Regulations, NERC/ NPCC Requirements
- Customer Reliability: SAIDI, SAIFI, CAIDI
- Requirement to Serve
- Business Sustainability (Economics): Based on Net Present Value of the Project, Levelized Cost Analysis, \$/ Avoided Customer Hours of Interruption (ACHI)

Each year, the capital program includes those projects which are essential for health and safety objectives, regulatory compliance, and those which are required to provide service to an area. Projects which serve to improve customer reliability are evaluated based on factors related to performance targets (SAIDI, SAIFI, CAIDI, etc.). Business sustainability initiatives are evaluated based on their economic ranking.

The capital program can be constrained by a number of factors including the ability to effectively execute the annual program with the available time and resources, the maintenance cycle of the generating facilities and Company cash flow.

The following tables identify the projects included in the 2012 ACE Plan, their Ranking Category and ranking value where applicable.

1.11.3.1 Hydro – 2012 ACE Plan Capital Item Rankings

		Project Estimate	Project Type, Category & Ranki		ting				
CT	Ducient Title	2012 ACE	Project	Donking Cotogowy	Project				
CI	Project fille	Budget	Туре	Kanking Category	Ranking				
Hydro Capi	Hydro Capital Items Included in 2012 ACE Plan								
17583	HYD - BER-GUL - Electrical Refurbishment	\$805,646	CO	Safety	NA				
12079	HYD - SHH - RUF 1&2 Runner Replacement	744,394	CO	Business Sustainability	NA				
28678	HYD Renewable In-Stream Tidal Generation Project	400,000	CO	Business Sustainability	NA				
40316	HYD - Barteaux Culvert Refurbishment	376,162	CO	Safety	NA				
16387	HYD- Ruth Falls #3 Runner Replacement	373,086	CO	Business Sustainability	NA				
17853	HYD - STM-Sandy Lake #4 Runner Replacement	248,157	CO	Business Sustainability	NA				
40309	HYD - St. Margaret's Bay - Tidewater Pipeline Replacement	7,704,424	New	Business Sustainability	9.00				
31245	HYD - St. Margaret's Bay - Sandy Lake Dam Refurbishment	5,579,410	New	Safety	9.00				
40282	HYD- St Margaret's Bay - Coon Pond Dam Refurbishment	2,595,361	New	Safety	9.00				
31204	HYD - Dickie Brook - Donahoe Lake Dam Refurbishment	1,597,494	New	Safety	9.00				
41143	HYD - St Margarets Bay - Tidewater Surge Tank Refurbishment	1,211,641	New	Business Sustainability	9.00				
41126	HYD Annapolis - Sluiceway and Powerhouse Stop Log Refurbishment	1,115,739	New	Business Sustainability	9.00				
39042	HYD - Sheet harbour - Ten Mile Lake Dam Decommissioning	1,018,923	New	Safety	9.00				
41138	HYD - Black River - Hollow Bridge Surge Tank Refurbishment	930,048	New	Business Sustainability	9.00				
23125	HYD - Sissiboo Falls - Electrical Equipment Replacement	845,755	New	Safety	9.00				
41145	HYD - Mersey - Upper Lake Falls Rip Rap Replacement	516,420	New	Safety	9.00				
41806	HYD - Big Falls - #6 Refurbishment	497,566	New	Business Sustainability	8.00				
39543	HYD - U&U Ladder Upgrades	364,417	New	Safety	9.00				
41140	HYD Sissiboo Falls - Tailrace Concrete Refurbishment	314,412	New	Safety	9.00				
41127	HYD - Nictaux - Headcover Replacement	219,362	New	Safety	9.00				
41141	HYD - Sissiboo Grand Lake Spillway Refurbishment	181,972	New	Safety	9.00				
41133	HYD - Standby Generator Replacement	153,699	New	Safety	9.00				
17653	HYD Uniacke Lake Dam Decomissioning	119,266	New	Safety	9.00				
41137	HYD - Gulch Powerhouse Window Replacement	102,978	New	Safety	6.00				
41131	HYD - Relay Testing Equipment	67,727	New	Business Sustainability	6.00				
41136	HYD - Gisborne Roof Hatch Replacement	38,552	New	Safety	6.00				
20706	HYD - Security Improvements	750,000	Routine	Routine	NA				
11622	HYD - Equipment Replacment	750,000	Routine	Routine	NA				
35584	HYD - Gate Refurbishment Routine	400,000	Routine	Routine	NA				
35583	HYD Oil Release Risk Assessment Remediation	270,000	Routine	Routine	NA				
27867	HYD-Roofing Routine	200,000	Routine	Routine	NA				
11611	Hydro Production Tools, Test Equipment	75,000	Routine	Routine	NA				

		Project Estimate	Project Type, Category & Ranking						
CI	Project Title	2012 ACE Budget	Project Type	Ranking Category	Project Ranking				
Steam Capi	Steam Capital Items Included in 2012 ACE Plan								
30954	LIN3-ESP Gas Flow Modification	\$1,608,606	CO	Business Sustainability	NA				
35083	LIN 2011 Ash Site Sealing and Capping	973,936	CO	Environment	NA				
40363	LIN3 High Voltage Bushing Refurbishment	433,360	СО	Business Sustainability	NA				
39542	U&U Generator Protection Improvements	338,518	СО	safety	NA				
28393	POT 2A Mill and Feeder Refurbishment	287,344	CO	Business Sustainability	NA				
26472	TRE - 6A Cooling Water Pump Refurbishment	218,564	CO	Business Sustainability	NA				
39944	TRE6 - Fly Ash Line Replacement	216,127	СО	Business Sustainability	NA				
39940	TRE5 - Bottom Ash Refurbishment	205,214	CO	Business Sustainability	NA				
38602	TRE - Fire System Upgrades	176,387	CO	Safety	NA				
39946	TRE - Wastewater Treatment Plant Upgrades	176,099	СО	Environment	NA				
39762	TUC - Unit 3 CW Intake Steel Sheet Piling Refurbish	176,007	CO	Business Sustainability	NA				
39939	TRE - Security Improvements (Phase 1)	144,449	СО	Safety	NA				
40207	TUC- CO2 Purge System Upgrade	139,842	СО	Business Sustainability	NA				
40319	TRE - HVAC Replacements (2011)	131,597	CO	Business Sustainability	NA				
40334	POT - Refurbish Underground Valves & Hydrants	131,398	CO	Business Sustainability	NA				
30283	POT - Tupper Marine Coal Terminal Vessel Access	129,272	CO	Environment	NA				
37824	TRE5 - Common Water Pipe Replacement	128,289	CO	Business Sustainability	NA				
40371	LIN Training Facilities Upgrade	117,447	CO	Business Sustainability	NA				
40337	POT - Replace WTP and WWTP Valves	102,091	CO	Business Sustainability	NA				
28457	TRE Ash Lagoon Closure	93,494	CO	Environment	NA				
34203	LIN Unit #3 Mercury Abatement Project	75,883	CO	Environment	NA				
34223	POT Mercury Abatement Project	75,528	CO	Environment	NA				
34224	TRE Unit#5 Mercury Abatement Program	75,528	CO	Environment	NA				
34242	TRE Unit #6 Mercury Abatement	75,528	CO	Environment	NA				
34222	LIN Unit #4 Mercury Abatement Project	75,528	CO	Environment	NA				
34182	LIN Unit #1 Mercury Abatement Project	75,203	CO	Environment	NA				
34202	LIN Unit #2 Mercury Abatement	74,995	CO	Environment	NA				
39982	TRE - Gauge Replacements	73,230	CO	Safety	NA				
38850	LIN-Flyash System Upgrade Hopper Level Indicator	56,003	CO	Environment	NA				

1.11.3.2 Steam – 2012 ACE Plan Capital Item Rankings

		Project Estimate	Project Type, Category & Ranking		
CI	Project Title	2012 ACE	Project	Ranking Category	Project
Steam Cap	ital Items Included in 2012 ACE Plan	Duoget	Туре		Kallking
28697	TRE6 - Stack Lighting System Upgrade	155,535	New	Safety	9.00
38643	TRF6 - 6B Flv Ash Compressor Replacement	150.984	New	Business Sustainability	7.00
28152	TRF6 - Bottom Ash Overhead Door Replacement	81,004	New	Safety	7.00
30862	TRF5 - Boiler Thermoprobe Upgrade	74,366	New	Business Sustainability	8.00
41074	POA - Ash Cell Site Capping	4.652,680	New	Environment	9.00
39932	TRE - Ash Site Phase 2 Development	4.563,325	New	Environment	7.50
18448	TUC - Cooling Water System Biofouling Control	2.752,157	New	Business Sustainability	7.00
41228	TUC - Unit 3 Turbine HP Impulse Blades Replaceme	882,152	New	Business Sustainability	8.00
28674	TRE6 - Human Machine Interface (HMI) Upgrade	867,805	New	Business Sustainability	7.50
37611	LIN3 - Generator Excitation & AVR Replacement	819,469	New	Business Sustainability	8.25
39926	TUC - Unit 3 Generator Excitation and AVR System1	742,715	New	Business Sustainability	7.50
41045	POA - Boiler Refractory Replacement	710,539	New	- Business Sustainability	7.50
41441	TRE - Siding Replacement (Phase 2)	608,916	New	Safety	7.50
39566	LIN2 Steam Turbine Last Stage Blades Replacement	601,589	New	Business Sustainability	7.50
41595	POT - Sternson PLC Replacement	596,976	New	Business Sustainability	7.25
41507	TRE6 - Air Heater Refurbishment	553,438	New	Business Sustainability	7.75
41303	TRE6 - Waterwall Panel Replacements	548,225	New	Business Sustainability	7.25
41549	- TRE5- Main Steam Attemperator Replacement	535,227	New	Business Sustainability	7.00
40330	LIN2 HT Fastener Replacement	532,691	New	Business Sustainability	7.50
41563	POA-Combustor Watwall Panel Replacement	505,357	New	Business Sustainability	8.50
40655	LIN - Pulverizer Refurbishment	461,279	New	Business Sustainability	7.75
41121	LIN - Cooling Water (CW) Pump Refurbishment	447,687	New	Business Sustainability	7.50
41079	POA - Structural Steel Refurbishment	405,364	New	Business Sustainability	8.50
40256	POT - Plant Siding Replacement	392,601	New	Business Sustainability	7.50
41511	TRE6 - Condenser Waterbox and Cooling Water (CV	392,172	New	Business Sustainability	7.00
41503	- TRE6 - Steam Turbine Control Valve Refurbishment	359,507	New	Business Sustainability	8.00
41508	TRE6 - Turbine/Generator Fire Protection	347,079	New	Safety	9.00
41584	POT Vacuum Pump Replacement	332,994	New	Business Sustainability	6.50
28645	TRE6 - Turbine Controls Power Supplies Replacement	321,691	New	Business Sustainability	8.25
38163	TRE6 Pulverizer Refurbishments	311,074	New	Business Sustainability	7.00

1.11.3.2 Steam – 2012 ACE Plan Capital Item Rankings Cont'd
		Project Estimate	Project Type, Category & Ranking			
CI	Project Title	2012 ACE Budget	Project Type	Ranking Category	Project Ranking	
Steam Cap	ital Items Included in 2012 ACE Plan					
41054	POA - Turbine Vibration Monitoring Replacement	308,939	New	Business Sustainability	8.00	
41566	POA - Center Drain Replacement	302,188	New	Business Sustainability	8.50	
41078	POA-Sidewall Feeder Replacement	297,394	New	Business Sustainability	7.50	
41248	TUC - Lube Oil Storage Building	288,657	New	Environment	9.00	
41588	POA - Cooling Water (CW) Pump Refurbishment	278,820	New	Business Sustainability	7.50	
41251	TUC3 - Turbine High Pressure (HP) Cylinder Fasten	275,729	New	Safety	8.00	
41620	TUC3 Turbine Generator Fire Protection	272,743	New	Safety	7.50	
41561	POT - Maintenance facilities Refurbishment	258,558	New	Safety	7.75	
41516	TRE6 - Stack Breaching Inlet Ductwork Refurbishme	252,948	New	Business Sustainability	8.25	
41124	LIN-Cooling Water (CW) Screen Refurbishment	251,544	New	Business Sustainability	7.50	
41567	POA - Loop Seal Fluidizing Nozzle Replacement	246,949	New	Business Sustainability	8.50	
41051	POA - HV Bushing Capital Spare	235,399	New	Business Sustainability	8.50	
41226	LIN Boiler Feed Pump recirculation Piping and valve	233,206	New	Business Sustainability	7.50	
41238	TUC - Asbestos Abatement Program	227,423	New	Safety	9.00	
40032	POA - Boiler Feed Pump Refurbishment	220,641	New	Business Sustainability	8.50	
41122	LIN 4 Battery & Charger Replacement	210,704	New	Business Sustainability	7.50	
41514	TRE6 - Condenser Actuator Replacements	208,589	New	Business Sustainability	7.25	
41125	LIN - Common Water (CW) Piping Replacement	198,076	New	Business Sustainability	7.50	
41236	TUC - Cooling Water (CW) Piping Refurbishment	197,626	New	Business Sustainability	7.00	
41569	POA - DCMS Upgrades	194,780	New	Business Sustainability	8.50	
41523	TRE6 - 6F and 6G Conveyor Belt Replacement	193,117	New	Business Sustainability	8.25	
41524	TRE6 - Motor control Centre (MCC) Room Fire Prote	173,605	New	Safety	9.00	
41525	TRE5 - 5-1 Pulverizer Refurbishment	170,873	New	Business Sustainability	7.00	
41446	POT- Emergency response team (ERT) room upgrade	165,646	New	Safety	9.00	
41055	POA - UPS Inverter Chargers Replacement	162,865	New	Business Sustainability	8.25	
41531	TRE - Asbestos Abatement	160,565	New	Environment	8.00	
39950	TRE5 - 5-2 Cooling Water (CW) Screen Refurbishme	154,308	New	Business Sustainability	7.00	
41250	TUC2- South Boiler Feed Pump (BFP) Refurbishmen	153,940	New	Business Sustainability	7.00	

		Project Estimate	Project Type, Category & Ranking		
CI	Project Title	2012 ACE Budget	Project Type	Ranking Category	Project Ranking
Steam Ca	pital Items Included in 2012 ACE Plan				
41527	TRE6 - 4kV Switchgear Room Fire Protection	151,152	New	Safety	9.00
41150	LIN 4160V and 600V Motor Refurbishment	150,049	New	Business Sustainability	8.00
41528	TRE6 - Bottom Ash Chain Replacement	148,251	New	Business Sustainability	8.00
41526	TRE - Ash Site Management	147,833	New	Environment	9.25
41484	POT - Ash Cell Capping Cell D	143,979	New	Environment	9.00
39923	TUC - Generator Excitation and AVR System Replac	141,183	New	Business Sustainability	7.00
41245	TUC2 - Cooling Water (CW) Pump Refurbishment	140,001	New	Business Sustainability	7.00
39953	TRE6 - Coal Feeder Valve Replacement	136,516	New	Business Sustainability	7.25
41239	TUC6- West Gas Compressor Refurbishment	136,399	New	Business Sustainability	8.00
41621	POA-Turbine Thrust Bearing Replacement	136,159	New	Business Sustainability	8.50
39951	TRE5 - Coal Bunkerette Replacement	135,329	New	Business Sustainability	7.00
41560	POT E-belt Fire Protection System Refurbishment	132,088	New	Safety	9.00
41266	TUC2 - CEM Upgrade	131,642	New	Environment	9.00
41260	TUC2- H2 Dryer Replacement	127,932	New	Business Sustainability	7.00
41084	POA - Boiler Arrowhead Replacement	124,728	New	Business Sustainability	8.00
41448	POT - Screen Wash System Refurbishment	121,385	New	Business Sustainability	8.00
41444	POT - Asbestos Abatement	120,755	New	Safety	9.00
41645	TRE6 - Bottom Ash Seal Replacement	120,240	New	Business Sustainability	7.00
41149	LIN - 4kV and 600V Breaker Refurbishment	116,470	New	Business Sustainability	8.00
41275	TUC2- ACW Strainer Replacement	114,909	New	Business Sustainability	7.50
37402	POT - Coal Crusher Vibratory Feeder Refurbishment	114,191	New	Business Sustainability	7.50
41570	POA-Reverse Air Fan Replacement	107,983	New	Environment	9.00
41669	POT - HVAC Equipment Replacement	106,848	New	Safety	7.00
40060	TRE5 - 4kV Motor Refurbishment	103,806	New	Business Sustainability	7.00
41080	POA - Coal Gate Upgrade	102,912	New	Safety	7.50
41081	POA - Coal Road Paving Replacement	101,050	New	Business Sustainability	7.50
41587	POA - HVAC Equipment Replacement	100,661	New	Business Sustainability	7.50
41077	POA- Auxiliary Boiler Mud Drum Steam Coil Upgrad	100,254	New	Business Sustainability	8.50
14521	POT - Biofoulant Control System Upgrade	98,986	New	Safety	6.50
41594	POT - Lab Upgrades Phase 2	97,943	New	Environment	6.50

		Project Estimate	Project Type, Category & Ranking			
CI	Project Title	2012 ACE Budget	Project Type	Ranking Category	Project Ranking	
Steam Cap	ital Items Included in 2012 ACE Plan			,		
41267	TUC - Fire Protection System Foam Tank Replaceme	94,872	New	Safety	7.50	
41568	POT - Electrostatic Precipitator Supervisory System	94,848	New	Environment	9.00	
41278	TUC2- Condensate Extraction Pump Refurbishment	93,871	New	Business Sustainability	8.00	
41261	TUC1- Direct Current (DC) Exciter Refurbishment	91,617	New	Business Sustainability	8.00	
41053	POA - Carbon Sulphur Analyzer Replacement	91,100	New	Environment	8.00	
41073	POA - Plant Industrial Vaccum System	90,064	New	Business Sustainability	8.50	
41056	POA - Plant Access Upgrade	88,031	New	Safety	8.00	
41532	TRE6 - 4kV Motor Refurbishment	85,048	New	Business Sustainability	8.00	
41151	LIN3 - Polisher Resin Replacement	82,777	New	Business Sustainability	7.00	
41543	TRE6 - Motor Control Centre (MCC) Starter Replace	80,558	New	Business Sustainability	7.25	
41050	POA - Screw Cooler Cover and Trough Replacement	80,103	New	Business Sustainability	8.25	
41048	POA - Cooling Water (CW) Screen Refurbishment	80,061	New	Business Sustainability	8.25	
41571	POA-High Pressure Piping and Valve Insulation $\mathrm{Up}_{\$}$	79,123	New	Safety	8.25	
41274	TUC3 - Water Treatment Plant Anion & Cation Tank	76,878	New	Business Sustainability	7.00	
41082	POA-2012 Valve Refubishment Program	76,443	New	Business Sustainability	7.50	
41268	TUC - 4kV and 600V Breaker Refurbishment	75,267	New	Business Sustainability	7.00	
41279	TUC - 4KV Motor Refurbishment	74,826	New	Business Sustainability	7.00	
37022	POT - 129V Battery Charger Replacement	74,578	New	Business Sustainability	7.00	
41533	TRE6 - Boiler Thermoprobe Upgrade	74,126	New	Business Sustainability	8.00	
41544	TRE6 - O2 Sensor Replacement	72,171	New	Environment	7.75	
41066	POA - Heated Storage Upgrade	71,275	New	Business Sustainability	7.5	
41047	POA - 4KV & 600V Breaker Refurbishment	64,756	New	Business Sustainability	7.50	
41071	POA - Bottom Ash Drag Chain Replacement	62,741	New	Business Sustainability	8.00	
41083	POA - Boiler Expansion Joint Replacement	61,821	New	Business Sustainability	8.00	
41277	TUC2 - Stack Breeching Seal Replacement	61,402	New	Environment	7.75	
41076	POA - B Train Cation and Anion Resin Replacement	60,501	New	Business Sustainability	7.50	
41545	TRE5 - O2 Sensor Replacement	56,924	New	Environment	7.75	
41271	TUC2 - Instrument Air Receiver Replacement	55,180	New	Safety	7.00	
41272	TUC2 - Turning Gear Worm Shaft Replacement	54,508	New	Business Sustainability	7.00	
41046	POA - 4KV Motor Refurbishment	53,816	New	Business Sustainability	8.00	
41591	POT - Induced Draft (ID) Fan Bearings Cooling Syst	53,805	New	Business Sustainability	7.75	
41585	POT - Pulverizer Exhauster Lubrication Cooling Syst	51,072	New	Business Sustainability	7.50	

		Project Estimate	Project Type, Category & Ranking		
CI	Project Title	2012 ACE Budget	Project Type	Ranking Category	Project Ranking
Steam Cap	ital Items Included in 2012 ACE Plan	Ĭ			
41059	POA - Coal Chute and Reclaim Refurbishment	50,040	New	Business Sustainability	8.00
41052	POA - Cracker Soft Start Installation	42,434	New	Business Sustainability	7.50
41546	TRE5 - 4kV Breaker Refurbishment	40,854	New	Business Sustainability	7.25
41547	TRE6 - 4kV Breaker Refurbishment	40,854	New	Business Sustainability	7.25
41057	POA - Sootblower Refurbishment	40,143	New	Business Sustainability	8.00
41597	POA - Inline Sodium Analyzer Replacement	40,131	New	Environment	8.50
41229	LIN - Cable Spreading Rooms Fire Protection	918,292	New	Safety	8.50
41233	LIN3 Boiler Refurbishment	755,711	New	Business Sustainability	8.00
41235	LIN1 Boiler Refurbishment	749,186	New	Business Sustainability	7.50
41234	LIN4 Boiler Refurbishment	494,102	New	Business Sustainability	7.50
41157	LIN4 Air Heater Baskets Replacement	173,236	New	Business Sustainability	7.00
31262	LIN - Unit 1-2 Stack Insulation Replacement	158,427	New	Business Sustainability	7.50
27857	LIN-ROOFING ROUTINE	960,476	Routine	Routine	NA
10626	LIN - Routine Capital Program	566,267	Routine	Routine	NA
10621	TUC - ROUTINE PLANT SPENDING	560,648	Routine	Routine	NA
10673	TRE - Routine Capital	333,799	Routine	Routine	NA
27856	TRE-ROOFING ROUTINE	298,201	Routine	Routine	NA
27855	POT-ROOFING ROUTINE	290,743	Routine	Routine	NA
10645	POT - ROUTINE CAPITAL	259,586	Routine	Routine	NA
10718	POA - Routine Capital Program	245,546	Routine	Routine	NA
33863	LIN - Heat Rate Routine	206,473	Routine	Routine	NA
27858	POA-ROOFING ROUTINE	161,551	Routine	Routine	NA
27854	TUC-ROOFING ROUTINE	151,630	Routine	Routine	NA
10634	CT'S - Routine Spending	137,630	Routine	Routine	NA
33869	TRE - Heat Rate Routine	87,237	Routine	Routine	NA
11648	LIN- Plant Tools	78,725	Routine	Routine	NA
33867	POT - Heat Rate Routine	75,570	Routine	Routine	NA
25646	DCMS Equipment Replacement Routine	71,400	Routine	Routine	NA
33871	TUC - Heat Rate Routine	66,194	Routine	Routine	NA
25626	DCMS Equipment Replacement Routine	59,103	Routine	Routine	NA
11589	TUC - Plant Tools	55,000	Routine	Routine	NA

		Project Estimate	Pro	king	
CI	Project Title	2012 ACE Budget	Project Type	Ranking Category	Project Ranking
Steam Ca	pital Items Included in 2012 ACE Plan		·		
21484	POA - PLANT TOOLS	52,530	Routine	Routine	NA
11621	TRE - Tools and Equipment	52,377	Routine	Routine	NA
33865	POA - Heat Rate Routine	51,491	Routine	Routine	NA
11627	POT - TOOLS & EQUIPMENT	51,000	Routine	Routine	NA
25668	DCMS Equipment Replacement Routine	51,000	Routine	Routine	NA
25667	DCMS Equipment Replacement Routine	30,000	Routine	Routine	NA
25647	POA - DCMS ROUTINE COMPUTER REPLACEME	28,283	Routine	Routine	NA
21485	POA - KELLY ROCK LIMESTONE QUARRY (CAPI	28,263	Routine	Routine	NA
38899	CT'S Tooling Routine	25,000	Routine	Routine	NA
28522	CT'S Dcms Routine	17,340	Routine	Routine	NA

1.11.3.3 Integrated Customer Service– 2012 ACE Plan Capital Item Rankings

		Project Estimate	Project Type, Category & Ranking		nking
CI Number	Project Title	2012 ACE Budget	Project Type	Ranking Category	Project Ranking
Transmis	sion Capital Items Included in 2012 ACE Plan		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
33624	Spare Generator Transformer	\$3,682,026	CO		
40233	2011 Protection Upgrades TUC	\$2,513,370	CO		
40231	2011 Protection Upgrades LAK	\$1,536,649	CO		
41005	Parrsboro Tidal Interconnection	\$1,522,568	CO		
40868	64V-T1 Transformer Replacement U&U - Greenwood	\$391,662	CO		
40862	101H-T61 Transformer Refurbishment U&U - Cobequid	\$255,853	CO		
40867	59C-T61 Transformer Refurbishment U&U - St. Peter's	\$208,039	CO		
40266	L6002 Deteriorated Replacements	\$157,029	CO		
40281	2011 Transmission Line Insulator Replacement	\$150,000	CO		
41387	2012 Transmission Line Insulator Replacements	\$3,619,166	New	Customer Reliability	8.0
40322	New Prospect Road Substation	\$3,153,291	New	Load Growth	7.5
41432	L7009 Lidar Upgrades & Maintenance	\$2,942,809	New	System Reliability	8.0
41555	Spare Wind Farm Generator Transformer	\$2,535,465	New	System Reliability	7.0
40317	Additional Water Street Transformer & Low Side 25 kV Breakers	\$2,367,466	New	System Reliability	7.0
41517	L6535 Lidar Upgrades & Maintenance	\$2,361,250	New	Deteriorated Plant	8.0
41553	Dartmouth East Transformer Addition	\$2,307,615	New	Customer Reliability	7.0
41348	2012 Protection Upgrades Onslow	\$2,274,015	New	Regulatory Requirement	9.0
40321	Install Canaan Road to Prospect Road Transmission Line	\$2,104,620	New	Load Growth	7.5
41426	2012 Transmission Switch & Breaker Upgrades	\$2,000,849	New	Customer Reliability	7.0
41552	131H Lucasville Transformer Addition	\$1,893,150	New	Customer Reliability	7.0
41429	2012 Substation PCB Equipment Removal	\$1,854,665	New	Regulatory Requirement	9.0
41537	Amherst 138kV Substation	\$1,808,362	New	Requirement to Serve	9.0
41535	2012 Steel Tower Painting	\$1,270,605	New	Deteriorated Plant	6.5
41844	Reinsulate Transmission Lines L8004 & L7005	\$1,139,264	New	System Reliability	8.0
41434	Procure Additional 42 MVA Spare Transformer	\$1,043,984	New	Customer Reliability	6.0
40323	Canaan Road Line Terminal	\$967,187	New	New	7.5
41536	2012 Reliability Technologies Transmission	\$877,747	New	System Reliability	7.0
41399	2012 Substation Insulator & Cutout Replacements	\$800,013	New	Customer Reliability	7.0
41437	104H-T62 Kempt Road Transformer Rewind	\$790,201	New	System Reliability	8.0
41589	22N-Church St Replace 25 kV Bus and Feeder Exit	\$734,302	New	Customer Reliability	9.0
41550	Spare 30MVA 69KV 25/12KV Transformer	\$728,999	New	Customer Reliability	6.0
41386	2012 Pole Retreatment	\$556,017	New	Regulatory Requirement	8.5
41551	Glentosh Substation Footing Remediation	\$552,201	New	System Reliability	9.0
41391	L6025 Spar Arm Reinforcement	\$489,925	New	Deteriorated Plant	7.5
41422	Onslow Spares Storage Upgrades	\$415,661	New	Deteriorated Plant	6.5
41520	Harbour East Substation - Eastern Passage	\$394,305	New	Load Growth	8.0
41439	Mobile Refurbishments 5P & 6P	\$367,409	New	System Reliability	9.0
41438	85S-Wreck Cove Cable Termination Replacement	\$291,194	New	Deteriorated Plant	8.0
41362	7H Beaufort Switchgear Retirement	\$278,071	New	Deteriorated Plant	8.5
41390	7V Methals Hydro Transformer Replacement	\$258,506	New	Deteriorated Plant	8.5
41395	8H Fairview Switchgear Retirement	\$213,288	New	Deteriorated Plant	8.5
41519	Harbour East 138 kV Transmission Line	\$211,410	New	Load Growth	8.0
41592	88W New Recloser and Relocate 88W-322	\$111,171	New	Overloaded Equipment	8.0
41522	138kV Line Terminal at Dartmouth East Substation	\$40,743	New	Load Growth	8.0

1.11.3.3 Integrated Customer Service– 2012 ACE Plan Capital Item Rankings Cont'd

		Project Estimate	Project Type, Category & Rankin		nking
CI Number	Project Title	2012 ACE Budget	Project Type	Ranking Category	Project Ranking
Distributi	on Capital Items Included in 2012 ACE Plan				
40211	2011 3H/6H Replacement Program	\$110,711	CO	Customer Reliability	
40320	LED Street Light Conversion	\$5,739,651	New	Regulatory Requirement	8.5
41392	2012 Distribution Cutout Replacements	\$2,596,796	New	Customer Reliability	8.0
41534	2012 Reliability Technologies Distribution	\$2,423,179	New	Customer Reliability	7
41430	2012 Substation Recloser Replacement	\$2,120,686	New	Customer Reliability	9.0
41540	99V Highbury Rd New Feeders	\$1,093,229	New	Load Growth	8.0
41797	Brier Island Crossing	\$1,006,642	New	Deteriorated Plant	8.5
41349	2012 Off Road To Roadside	\$884,869	New	Customer Reliability	8.0
41398	2012 Padmount Transformer Replacements	\$827,340	New	Deteriorated Plant	7.5
41359	79V-402 Feeder Load Reduction	\$797,378	New	Overloaded Equipment	7.0
41383	2012 Halifax Underground Feeder Replacement	\$596,760	New	Customer Reliability	6.0
41351	2012 Distribution Automation	\$553,965	New	Customer Reliability	8.0
41353	2012 Downline Recloser Additions	\$543,284	New	Customer Reliability	8.0
41355	2012 Remote Communication on Reclosers	\$536,258	New	Customer Reliability	7.0
41339	2012 Distribution Feeder Ties	\$492,873	New	Customer Reliability	8.0
41325	Replacement of 3H and 6H Reclosers	\$465,327	New	Customer Reliability	8.0
41360	82V-423 Hardwood Lands Deteriorated Plant Replacement	\$437,192	New	Deteriorated Plant	6.5
41389	8H Fairview Conversion	\$417,695	New	Deteriorated Plant	8.5
40224	78W-301 Second Peninsula	\$406,598	New	Customer Reliability	7.0
41384	2012 Feeder Exit Cable Replacement	\$374,542	New	Customer Reliability	7.0
41338	20H-301 Targeted Feeder Replacement	\$371,361	New	Customer Reliability	8.0
41333	16N-301 Stewiacke Reconductor	\$353,467	New	Deteriorated Plant	6.5
41327	103W-311 Gold River Reconductor Phase 2	\$310,296	New	Load Balancing	7.0
41393	2012 Automatic Sleeve Replacements	\$287,831	New	Customer Reliability	7.0
41337	1N-405 Targeted Feeder Replacement	\$283,892	New	Customer Reliability	8.0
41341	1H-Water Street New Feeder	\$280,657	New	Overloaded Equipment	8.0
41356	35V-312 Windsor Causeway	\$252,137	New	Overloaded Equipment	7.0
40219	2011 Recloser Control Replacements	\$216,786	New	Customer Reliability	9.0
41334	16N-301 Targeted Feeder Replacement	\$214,378	New	Customer Reliability	8.0
41388	7H Beaufort Conversion	\$174,253	New	Deteriorated Plant	8.5
41340	5N-301 Targeted Feeder Replacement	\$172,695	New	Customer Reliability	8.0
41354	519N-201 Partial Feeder Voltage Conversion to 25KV	\$164,814	New	Overloaded Equipment	8.0
41431	1C-411/22C-404 Transfer Scheme	\$149,850	New	Customer Reliability	7.0
41329	11W-202 Voltage Conversion to 12 kV	\$98,382	New	Deteriorated Plant	7.5
41343	81S-302 Targeted Feeder Replacements	\$96,642	New	Customer Reliability	8.0
41344	81S-305 Targeted Feeder Replacements	\$80,992	New	Customer Reliability	8.0
41326	103C-311 Targeted Feeder Replacements	\$74,612	New	Customer Reliability	8.0
41332	15S-302 Targeted Feeder Replacements	\$73,023	New	Customer Reliability	8.0
41397	2012 Padmount Switchgear Replacement	\$67,738	New	Deteriorated Plant	7.5
41345	82S-303 Targeted Feeder Replacements	\$61,625	New	Customer Reliability	8.0
41342	818-301 Targeted Feeder Replacements	\$50,632	New	Customer Reliability	8.0
41328	103W-312 Targeted Feeder Replacements	\$47,851	New	Customer Reliability	8.0
40310	Circuit Switcher Additions	\$680,990	New	Customer Reliability	7.0
41363	88W New Feeder	\$269,616	New	Overloaded Equipment	7.0

1.11.3.3 Integrated Customer Service– 2012 ACE Plan Capital Item Rankings Cont'd

		Project Estimate	Project Type, Category & Ranki		anking
CI Number	Project Title	2012 ACE Budget	Project Type	Ranking Category	Project Ranking
Routine C	apital Items Included in 2012 ACE Plan				
39766	New Customers - Residential	\$11,401,508	Routine	Distribution	9.0
23158	D005 Unplanned Replace Deteriorated Plant	\$8,000,000	Routine	Distribution	9.0
23137	D055 - Planned Replacement Of Distribution Assets	\$7,603,178	Routine	Distribution	9.0
26716	New Customer Upgrades	\$5,858,803	Routine	Distribution	9.0
39770	New Customers - Commercial	\$5,724,324	Routine	Distribution	9.0
23118	PROVINCIAL - PLANNED TRANS LINE REPLACEMENTS	\$5,515,513	Routine	Transmission	9.0
26496	Meter Routine	\$2,857,014	Routine	Distribution	9.0
23120	PROVINCIAL-TRANS SUBSTATION PRIMARY EQUIPMENT REPLACEMENTS	\$2,575,000	Routine	Transmission	9.0
23361	D008 Provincial Storm	\$2,371,335	Routine	Distribution	9.0
23135	D006 Regulatory Replacements - Provincially	\$1,699,100	Routine	Distribution	9.0
23121	PROVINCIAL- SUBSTATION ADDITIONS & MODIFICATIONS	\$1,236,366	Routine	Transmission	9.0
23127	D010 Provincially Widening	\$969,058	Routine	Distribution	9.0
23136	D007 Contractual Replacemens (Joint Use) - Provincial	\$906,693	Routine	Distribution	9.0
23115	PROVINCIAL TRANSMISSION LINE REPLACEMENTS	\$755,000	Routine	Transmission	9.0
14841	PROTECTION MODIFICATIONS AND REPLACEMENTS	\$699,194	Routine	Transmission	9.0
29038	System Performance Improvement Routine	\$458,585	Routine	Distribution	9.0
14973	PRIMARY EQUIPMENT SPARES	\$300,000	Routine	Transmission	9.0
23511	Primary Equipment Spares - Distribution Plant	\$150,000	Routine	Distribution	9.0

1.11.4 Directive 12 - 2012 to 2014 Forecasted ACE Expenditures by Functional Class and Spending Program

The ACE 2011 Board Directive requested the forecast for 2013 and 2014 to include a breakdown by materiality and justification criteria. NSPI does not currently include these classifications in the modeling for capital investments beyond 2012. The Company does not anticipate a significant change in the investment level under \$250,000, or the Routine program in 2013 and 2014. Justifications for projects determined as capital investments are scoped on an annual basis. Capital investment on the basis of health and safety, environmental compliance and requirement to serve remains non-discretionary. The table below identifies anticipated sustaining capital by function and specific strategic investments included in this ACE Plan.

	Capital Spend Forecast					
	•	•		Project		
Sustaining Capital Investments	2012	2013	2014	Totals		
Thermal Generation	\$52.0	\$42.4	\$43.2			
Hydro Generation	20.4	20.4	20.8			
Transmission	40.8	20.0	20.4			
Distribution	54.2	48.0	49.0			
General Property	38.0	15.0	15.3			
Strategic Capital Investments						
AMI Investment	\$5.5	\$5.0	\$5.0	\$25.5		
CEF Load Control Project	1.3	2.0	0.2	4.1		
Power Production Asset & Work Management	3.4	0.2	0.0	5.8		
Additional Reliability Investment Distribution	12.6	10.0	10.0	32.6		
Additional Reliability Investment Transmission	9.4	10.0	9.0	28.4		
Wind Farm	0.0	0.0	30.0	220.0		
Other Wind	0.5	0.1	0.1	0.7		
Marshall Falls Hydro Development	2.8	1.0	3.0	27.8		
Hydro Infrastructural Renewal	10.0	20.0	20.0	88.0		
Second Transmission Line to New Brunswick	0.0	2.0	20.0	202.0		
Transmission Reinforcement	0.0	15.0	20.0	75.0		
Harbour East 138kV Transmission	0.6	12.4	0.0	13.0		
Transmission Reliability	17.3	10.0	10.0	57.3		
Fast Acting generation #1	0.0	5.0	15.0	60.0		
Port Hawkesbury 60 MW Biomass Project	56.0	8.4	0.0	206.9		
LED Lighting Replacement	5.7	22.0	22.0	100.0		
Total Annual Capital Investmemt	\$330.3	\$268.9	\$313.0			

2 Routine Capital Items

2.1 Routine Capital Spending by Function

This category includes recurring annual expenditures for replacement of equipment (like-for-like replacement), additions to existing equipment base resulting from system growth and addition of customers to the system.

2012 Routine Capital Spending by Function

Total 2012 Routine Capital Spending	\$ 81,606,479
	\$16,192,770
Other	1,811,763
Property Improvements and Furniture	2,585,000
Computing Asset Management	2,727,738
Telecommunications	880,597
Tools and Test Equipment	1,380,977
Work Vehicles	\$6,806,696
General Plant	
	\$47,999,597
Right-of-Way Widening	969,058
Joint Use	906,693
New Customers	23,134,635
Distribution Upgrades and Replacement	20,132,197
Meters	\$2,857,014
Distribution	¢2.057.014
	\$11,081,072
Transmission Line Replacement, Additions/Modifications	6,270,513
Protection Modification & Replacement	699,194
Primary Equipment Spares	300,000
Transmission Transmission Substation Replacement, Additions/Modifications	\$3,811,365
	\$6,333,040
Generation Other Thermal	486,965
Generation Other Hydro	670,000
Generation Equipment Replacements*	\$5,176,075
Generation	

* In 2012 NSPI has included project W001 Wind Equipment Replacements in the Generation Equipment

Replacement Routine. This project will address any like-for-like equipment replacements required for the existing in-service wind farms.

2.2 Routine Capital Spending by Function Yr/Yr

	2010 Actual	2011 Budget	2011 Forecest	2012 ACE Plan
Generation	Actual	Duuget	Forceast	ACETTAI
Generation Equipment Replacements	\$3,458,529	\$4,315,240	\$4,552,074	\$5,176,075
Generation Other Hydro	261,683	519,148	408,203	670,000
Generation Other Thermal	443,159	374,834	355,361	486,965
	\$4,163,371	\$5,209,222	\$5,315,638	\$6,333,040
Transmission				
Transmission Substation Replacement, Add'ns/Mod'ns	\$2,348,552	\$3,700,355	\$3,632,665	\$3,811,365
Primary Equipment Spares	30,099	188,649	188,649	300,000
Protection Modification & Replacement	203,759	841,216	390,248	699,194
Transmission Line Replacement, Add'ns/Mod'ns	5,082,524	6,210,003	6,209,797	6,270,513
	\$7,664,933	\$10,940,223	\$10,421,359	\$11,081,072
Distribution				
Meters	\$2,016,126	\$2,409,631	\$2,488,923	\$2,857,014
Distribution Upgrades and Replacement	21,229,727	19,269,971	20,541,113	20,132,197
New Customers	20,412,891	24,139,678	21,489,227	23,134,635
Joint Use	757,528	856,694	1,624,719	906,693
Right-of-Way Widening	738,513	940,833	1,440,843	969,058
	\$45,154,786	\$47,616,807	\$47,584,825	\$47,999,597
General Plant				
Work Vehicles	\$116,119	\$7,156,591	\$6,860,850	\$6,806,696
Tools and Test Equipment	1,617,837	1,773,500	1,771,817	1,380,977
Telecommunications	1,140,361	869,481	907,105	880,597
Computing Asset Management	2,545,114	2,374,312	2,360,448	2,727,738
Property Improvements and Furniture	1,378,384	2,311,145	2,250,668	2,585,000
Other	455,505	2,032,265	520,788	1,811,763
	\$7,253,319	\$16,517,294	\$14,671,676	\$16,192,770
Total Routine Capital Spending	\$64,236,409	\$80,283,546	\$77,993,498	\$81,606,479

			2010	2011	2011	2012
Project	CI#	Project Title	Actual	Budget	Forecast	ACE Plan
G001	10634	CT'S - Routine Spending	139,079	138,000	110,459	137,630
H001	11622	HYD - Equipment Replacement	648,610	685,000	684,272	750,000
H004	27867	HYD-Roofing Routine	115,665	113,259	297,836	200,000
S001	23428	GS - Equipment Replacement	114,961	135,000	135,161	135,000
	10718	POA - Equipment Replacement	237,342	239,143	239,064	245,546
	10645	POT - Equipment Replacement	240,992	257,989	257,398	259,586
	10673	TRE - Equipment Replacement	324,053	325,964	321,784	333,799
	10621	TUC - Equipment Replacement	331,398	360,000	365,850	560,648
	10626	LIN - Equipment Replacement	529,519	556,182	555,481	566,267
S004	27856	TRE-Roofing	124,049	499,880	492,764	298,201
	27855	POT-Roofing	42,211	0		290,743
	27854	TUC-Roofing	125	483,912	480,745	151,630
	27857	LIN-Roofing	489,438	445,073	452,226	960,476
	27858	POA - Roofing	106,500		99,593	161,551
G008	38899	CT'S Tooling	14,588	75,838	59,441	25,000
W001	41830	Wind - Equipment Replacement	0	0	0	100,000
		Generation Equipment Replacements Total	\$3,458,529	\$4,315,240	\$4,552,074	\$5,176,075
H005	35583	HYD - Oil Release Risk Assessment	110,861	269,148	208,287	270,000
H006	35584	HYD - Gate Refurbishment	150,822	250,000	199,916	400,000
		Generation Hydro Total	\$261,683	\$519,148	\$408,203	\$670,000
0005	22071		25.077	c1 405	60 101	cc 104
5005	338/1	TUC-Heat Rate	25,067	61,485	60,181	66,194
	33865	POA-Heat Kate	-8,586	49,997	35,091	51,491
	33867	POT-Heat Rate	54,927	/3,149	58,995	/5,5/0
	33869	I RE-Heat Rate	57,391	89,988	89,304	87,237
	33863	LIN-Heat Kate	514,360	100,215	#255.2(1	206,473
		Generation Thermal Total	\$443,159	\$374,834	\$355,361	\$486,965
T003	23120	Provincial-Trans Substation Primary	1 703 479	2,500,000	2 708 767	2 575 000
1005	20120	Provincial - Substation Additions &	1,705,177	2,500,000	2,700,707	2,373,000
T004	23121	Replacements	645.072	1.200.355	923,898	1,236,366
- 00 .	20121	Transmission Subs Replace, Adds/Mods	0.0,072	1,200,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,200,000
		Total	\$2,348,552	\$3,700,355	\$3,632,665	\$3,811,365

2.3 2012 Routine Capital Spending Project Breakdown Yr/Yr

2.3 2012 Routine Capital Spending Project Breakdown Yr/Yr Cont'd

			2010	2011	2011	2012
Project	CI#	Project Title	Actual	Budget	Forecast	ACE Plan
T018	14973	Primary Equipment Spares	30,099	188,649	188,649	300,000
		Primary Equipment Spares Total	\$30,099	\$188,649	\$188,649	\$300,000
mode			202 550		2 00 2 40	
1016	14841	Protection Modification & Replacement	203,759	841,216	390,248	699,194
		Protection Modification & Replacement	****	******	****	+ coo co c
		Total -	\$203,759	\$841,216	\$390,248	\$699,194
T001	23115	Provincial Transmission Line Replace	945 834	751 319	877 633	755.000
T011	23113	Provincial - Planned Trans Line Replacement	1 136 680	5 458 684	5 332 165	5 515 513
1011	23110	Transmission I ing Replacements Total	\$5 082 524	\$6 210 003	\$6 209 797	\$6 270 513
			\$3,082,524	φ0,210,003	<i>\$0,209,191</i>	φ 0 ,270,313
D009	26496	Meter Routine	2,016,126	2,409,631	2,488,923	2,857,014
		Meters Total	\$2,016,126	\$2,409,631	\$2,488,923	\$2,857,014
		-	. , ,	. , , ,		• , , , ,
D005	23158	Unplanned Replace Deteriorated	6,480,226	7,998,369	8,570,387	8,000,000
D006	23135	Regulatory Replacements - Province	1,697,129	838,500	1,026,621	1,699,100
D008	23361	Provincial Storm	3,868,027	2,371,335	3,684,443	2,371,335
D051	29038	System Performance Improvement	313,647	458,585	458,585	458,585
D055	23137	Planned Replacement Of Distribution Plant	8,870,699	7,603,182	6,801,077	7,603,178
		Distribution Upgrades and Replacement				
		Total	\$21,229,727	\$19,269,971	\$20,541,113	\$20,132,197
D002	26715	New Primary Services	1,045,841	0	-10,557	
D004	26716	New Customer Upgrades	4,675,924	5,858,803	5,434,056	5,858,803
D016	26717	New Customers - Unmetered Services	327,138	0	0	
D017	26718	New Customers - Metered Services	4,557,239	0	-23,579	
D018	23511	Primary Equipment Spares - Distribution	26,337	150,043	174,633	150,000
D021	26719	New Customers - Line Extensions	1,023,819	0	-58,414	
D022	26720	New Customers - Underground Service	9,082	0	-35,275	
D061	39766	New Customers - Residential	7,034,910	12,701,508	10,396,972	11,401,508
D062	39770	New Customers - Commercial	1,712,601	5,429,324	5,611,390	5,724,324
		New Customers Total	\$20,412,891	\$24,139,678	\$21,489,227	\$23,134,635
D007	23136	Contractual Replacemens (Joint Use)	757,528	856,694	1,624,719	906,693
		Joint Use Total	\$757,528	\$856,694	\$1,624,719	\$906,693
DOIO	00107			0.40.000	1 1 1 0 0 1 -	0.00.055
D010	23127	Provincially Widening	/38,513	940,833	1,440,843	969,058
		Right of Way Widening Total	\$738,513	\$940,833	\$1,440,843	\$969,058

2.3 2012 Routine Capital Spending Project Breakdown Yr/Yr Cont'd

			2010	2011	2011	2012
Project	CI#	Project Title	Actual	Budget	Forecast	ACE Plan
P006	20945	Replacement and Additional Work Vehicles	101,445	151,521	151,521	151,081
P009	16192	Mobile Transformer & Track	14,674	383,930	200,680	387,225
P063	39304	Class 3 Work Vehicle Replacements		865,640	872,389	446,173
P062	39305	Work Vehicle Replacements		3,840,000	3,720,585	4,051,173
P061	40236	Transportation Vehicle Replacements		1,915,500	1,915,675	1,771,044
		Work Vehicles Total	\$116,119	\$7,156,591	\$6,860,850	\$6,806,696
P002/P01	16	Meter Shop - Tools and Equipment	1,564,861	1,713,500	1,713,272	1,305,977
P015	11611	Hydro Production Tools, Test Equipment	52,975	60,000	58,545	75,000
		Tools and Test Equipment Total	\$1,617,837	\$1,773,500	\$1,771,817	\$1,380,977
P025	16365	Mobile Radio	94,549	87,369	98,477	87,953
P027	16551	Telecommunication Radio and Fibre Optics	290,227	155,610	157,071	159,370
P028	16550	Telecommunication Systems Replace & Modif	569,810	451,502	476,557	453,024
P814	38243	Telecommunications Spares	185,775	175,000	175,000	180,250
		Telecommunications Total	\$1,140,361	\$869,481	\$907,105	\$880,597
P010	16073	SCADA Improvements	62,542	125,968	123,825	129,747
P020	10632	NSPI/CGI Infrastructure	2,026,330	302,000	679,266	
P031	29114	NSPI Non-CGI Infrastructure	254,044	1,716,785	1,340,276	2,340,865
P040	28522	CT'S Dcms Routine	9,380	17,000	11,772	17,340
	25647	POA - DCMS Routine Computer Replace	24,652	27,638	23,609	28,283
	25667	POT - DCMS Equipment Replacement	8,028	30,000	30,600	30,000
	25626	TRE - DCMS Equipment Replacement	32,879	34,921	36,057	59,103
	25646	TUC - DCMS Equipment Replecement	62,578	70,000	68,747	71,400
	25668	LIN - DCMS Equipment Replacement	64,681	50,000	46,296	51,000
		Computing Asset Management Total	\$2,545,114	\$2,374,312	\$2,360,448	\$2,727,738
P001/P03	30	Property Improvement and Furniture	1,378,384	2,311,145	2,250,668	2,585,000
		Property Improvement and Furniture Total	\$1,378,384	\$2,311,145	\$2,250,668	\$2,585,000
		UND Security Immersycement & EAC Land				
P012/P04	41	A equisition	120 802	517 205	402.060	000.000
D025	21495	POA Kally Peak Limestone Quarry	430,803	517,595	493,900	900,000
F033	21403	FOA - Kelly Rock Linestone Qually	24,703	27,720	20,020	20,203
P010	2000/	FAC Enviro Property Reflectation		934,004		170,500
P013	20040	PAC Environment Site Assessment		255,158		179,300
P032	38848	Control Purchasing Equip & warehouse	¢ 155 505	\$2,022,265	¢ 530 700	400,000
			\$433,303	\$2,032,203	\$52U,788	\$1,811,703
2012 Ro	utine Ca	apital Spending	\$64.236.409	\$80.283.546	\$77.993.498	\$81,606,479
		· · · · · · · · · · · · · · · · · · ·	. , , ?-	,	. , ,	,,

2.4 Routine Capital Spending Variances

	ACE 2011	ACE 2012	Variance
Routine Function	(\$M)	(\$M)	Inc/ (Dec)
Generation	5.21	6.33	1.12
Transmission	10.94	11.08	0.14
Distribution	47.62	48.00	0.38
General Plant	16.52	16.19	(0.32)
Total	80.28	81.61	1.32

	Increase/	
	(Decrease)	Variance
Routine Function	\$ M	Explanation
Generation	1.05	Roofing: Point Aconi, Point Tupper, Lingan, Hydro
	(0.53)	Roofing: Trenton & Tufts Cove
	0.39	Equipment Replacements: All Plants & Hydro
	0.11	Heat Rate: All Plants
	0.15	Oil Release Risk Assessment & Gate Refurbishment: Hydro
	(0.05)	Tooling
	1.12	
Transmission	0.06	Transmission Line Replacements (T001 & T011)
	0.11	Transmission Substation Replacements
	(0.14)	Protection Modifications
	0.11	Primary Equipment
	0.14	
Distribution	(1.01)	New Customers
	0.86	Distribution Upgrades and Replacements (D006)
	0.03	Right of Way Widening
	0.05	Joint Use
	0.45	Meters
	0.38	_
General Property	0.01	Telecommunications
	0.23	Security improvements: Hydro
	(0.39)	Tools & Test Equipment
	(0.55)	Environmental Assessment & Remediation
	0.10	Purchasing Equipment and Warehouse
	0.27	Property Improvement & Furniture
	(0.35)	Work Vehicles
	0.35	Computing Asset Management
	(0.32)	_
Total	1.32	-

Project		2012 ACE
#	Project Title	Plan
a		
Generati	ion	
G001	CTs - Equipment Replacement	\$137,630
H001	HYD - Equipment Replacement	750,000
H004	HYD-Roofing	200,000
S001	POA - Equipment Replacement	245,546
	GS - Equipment Replacement	135,000
	POT - Equipment Replacement	259,586
	TRE - Equipment Replacement	333,799
	TUC - Equipment Replacement	560,648
W001	Wind - Equipment Replacement	100,000
	LIN - Equipment Replacement	566,267
S004	TRE-Roofing	298,201
	POT-Roofing	290,743
	TUC-Roofing	151,630
	POA-Roofing	161,551
	LIN-Roofing	960,476
G008	CTs Tooling	25,000
	Generation Equipment Replacements Total	\$5,176,075
H005	HYD Oil Release Risk Assessment	\$270,000
H006	HYD - Gate Refurbishment	400,000
	Generation Hydro Total	\$670,000
9005		ф <i>сс</i> 10 г
\$005	TUC-Heat Rate	\$66,194
	POA-Heat Rate	51,491
	POT-Heat Rate	75,570
	TRE-Heat Rate	87,237
	LIN-Heat Rate	206,473
	Generation Thermal Total	\$486,965
	Generation Total	\$6,333,040

2.5 Routine Capital Spending Project Details

Transmission

Transmission Substation Replacements, Additions and Modifications	
	2012 ACE
T003 Provincial: Transmission Substation Primary Equipment	Plan
Unplanned failures	\$1,287,000
113H-D41 replace batteries and charger	38,000
131H-D41 Batteries	15,000
2H-D41 Batteries	15,000
50N-D32 replace batteries and charger	25,000
50N-D42 replace charger only	8,000
74N-D41 replace batteries and charger	38,000
20V-D41 replace batteris (6-8 cracked posts)	15,000
43V-D31 Batteries and charger	38,000
4V-D31 replace gel cell battery	15,000
50V-D41 replace charger only	8,000
22V- Replace battery charger only	5,000
4S Replaces batteries and charger	38,000
103H-T81 Surface refurbishment and painting	90,000
100H- Bedford substation site removal/retirement	25,000
113H-C41 & C42 replace capacitor bank fuse tubes and fuses	5,000
101H-C41 & C42 replace capacitor bank fuse tubes and fuses	5,000
16W-T51 - Replace Rads	95,000
Milton- Replace Rads	125,000
81S -T2 Replace Rads	95,000
Sydney Replace Rads	120,000
Crushed Stone Replacement (bring to standard depth) - Regional supervisor to arrange	70,000
11W-T51 Surface refurbishment and painting	18,000
99W-T71 Surface refurbishment and painting	65,000
36V-T1 Surface refurbishment and painting	18,000
Fence and ground replacements/Additions NE	55,000
Fence and ground replacements/Additions West	40,000
Fence and ground replacements/Additions Sydney	35,000
Fence and ground replacements/Additions Metro	30,000
Replace/re-surface concrete footings (1N Onslow, 90H Sackville and 43VCannan Rd)	75,000
79N Replace station service and grounding transformers	32,000
3C replace station service and grounding transformer	32,000

Total T003 Provincial: Transmission Substation Primary Equipment\$2,575,000

Nova Scotia Power Inc. 2012 Annual Capital Expenditure Plan

Unknown additions\$423,010 On-Line Oil Filtration Units236,210 On-Line Gas Monitors207,0A/C units 3 sites Shop/Engineering TBD180,0)66 269)30)00)00)00)00
10 On-Line Oil Filtration Units236,210 On-Line Gas Monitors207,0A/C units 3 sites Shop/Engineering TBD180,0	269)30)00)00)00)00
10 On-Line Gas Monitors207,0A/C units 3 sites Shop/Engineering TBD180,0)30)00)00)00)00
A/C units 3 sites Shop/Engineering TBD 180,0)00)00)00)00
100,0)00)00)00
Oil containment 51V-T51)00)00)00
Oil containment 51V-T1 22 ()00
Wildlife insulation protective cover-up (1N 10/H and TRD) 150 (,00
Total T004 Provincial- Substation Additions & Relacements \$1,236,3	365
Total Transmission Substation Replacements, Additions and Modifications \$3,811,3	365
Primary Equipment Spares	
2012 A	CE
T018 Primary Equipment Spares H	<u>'lan</u>
2 Sets of Spare Surge Arrestors \$170,	,000
Spare 69 kV Metering Unit 50,	,000
Unidentified Items 80,	,000
Total Primary Equipment Spares\$300,	,000
Protection Modification & Replacement	
T016 Protection Modification & Replacement	CE Plan
L-6537 Install Fault Location at 5S \$33.	.366
Replace LFCB on L-6048 93.	.852
L-5563/L-5560 Add Fault Location at 2S 36.	532
L-5537 Pilot Wire Replacement 61.	709
Replace Fault Recorder at Milton 50.	.669
Replace Fault Recorder at Canaan Rd 38.	706
Replace Fault Recorder at 2C 38.	706
Add Reclose Block to 9W-512, 515 6.	,000
Add Reclose Block to 2S-573 19.	,206
Add MOD Indication, lockout alarm, metering at 81S	206
L-5548 Add Fault Location at Macaan 26.	558
Replace Sync Check relay at 5S 19.	,206
3S Replace CAG Relay 23.	,206
L-5532 at 3W Fault Location Relay Phasing 7.	,623
Add Satelite Clocks at 50W, 9W, 99W, 2S 31.	729
L-6025 Add Fault Location at 99W 26.	558
L-6531 Add Fault Location at 99W 26.	558
L-6006 Add Fault Location at 99W 26.	558
L-5028 Revise Polarizing on 2PG-10 Relay 7.	.623
Unplanned Relay Replacement 105,	,626
Total Protection Modification & Replacement \$600	194
Transmission Line Replacement Additions / Modifications	

T001 Provincial Transmission Line Replacement (Unplanned)	2012 ACE Plan
The forecast funding for T001 is generally held at approximately \$700k/year. This may vary dependant on things like storms.	\$755,000

T011 Provincial- Planned Transmission Line Replacement

		2012 ACE
LINE #	Description	Plan
5004	Sackville to Rockingham	\$30,000
5012	Tufts Cove to Imperial Oil	10,000
5025	Paradise to Tremont	22,000
5031	Hubbards to Robinsons Corner	253,000
5035	Hells Gate to Canaan Road	64,000
5054	Weymouth to Saulnierville	87,000
5057	Tap to Cornwallis	11,000
5510	Bridge Avenue to Malay Falls	225,000
5511	Trafalfar to Musquodoboit	5,000
5521	Onslow to Willow Lane	23,000
5539	Milton to Liverpool	20,000
5544	Big Falls to Upper Lower Lake Falls	21,000
5547	Westhavers Elbow to Lunenburg	190,000
5560	Victoria Junction to Townsend St.	62,000
5563	Victoria Junction to Townsend St.	51,000
5564	Victoria Junction to Keltic Drive	73,000
5572	Victoria Junction to Seaboard	77,000
5575	Whitney Pier to New Waterford	146,000
5576	Gannon Road to Keltic Drive	40,000
6003	Tufts Cove to Scakville	4,000
6004	Sackville to Cannan Road	430,000
6012	St. Croix to Cannan Road	24,000
6021	Souriquois to Tusket	221,000
6024	Milton to Tusket	155,000
6510	Whycocomagh to Aberdeen	18,000
6511	Trenton to Glen Dhu	270,000
6521	Tupper to Tupper Terminals	24,000
6523	Tupper to New Page	65,000
6539	Gannon Road to Victoria Junction	320,000
6545	Glen Tosh to Wreck Cove	54,000
6552	Glen Dhu to Lochaber Road	282,000
7001	Onslow to Brushy Hill	341,000
7003	Onslow to Port Hastings	135,000
7009	Bridgewater to Brushy Hill	440,000
7012	Port Hastings to Lingan	690,513
5027A	Tusket to Lower Woods Harbour	12,000

T011 Provincial- Planned Transmission Line Replacement

		2012 ACE
LINE #	Description	Plan
5027B	Souriquois to Lower Woods Harbour	64,000
5530A	Milton to Broad River	200,000
5530B	Broad River to East Green Harbour	37,000
5530C	East Green Harbour to Souriquois	29,000
5545B	Auburndale to High Street	25,000
5547A	Mahone Bay Tap	50,000
5564A	Terrace Street Tap	5,000
6005B	Sackville to Lucasville	210,000
	T011 Provincial- Planned Transmission Line	
	Replacement	\$5,515,513
	Transmission Line Replacement Total	\$6,270,513
	Transmission Total	\$11,081,072

Distribution: Meters

Canital for meters		\$30,848.00	\$23,071,000	\$1.863.04	\$1,663.04		\$530,000,00	\$209.136.00	\$39,516.00	\$9,879.00	\$16,630.40		\$97,000.00	\$16,817.00	\$20,425.00	\$1,899.12	\$1,899.12	05.240,244		\$5,949.60	\$33,634.00	\$4,363.40	\$8,495.60	\$1,699.12	71.770,14		\$74,370.00	\$2,974.80	\$8,495.60	\$134,536.00	\$67,268.00	\$1,099.12	\$9,495.60	00 000 200	\$26,000.00	1,455,521 \$50,000 121,569 70,000	1,697,090	257,936 392,937 509,051	
Current Unit Cost		154.24	200.75	465.76	415.76		76 40	174.28	164.65	164.65	415.76		97.00	168.17	204.25	474.78	474.78	/ 1.801		148.74	168.17	218.17	424.78	424.78	0/:+/+		148.74	148.74	424.78	168.17	168.17	424.78	474.78	5	00.77	5,000.00			
2012 Forecast		200	140	4	4	2013 Economet	2012 101 0081	1200	240	60	40	2013 Fourant	1000	100	100	4	4	007	2012 Forecast	40	200	20	20	4	t	2012 Forecast	500	20	20	800	400	4	20	002	000	26002 10			
Description		240V, 10A, 2W, 4 Jaw, 4 dial Trip 2011 4 Jaw, 4 dial	1/K, 2W, 4Jaw, 1OU (KW H) C/W L/C. (E13) T/P 2W 4Jaw, KW/KVA 4md	T/R. 2W. 4Iaw. TOUI(KWH) c/w modem L-PL.C. (FTS)	T/R, 2W, 4Jaw, KW/KVA dnd, c/w modem, L.P.	Daconitation	240V 200A 3W 4 Jaw 5 dial	S/C 3W 4Jaw TOIL(KWH) c/wL (C (FTS)	S/C 3W, 4Jaw, KW/KVA dnd	T/R, 3W, 4Jaw, KW/KVA dmd	S/C, 3W, 4Iaw, (KWH) c/w modem & L.P.	Docontration	120V200A.3W 5faw(90.clock pos:). 5 dial	S/C, 3W, 5Jaw(9 o, clock pos:) KW/KVA dmd, (Mult: 25)	S/C, 3W, 5Jaw(9 o,clock pos:)TOU(KWH) c/w L.C.(ETS)	T/R, 3W, 8Jaw, KW/KVA dnd, c/w moden, LP.	T/R, 3W, 8Jaw, KW/KVA dwd, Modem, LP (5-min int) KYZ	1/K, 5W, Maw, KW/KVA dind	Description	T/R,4W, 13Jaw, 120-480V, 0.1-10A (KWH)	T/R, 4W, 13Jaw, KW/KVA dmd	T/R, 4W, 13Jaw, KW/KVA dmd, c/w KYZ	T/R,4W, 13Jaw, KW/KVA dnd c/w modem, L.P.	T/R, 4W, 13 Jaw, kW/kVA dnd, modem, LP (5 mm int) T/D AW 13 Terri LW/AVA 4m3 and 4m4 modem, TD (5 mm int)	1/1/, + W, 1.3 Jaw, KW/KVA UIIN, IIDUCIII, LE (2 IIIII IIII), IX 12.	Description	S/C, 4 W, 7Jaw, (KWH)	T/R, 4W, 13Jaw, (KWH)	T/R, 4W, 13Jaw, KW/KVA dmd, c/w modem, LP.	S/C, 4W, 7Jaw, KW/KVA dmd, (Mult 25)	T/R, 4W, 13Jaw, KW/KVA dmd	1/K, 4W, 15 Jaw, kW/KVA dmu, modem, LF (5 mm int) T/R 4W 13 Iaw kW/kVA dmd modem 1D (5 mm int) KV7	T/R, 4W, 13Jaw, KW/KVA, dnd, c/w modem, L.P, KYZ	11- 10 00 771111	1 WACS Modules	Total Meters Misc Meters "ION" CT and PT requirements Wire Adapters and switches	Total Materials	Vehicle Allocation (2011 - 50,67%) Construction Overhead (2011 - 77,19%) Labour	
Meter Style		ZQB2000K		OB20D3DR	QB20F0DR		Centron	OC30130R	OC30200R	QD50200R	ZQC30D0DR		ZF532000000	Q530200R	Q530130R	Q220F0DR	Q220F3DR	ZQ220200K		Q820000R	Q820200R	Q820230R	Q820F0DR	Q820F0DR	NGC 1070		Q330000R	Q320000R	Q320F0DR	Q330200R	Q320200R	Q320F40DK	ZQ320F3DR						
Meters Meter Tyne	240 wlt	AID+	A 11 + A 18+	A1TL+	A!RL+	10.014		A IT+	A IR+	A IR+	A1TL+	40 mlt	R2S	A IR+	A IT+	AIRL+	AIRL+	A IK+	347 volt	A1D+	A IR+	A IR+	AIRL+	AIRL+	AINUT	347 volt	A1D+	A1D+	A1RL+	A IR+	A IR+	AIRL+ AIRL+	A1RL+						
m# Pro#	Element, 120-2	30 34	7 F0	39	5 40	E Domont 120.2		19	31	8 32	36	Element 120.4	9 N/A	0 26	1 33	35	3 72	16 13	Element, 120-3	4 81	5 28	6 29	7 34	74	t.	Eement, 120-3	47	1 48	2 18	3	1 23	C/ 22	43	+	_				

Distribution Upgrades and Replacement		
D005 Unplanned Replacement Deteriorated Equipment		2012 ACE Plan
D006 Regulatory Replacements	The forecast was developed based on an estimated 3,410 mandays of work at a unit cost of \$2,346/manday	<u>\$8,000,000</u>
D008 Provincial Storm	The forecast is developed based on past experiences or information from various government agencies. This amount could vary based on current year decisions by these agencies.	<u>\$1,699,100</u>
	This forecast is developed based on past experience. There can be significant variation in this amount based on yearly storm activity.	<u>\$2,371,335</u>
D051 System Performance		
Improvement	3S-307 Circuit Re-configuration 3S-303 Change Loop 62N-411 and 62N-414 Transfer Scheme, Lawrence	\$75,000 60,000
	Boul. & MacGregor Ave	174,585
	59C-402 Route 4 Sectionalizers	30,000
	2H-412 / 1H-429 Grace Hospital Switching Sectionalizer installations	50,000 69,000
Total D051 System Performance Improvement		<u>\$458,585</u>
D055 Planned Replacement of Distribution Equipment		
	Bin Work	\$1,973,178
	Streetlight/service removal	1,600,000
	Padmount replacement	750,000
	Field Driven Work Voltage Regulator Replacement	600,000
	CBRM Abandoned Pole Removals	80,000
	14C-211 Re-Build	175.000
	NW Secondary	125,000
	85S-401 Ingonish Insulator Replacement	225,000
	1S - Seaboard Line Removal	100,000
	62N-414 - Spring Garden Road Rebuild	200,000
	62H-302 - Mic Mac Mall Vault Upgrades	75,000
	141N-411 Springnill Junction Removal	20,000

Barrington Street Tower Switch Upgrades	50,000	
70W-313 - LeHave River - Reconductor - pt 1	200,000	
102W-312 - Bellville Rd Reconductor	200,000	
63V-313 - Palmer Rd - Reconductor	215,000	
16V-315 - Lewistion Rd Reconductor	205,000	
509V-301 - Central Grove - Rebuild	165,000	
70V-311 - Port Lorne - Rebuild	70,000	
36V-302 - North Ave. Habitant -		
Reconductor/Rebuild	350,000	
Total D055 Planned Replacement of Distribution Equipment		
Distribution Upgrades and Replacement Total	\$20,132,197	

New Customers		
D004 New Customer Upgrades		2012 ACE Plan
D018 Primary Equipment Spares Distribution	This forecast developed as a % of D061 and D062 including capital contributions. In 2012 this is estimated to be 32%.	<u>\$5,858,803</u>
	This forecast is developed based on the probable amount of distribution spare equipment required during the year.	<u>\$150,000</u>
D061 New Customers- Residential	This forecast is for the costs associated with new residential customers including capital contributions. Costs include metered services, unmetered services, line extensions and underground services.	<u>\$11,401,508</u>
D002 New Customers- Commercial	This forecast is for the costs associated with new commercial customers including capital contributions. Costs include metered services, unmetered services, line extensions and underground services.	<u>\$5,724,324</u>
	Total New Customers	\$23,134,635

Joint Use Total		2012 ACE Plan
	This forecast is developed from discussions with communication utilities and may vary depending on their level of activity	<u>\$906,693</u>
Right of Way Widening Total		
	This forecast is developed based on the known level of widening in the current year.	<u>\$969,058</u>
D	istribution Total	\$47,999,597
	-	

General Plant

Work Vehicles

P006 Replacement and Additional Work Vehicles	Quantity	Unit Price	2012 ACE Plan
Nova M/D Heavy Duty Pole Trailer	5	\$26,516	\$132,581
Honda Trx350, 500cc ATV with Ramps	1	18,500	18,500
Total P006 Replacement and Additional Work Vehicles			\$151,081
P009 Mobile Transformer & Track			
This forecast is developed based on a possible repairs or modifications to track machines or the mobile transformers.			\$387,225
P061 Transportation Vehicle Replacements	61	\$29,034	\$1,771,044
P062 Work Vehicle Replacements	16	\$253,198	\$4,051,173
P063 Class 3 Work Vehicle Replacements	3	\$148,724	\$446,173
	Total Work Vehicles		\$6,806,696

Tools and Equipment

	Description	Quantity	Estimated Unit Cost	2012 ACE Plan
Metre Shop Tools and Ec	quipment			\$45,000
Provincial Line Tools & 1	Equipment			
V	Western Territory			
2	/0 grounds	6	\$1,300	\$7,800
F	Portable Generator	4	1,600	6,400
(Gator Tail reel and rope	4	3,810	15,240
F	Poleboss payout pole mount	4	1,100	4,400
H	Iydraulic Drills	4	1,500	6,000
F	Fibreglass Tubs	1	1,300	1,300
H	Iydraulic Stick saws	4	2,225	8,900
6	ton Battery Operated Press	5	1,700	8,500
F	ibreboard Lawn Mats	4	1,200	4,800
F	Regular Amp Probe	1	1,900	1,900
v	Vestern Territory Total			\$65,240
H N 2	Castern Territory Medium sized fiberglass tubs for leaking tx (-PHA, 2- SYD)	4	\$1,000	\$4,000
L E U	Large fiberglass tubs for leaking tx (1- RIV, 1- BAD, 1-ING, 1-CHC, 1-MAB, 2-PHA) JG Primary termination tool for ANT depot	7	1,300	9,100
a T p	nd BAD depot Traction Mats for trucks (to prevent damage to property) 1 set of 4 mats for PHA, 1 set for	1	2,000	2,000
S	TE	4	1,200	4,800
C N C	Gator Tail reel and rope New Hastings, yellow, 2/0 ground sets (Complete set) -2-SYD, 2-BAD, 2-PHA, 2-	1	3,810	3,810
S	TE JRD box locator for ANT, 1 for BAD, 1 for	8	1,300	10,400
S	SYD	2	2,000	4,000
H	Iydraulic long hot stick saws	4	1,600	6,400
F	Fork type, High voltage ammeters,	6	1,800	10,800
6	ton Battery Operated Press	4	1,700	6,800
I	Eastern Territory Total			\$62,110

Description	Quantity	Estimated Unit Cost	2012 ACE Plan
Central Territory			
Hydraulic Chain saw	3	\$1,600	\$4,800
Grounding set (2/0 grounds, transmission)	7	1,300	9,100
6 ton press	8	1,695	13,560
12 ton press	6	3,900	23,400
Sets of Dies for y-35 Press for New Sleeves	10	1,400	14,000
3 Phase Patten Jumper Sets - 15' - 2/0	4	4,800	19,200
Ground tester	1	6,000	6,000
U/G large corner guide 5X11" for significant cable	1	1 500	1 500
Load nickun device (set)	5	2 000	10,000
Cable Locator	1	2,000	6 500
Live Line Phasing Sticks	2	2,000	4 000
Cable locating soude fish tape	1	2,000	2,000
Box locator	1	2,000	2,000
Hydraulic Cutters	2	2,000	4 000
Battery powered cable cutters	2	1,000	2,000
Oil Pump and accessories	1	2,000	2,000
TDR	1	10,000	10,000
TTR - Transformer Tested 3/0	1	2 500	2 500
Air Monitors	1	2,500	8,000
Man hole Retractor		3,000	3,000
AMP Probe with universal attachment	1	1,900	7,600
DRA's for engineering	1	7,000	7,000
Central Territory Total			\$162,160
T&D Asset	1	\$50,608	\$50,608
Breakdown Allowance	1	\$30,098	\$30,098 35 ,000
Hot Stick Sets for New Trucks	10	2,500	25,000
Hydraulic Drills - Boom 11p	34	1,6/5	56,950
Handheid Data Collection Units - PETC	4	2,500	10,000
Climbing Dalta (New Technology)	100	1,300	130,000
Climbing Bells (New Technology)	220	3/3	82,500
Rope Tester	4	2,918	11,072
Dielecuric Rope	4	2,200	8,800
T&D Asset Total			\$375,620
Fleet			
Snap on Boroscope Kit	1	\$1,350	\$1,350
Pressure washer (gas powered)	1	1,280	1,280
Wheel Balancer	1	9,100	9,100
Digital Dynamometer	1	1,500	1,500
Plasma Cutter	1	2,600	2,600
OTC air jack stands	1	1,495	1,495
Fleet Total			\$17,325

Description	Quantity	Estimated Unit Cost	2012 ACH Plai
Telecom			
Electromagnetic Interference Detector	2	\$4,500	\$9,000
Fibre Optic Cable Test Set	2	4,000	8,000
Electro Sonic Power Sensor, model N8485A	2	2,000	4,000
Voice Test Set Electrodata ATS2	2	2,500	5,00
Frequency Power Meter with Power Sensor	1	15,000	15,00
Bird Technologies Analyzer model SA-6000EX Installation, cable kits and connectors for SA-	1	10,000	10,000
6000EX	1	2,500	2,500
Telecom Total			\$53,500
System Maintenance			
Relay test set (i.e. Manta MTS- 5000)	1	\$52,000	\$52,000
SF6 Gas Recovery Unit GRU-7	2	22,500	45,00
Phasing Sticks 2 sets	1	10,000	10,00
CT Test Set	2	17,500	35,00
Phase Angle Meter	1	2,000	2,00
70KV DC Bibble Test Set (Hipot)	1	10,000	10,00
Asea Current Measuring Test Plug	1	18,000	18,00
Current Injection Test Set	1	6,000	6,00
Winding Resistance Test Set	1	5,000	5,00
289 Fluke Multi-Meters (2 required)	2	1,000	2,00
12Ton Presses	2	3,900	7,80
Die Sets for 12 Ton Press	2	5,500	11,00
Meggers 10000Volt	4	2,300	9,20
Battery operated cutters Description : Huskie #REC- \$540 ROBO CUT Tool	3	4 600	13.80
Sine Wave Inverters 3000W	0	2,750	15,00
Truck Ramps	2	1 295	2 59
Retracta Jacks for ATV's	2	1,295	2,59 3.60
Cable Height Meter	2	1,200	2,40
System Maintenance Total			\$235,39
P002 Tools and Equipment Total			\$971,34
ools & Test Equipment			\$75,00

P015 Hydro Production Tools & Test Equipment

	2012 ACE Plan
P016 Thermal Production Tools & Test Equipment	
POT Tools & Equipment	\$51,000
POA Tools & Equipment	52,530
TUC Tools & Equipment	55,000
TRE Tools & Equipment	52,377
LIN Tools & Equipment	78,725
P016 Thermal Production Tools & Test Equipment Total	\$289,632
Tools and Test Equipment Total	\$1,380,977
Telecommunications	
P025 Mobile Radio	<u>2012 ACE Plan</u>
Spare Parts	\$38,778
Replacement Radio Equipment	30,000
Test MTR2000 Repeater Spares & Allocate	5,875
Equipment Repairs	13,300
P025 Mobile Radio Total	\$87,953
P027 Telecommunication Radio & Fibre Ops	\$112.425
Dertmouth East, Shalburga Site Danairs	\$112,455 23.460
Caledonia Building Repairs	23,400 4,660
Reconfigure Generator Alarms	4,000
Misc repairs	13 995
P027 Telecommunication Radio & Fibre Ons Total	\$159.370
	¢207,01 V
P028 Telecommunication Systems Replace & Modifications	ф <i>с</i> 1, 422
Replace DM21 Equipment	\$61,433
Upgrade Site Access Equipment	61,620
Install Newbridge Shelves	32,430
Removal of old Bayly Equipment	2,938
Mise Dower Supplies	5 000
IIPS Renairs/Renlacements	5,000
Misc. Newbridge eant	18 820
Ungrade Network Access to Sites	14 550
Misc. Telecom Equipment	12,500
Cable & Entrance Protection	15.000
Switched Communications	5.000
Misc. Fibre Optics	52.373
Replace Ethernet Spread Spectrum Radios	19,520
Network Monitoring - replace net guardians	37,975

2012 ACE Plan

TLNX and Alarm Commissio	ning		11,750
Upgrade and Review System	Drawings		39,900
Upgrade MDR8000 Capacity			16,930
Install Net Guardians at South	Shore sites		24,463
P028 Telecommunication Sy	stems Replace & Modifications Total		\$453,024
P814 Telecommunications S	pares		
Alcatel-Lucent MDR8000 Mi	crowave Radio spares		\$80,000
Net Guardian Alarm Monitori	ng Equipment spares		24,000
MDS LEDR Radio spares			43,200
MDS SD9, Transnet, iNet spa	res		7,200
SEL2505, 2506 spares			8,000
Battery Charger Spares			10,000
Misc. spares			7,850
P814 Telecommunications S	pares Total		\$180,250
Telecommunications Total			\$880,598
Computing and Asset Mana P010 SCADA Improvements	gement		<u>2012 ACE Plan</u>
	This forecast is developed based on SCADA equipment/operator interfaces failures or modifications		*
P010 SCADA Improvement	s Total	_	\$129,747
P031 NSPI IT Infrastructure			
Infrastructure Component	Asset Management Plan	Volume to be Refreshed	2012 ACE Plan
Voice and Data Network	Network equipment that has or will reach seven (7) years old. (Measured in number of network norts)	1,635	\$668,531
Servers Lapton and Deskton	Servers that have or will reach six (6) years old Computers that have or will reach four (4) years	16	406,000
Computers	old	450	743,162
-	New laptop or desktop computers	100	308,172
	New software licenses	50	25,000
Monitors	400	125,000	
Power Supplies	Replaced after 10 years	2	40,000
Accessories			25,000
P031 NSPI IT Infrastructur	e Total		\$2,340,865

		2012 ACE Plan
P040 DCMS Equi	oment Replacement	
	CT's DCMS Equipment Replacement	\$17,340
	LIN DCMS Equipment Replacement	51,000
	POA DCMS Equipment Replacement	28,283
	POT DCMS Equipment Replacement	30,000
	TRE DCMS Equipment Replacement	59,103
	TUC DCMS Equipment Replacement	71,400
		\$257,126
	Computing and Asset Management Total	\$2,727,738
Property Improve	ment and Furniture	
P001	FAC - Property Improvements	\$2,410,000
P030	FAC - Lower Water Street	175,000
	Property Improvement and Furniture Total	\$2,585,000
Other		
P012	HYD - Security Improvement	\$750,000
P041	FAC - Land Acquisition Routine	150,000
P035	POA - Kelly Rock Limestone Quarry	28,263
P816	FAC - Environment Property Remediation	304,000
P815	FAC - Environment Site Assessment	179,500
P032	FAC - Equipment & Warehouse	400,000
	Other Total	\$1,811,763
	Other Total	\$16,192,770

Generation

3

(Millions of Dollars)

3.1 Generation Five Year Plan and Highlights

The focus for Generation capital investments in 2012 is renewable generation expansion and sustaining the current asset base. The Generation capital investment plan for 2012 is comprised of the following:

	Request for ACE approval (Items i + vi)	\$25.9M
	Total 2012 Generation Capital Investment Plan	\$141.7M
(vi)	Routine capital spending	6.3
(v)	Carry-over capital spending	65.9
(iv)	New capital spending for Point Aconi Generating Station	10.4
(iii)	New capital spending for projects with total estimated spend less than \$250K for which approval is not sought	8.2
(ii)	New 2012 capital spending for projects with total estimated project spend greater than \$250K for subsequent approval for which approval is not sought	31.2
(i)	New 2012 capital spending for projects with total estimated project spend greater than \$250K and for which approval is sought	\$19.5

3.2 Generation Carry-over Capital Spending Summary

Project Number	CI#	Project Title	Start Date	Final Date	Previous Expenditure	2012 Budget	Subsequent Spending	Total Estimate
Hydro G	enerati	on Plant						
H547	28678	HYD Renewable In-Stream Tidal Gen	2008/09	2013/12	\$2,292,881	\$400,000	\$654,498	\$3,347,378
	12079	SHH - RUF 1&2 RUNNER REPLACEMENT	2011/10	2012/10	78,460	744,394	0	822,853
H611	17583	HYD - BER-GUL - Electrical Refurbis	2011/01	2012/12	0	805,646	0	805,646
H602	16387	HYD- Ruth Falls #3 Runner Replmt	2010/12	2012/12	300,867	373,086	0	673,953
H608	40316	HYD - Barteaux Culvert Refurbish	2011/02	2012/10	91,698	376,162	0	467,860
H601	17853	HYD - STM-SAL #4 Runner	2010/12	2012/12	180,657	248,157	0	428,814
	Total l	Hydro Generation Plant			\$2,944,562	\$2,947,444	\$654,498	\$6,546,504
Steam G	enerati	ion Plant						
S661	39029	Port Hawkesbury Biomass Project	2010/11	2013/08	\$142,540,616	\$55,971,533	\$8,430,056	\$206,942,205
S353	28098	TUC 6 Waste Heat Recovery	2008/07	2012/01	92,938,895	57,734	0	92,996,628
S428	34203	LIN Unit #3 Mercury Abatement	2009/04	2012/12	4,836,417	75,883	0	4,912,300
S430	34223	POT Mercury Abatement Project	2009/05	2012/12	2,848,440	75,528	0	2,923,968
S432	34242	TRE Unit #6 Mercury Abatement	2009/05	2012/12	2,146,121	75,528	0	2,221,649
S426	34182	LIN Unit #1 Mercury Abatement	2009/05	2012/12	2,064,489	75,203	0	2,139,692
S429	34222	LIN Unit #4 Mercury Abatement	2009/05	2012/12	1,994,723	75,528	0	2,070,251
S427	34202	LIN Unit #2 Mercury Abatement	2009/05	2012/12	1,984,954	74,995	0	2,059,949
S431	34224	TRE Unit#5 Mercury Abatement	2009/05	2012/12	1,885,911	75,528	0	1,961,439
S613	30954	LIN3-ESP Gas Flow Modification	2010/06	2012/07	18,881	1,608,606	0	1,627,487
	35083	LIN 2011 Ash Site Sealing and Cappi	2011/07	2012/10	63,911	973,936	0	1,037,847
S262	28457	TRE Ash Lagoon Closure	2007/10	2013/12	187,054	93,494	257,177	537,724
S672	39542	Generator Protection Improvements	2010/05	2012/12	182,280	338,518	0	520,798
	40363	LIN3 High Voltage Bushing Refurbish	2011/07	2012/10	67,469	433,360	0	500,829
S711	28393	POT 2A Mill and Feeder Refurbishmen	2011/06	2012/09	162,499	287,344	0	449,843
S849	38602	TRE - Fire System Upgrades	2011/09	2012/08	201,717	176,387	0	378,104
S877	39946	TRE - Wastewater Treatment Plant Up	2011/04	2012/10	158,913	176,099	0	335,013
S778	39939	TRE - Security Improvements (Phase	2011/05	2012/07	183,923	144,449	0	328,372
S714	40319	TRE - HVAC Replacements (2011)	2011/03	2012/06	180,413	131,597	0	312,010
S665	30283	POT - Tupper Vessel Access	2010/02	2012/08	141,959	129,272	0	271,231
	39940	TRE5 - Bottom Ash Refurbishment	2011/08	2012/12	50,820	205,214	0	256,034
	40371	LIN Training Facilities	2011/04	2012/04	132,761	117,447	0	250,208
S842	26472	TRE - 6A CW Pump Refurbishment	2011/12	2012/03	19,998	218,564	0	238,562
S826	39944	TRE6 - Fly Ash Line Replacement	2011/06	2012/07	17,222	216,127	0	233,349
S873	38850	LIN Flyash System Upgrade	2011/10	2012/06	160,320	56,003	0	216,322
S699	39762	TUC #3 CW Intake SSP Refurbishment	2011/03	2012/12	15,976	176,007	0	191,984
	40207	TUC- CO2 Purge System Upgrade	2011/05	2012/12	12,138	139,842	0	151,979
S782	40334	POT Refurbish Underground Valves	2011/04	2012/10	0	131,398	0	131,398
	37824	TRE5 - Common Water Pipe Replacement	2011/01	2012/12	0	128,289	0	128,289
	39982	TRE - Gauge Replacements	2011/09	2012/06	36,884	73,230	0	110,114
S783	40337	POT Replace WTP and WWTP Valves	2011/04	2012/07	0	102,091	0	102,091
	Total S	Steam Generation Plant			\$255,235,704	\$62,614,734	\$8,687,232	\$326,537,670

3.2 Generation Carryover Capital Spending Summary Cont'd

Project Number	CI#	Project Title	Start Date	Final Date	Previous Expenditure	2012 Budget	Subsequent Spending	Total Estimate
Wind G	enerati	on Plant						
W107	36882	Nuttby Mountain Wind Project	2009/12	2012/12	\$111,437,284	\$168,000	\$0	\$111,605,284
W115	39323	Digby Wind Project	2010/11	2012/12	65,687,997	206,184	0	65,894,181
	Total '	Wind Generation Plant			\$177,125,282	\$374,184	\$0	\$177,499,466
Total Ge	neratio	on Carry Over Spending			\$435,305,548	\$65,936,362	\$9,341,730	\$510,583,640

3.3 Generation New 2012 Capital Items for ACE Approval

Tab #	CI#	Project Title	2012 Budget	Project Total
	Hydro Gene	ration Plant		
G01	40282	HYD- St Margaret's Bay - Coon Pond Dam Refurbishment	\$2,595,361	\$2,595,361
G02	31204	HYD - Dickie Brook - Donahoe Lake Dam Refurbishment	1,597,494	1,597,494
G03	41143	HYD - St Margarets Bay - Tidewater Surge Tank Refurbishment	1,211,641	1,211,641
G04	39042	HYD - Sheet Harbour - Ten Mile Lake Dam Decommissioning	1,018,923	1,018,923
G05	41138	HYD - Black River - Hollow Bridge Surge Tank Refurbishment	930,048	930,048
G06	23125	HYD - Sissiboo Falls - Electrical Equipment Replacement	845,755	845,755
G07	41127	HYD - Nictaux - Headcover Replacement	219,362	525,680
G08	41145	HYD - Mersey - Upper Lake Falls Rip Rap Replacement	516,420	516,420
G09	41140	HYD Sissiboo Falls - Tailrace Concrete Refurbishment	314,412	314,412
		Total Hydro Generation Plant	\$9,249,417	\$9,555,735
	Steam Cone	ration Plant		
G10	41229	LIN - Cable Spreading Rooms Fire Protection	\$918.292	\$918.292
G11	41228	TUC - Unit 3 Turbine HP Impulse Blades Replacement	882.152	882.152
G12	28674	TRE6 - Human Machine Interface (HMI) Upgrade	867.805	867.805
G13	39923	TUC - Generator Excitation and AVR System Replacement	141.183	844.543
G14	37611	LIN3 - Generator Excitation & AVR System Replacement	819,469	819,469
G15	41441	TRE - Siding Replacement (Phase 2)	608,916	608,916
G16	41507	TRE6 - Air Heater Refurbishment	553,438	553,438
G17	41303	TRE6 - Waterwall Panel Replacements	548,225	548,225
G18	41549	TRE5- Main Steam Attemperator Replacement	535,227	535,227
G19	40655	LIN - Pulverizer Refurbishment	461,279	461,279
G20	41121	LIN - Cooling Water (CW) Pump Refurbishment	447,687	447,687
G21	40256	POT - Plant Siding Replacement	392,601	392,601
G22	41511	TRE6 - Condenser Waterbox and Cooling Water (CW) Piping Refurbishment	392,172	392,172
G23	41503	TRE6 - Steam Turbine Control Valve Refurbishment	359,507	359,507
G24	41508	TRE6 - Turbine/Generator Fire Protection	347,079	347,079
G25	41584	POT Vacuum Pump Replacement	332,994	332,994
G26	28645	TRE6 - Turbine Controls Power Supplies Replacement	321,691	321,691
G27	38163	TRE6 Pulverizer Refurbishments	311,074	311,074
G28	41251	TUC3 - Turbine High Pressure (HP) Cylinder Fastener Replacement	275,729	275,729
G29	41620	TUC3 Turbine Generator Fire Protection	272,743	272,743
G30	41561	POT - Maintenance Facilities Refurbishment	258,558	258,558
G31	41124	LIN-Cooling Water (CW) Screen Refurbishment	251,544	251,544
		Total Steam Generation Plant	\$10,299,366	\$11,002,726
	Total Come	ation New Spanding	\$10 549 792	\$20 559 141

3.4 Generation Capital Items Presented by Investment Category and Asset Class

In addition to the capital categories described in section 1.4, Generation investments can further be described by investment category and asset class. Generation projects are included within one of the following investment categories:

- Renewable Energy Investments
- Mercury Abatement
- Regulatory Compliance
- Equipment Replacement
- Equipment Refurbishment
- Equipment Upgrade
- Asset Retirement
- Capital Spare Parts

The breakdown of 2012 generation capital projects by investment category is illustrated below in figure 3.4.1.

Figure 3.4.1: 2012 Generation Capital Spending Plan by Investment Category (*Millions of Dollars*)

Renewable Energy Investments

The projects included in this investment category are part of NSPI's transformation from fossil fuel-based generation to renewable generation sources such as wind, hydro, biomass and tidal. An example of a capital project in this investment category is the

Port Hawkesbury Biomass Project. All projects in this investment category are included in Table 3.4.1.

Mercury Abatement

These projects include the installation of mercury-capture equipment designed to remove mercury from the flue-gas stream of coal-burning generating units and ensure mercury emissions are within Nova Scotia's air quality regulations. As illustrated in Table 3.4.2, the majority of the work related to mercury abatement has already been completed. The remaining investment planned for 2012 is for completion of these projects based on initial operating experience.

Regulatory Compliance

In certain cases, capital investments are made in order to comply with environmental and health and safety regulations as well as codes or standards. Examples of generation projects in this investment category include ash site management projects at thermal stations and projects that are required to comply with North American Electric Reliability Corporation (NERC) standards. All generation projects in this investment category are included in Table 3.4.3.

Equipment Replacement

Over the course of time, equipment experiences normal wear and degradation and eventually reaches the end of its design life and must be replaced. Equipment may also become obsolete and require replacement because it is no longer supported by the Original Equipment Manufacturer (OEM) and spare replacement parts are no longer available. As such, this investment category is further broken down into Equipment Replacement (End of Life) and Equipment Replacement (Obsolescence). Replacing equipment that has reached the end of its useful life or has become obsolete mitigates the risk of equipment failure and unplanned generating unit outages.

Examples include steam turbine blade replacements, replacement of heating ventilating and air conditioning (HVAC) equipment and replacement of Distributed Control and Management System (DCMS) equipment. All projects in this investment category are included in Tables 3.4.4.1, 3.4.4.2, 3.4.5.1 and 3.4.5.2.

Equipment Refurbishment

Over the course of time, equipment experiences normal wear and degradation and must be refurbished in order to maximize the operating life of the equipment and ensure continued reliable operation. The option to refurbish existing equipment is selected over replacing whenever it is economically feasible to do so. Equipment refurbishments typically include replacement or refurbishment of individual equipment components; and not complete replacement of a piece of equipment. For example, replacing a number of cooling water (CW) pump components that have reached end of life would
constitute refurbishment of the CW pump.

Equipment that is commonly refurbished includes, boilers, pulverizers, boiler feed pumps, cooling water (CW) pumps and CW screens. All projects in this investment category are included in Table 3.4.6.1 and 3.4.6.2.

Equipment Upgrade

Modifications to existing equipment and additions of new equipment that improve an existing process, efficiency or reliability of the generating Unit and add economic value are considered to be equipment upgrades. Projects that involve upgrading equipment to current-day standards are also included in this investment category.

Examples of equipment upgrades include the addition of new biofouling control equipment to improve condenser efficiency and generating unit heat rate, replacing a boiler steam coil with upgraded materials with a longer design life than the existing coil and upgrade turbine control power supplies to current-day standards. All projects in this investment category are included in Table 3.4.7.1 and 3.4.7.2.

Asset Retirement

There are circumstances in which an asset or equipment has reached the end of its useful life and is no longer required or beneficial to the operation of the generating unit. In these cases, it is more beneficial to remove and retire the asset or equipment than it is to replace or refurbish it.

An example of this is the decommissioning and removal of the Ten Mile Lake Dam on the Sheet Harbour hydro system. It is more economical to decommission and remove the dam than it is to refurbish it. All projects in this investment category are included in Table 3.4.8.

Capital Spare Parts

As part of the operation of NSPI's generating assets, capital spare parts must be on hand to ensure the safe, effective and reliable provision of service to customers. A capital spare part satisfies each of the following three guidelines:

- 1 The part or component must be used or utilized for greater than one year;
- 2 The part or component meets the materiality threshold identified in the Company's Accounting Policies and Procedures.
- 3 The part or component is critical to the safe, reliable and effective operation of the system and is required to mitigate a moderate, high or catastrophic risk of asset failure.

All projects in this investment category are included in Table 3.4.9.

ASSET CLASSES:

Each of the preceding investment categories have been further broken down by asset class to illustrate the makeup of the capital investments within each investment category. For example, all equipment replacement projects related to steam turbines are grouped together in Table 3.4.4.2 to provide insight into the total estimated 2012 equipment replacement capital spend related to NSPI's steam turbines.

Turbines:

Description

Steam turbines couple to the main electrical generator, which together, convert mechanical energy to electrical energy and enable the generation of power. Turbines are critical to the operation of the generating unit

Quantity

There are 12 steam turbines in the NSPI generation fleet.

Size Range 50MW to 190 MW

Operating Environment

All Turbines operate in a well-controlled and clean environment.

Design

All turbines include multiple pressure sections into steam condensers. Original Equipment Manufacturers (OEMs) include: Toshiba (five units), Siemens (four units), Alstom (three unit), Hitachi (one unit) and Mitsubishi (one unit).

Expected Life

All turbines are original to each generating unit's construction and are generally designed to last the life of the generating unit. It is expected that major component replacements will be required approximately 25 years after the in-service date. As there are many components and a variety of operating regimes, major components require a Life Cycle Plan which includes inspections, assessment, and planned repairs and replacements.

Service

Historically, NSPI turbines have been base loaded units. However, with the introduction of renewable sources of generation, many units are experiencing increased cycling and reduced loading service.

Major Overhauls

Major maintenance cycles are nominally eight years. Actual cycles are based on operating hours and condition assessment which determines duration between outage cycles. Known issues or predictive analysis can also prompt a major overhaul activity. As the turbine fleet continues to age, Life Cycle Management and End of Life Planning are becoming influencing forces in outage cycles.

Criticality and Condition Assessment:

Criticality: Very high

Condition Assessment is based on the following factors:

- History
- Vibration and turbine performance data
- Hours of service
- OEM inspection results and recommendations
- Industry experience
- Expert support

Steam Generators:

Description:

Electrical generators coupled to steam turbines convert mechanical energy to electrical energy thereby enabling the generation of power. Their function is critical to the operation of the generating unit

Quantity:

There are 12 steam-coupled electrical generators in the NSPI generation fleet.

Size Range: 50MW to 190 MW

Operating Environment:

All Turbines operate in a well-controlled and clean environment.

Design:

All Generators are 3600 rpm, hydrogen-cooled, 4160V output machines. OEMs include: Toshiba (five Units), Siemens (three Units), Alstom(one Unit), Hitachi (one Unit), Mitsubishi (one Unit).

Expected Life:

All but one of the generators (Trenton Unit #5) are original to each generating unit's construction and it is anticipated that all generators will last for the remaining life of each plant.

It is expected that major component replacements will be required once a generator has reached approximately 30 years of service. As there are many components and a variety of operating regimes, major components require a Life Cycle Plan, including inspections, assessment, and planned repairs and replacements.

Service:

Historically, NSPI's steam generators have been base loaded units. With the introduction of renewable sources of generation, many units are experiencing increased cycling and reduced loading service.

Major Overhauls:

Major overhaul cycles are historically in the range of eight to ten years. Actual cycles are based on operating hours which may influence duration between outage cycles. Known issues or Predictive Analysis can also prompt a major overhaul activity. As the fleet continues to age, Life Cycle Management and End of Life Planning are becoming influencing forces in outage cycles.

Criticality and Condition Assessment:

Criticality: Very high

Condition Assessment is based on the following factors:

- History
- Vibration and turbine performance data
- Hours of service
- OEM inspection results and recommendations
- Industry experience
- Expert support

Generator Excitation System & Automatic Voltage Regulator (AVR):

Description:

Each generator requires an excitation system to deliver excitation to the generator field winding (rotor winding). The excitation system responds to generator conditions and controlling inputs to control generator voltage and power factor. The excitation system is essential to the operation of the generating unit.

Quantity:

All 12 thermal plant generators, 53 hydro generators and combustion turbine generators have an excitation system.

Size Range:

Excitation systems are sized to match the requirements of the mated generator.

Operating Environment:

All generators and excitations systems operate in a well-controlled and clean environment.

Design:

There are several designs in use within NSPI, however all excitation systems have a supply source (excitation transformer or independent rotating exciter) and a field control system (electrical and electronic devices which control the electrical supply to the field winding).

Expected Life:

While the electrical sources typically have long lives, the electrical/electronic devices (breakers, power electronics and controllers) would likely require replacement near midlife (approximately 25years).

Service:

As predominantly electrical systems, exciters tend to function well with modest maintenance for a known service life. Aside from the field breaker, most other components would not be expected to have their life limited by the service condition.

Major Overhauls:

It would be expected to have major overhaul and component replacement near the midlife of an exciter, power electronics would require replacement, breakers would be refurbished or replaced and windings would be reinsulated.

Criticality and Condition Assessment:

Criticality: Very high

Condition Assessment is based on the following factors:

- Maintenance History
- Hours of service
- OEM recommendations on service life
- Industry experience

Boilers:

Description:

Water from high-pressure (HP) feedwater systems enters the boiler and is heated past its boiling temperature to produce superheated steam. The superheated steam produced in

the boiler enters the steam turbine, causing the shaft of the turbine to rotate when the steam passes over the turbine blades.

The boilers in NSPI's fleet are fired with a variety of solid, liquid and gaseous fuels, including coal, petroleum coke, heavy fuel oil, natural gas and light oil fuel oil for startup purposes. Only the three Tufts Cove generating units are designed to fire natural gas. The boiler, steam turbine and generator act together to produce electrical energy and are some of the most important elements of NSPI's five thermal generating stations.

Quantity:

There are 12 steam boilers currently in operation in the NSPI generation fleet. The Port Hawkesbury Biomass Unit will result in 13 operational steam boilers once this generating unit is fully commissioned.

Size Range: Nominal steaming capacity ranges from 50 to 190MW.

Environment:

Located in the main builder of the thermal plant, boilers are typically housed in a dedicated structure or boiler house. In coal units, the boiler house is considered a moderate environment. Due to the nature of fuel and ash, it is a continuous effort to maintain moderate temperatures and cleanliness within the boiler house. While these environmental conditions do not impact the boiler iteself, there is an impact on associated equipment (motors, pumps, electrical equipment and instruments).

The internal components of the boiler are subjected to an environment of extremely high gas temperatures approaching 1,000 degrees Celcius and steam temperatures greater than 500 degrees Celcius.

Design:

Firing Methods

- Tangentially- Fired
- Front-Fired
- Cyclone
- Circulating Fluidized Bed (CFB)
- Multi-level Heavy Oil Firing
- Duel Fuel (Oil and Gas)

Major Components include:

- Steam Drum
- Headers
- Boiler Tubes (Water Wall, Superheater, Reheater, Economizer)

Expected Life:

Generally the same as the expected life of the plant. However, Boilers require significant refurbishment and select component replacements over their lives in response to the effects of long-term exposure to elevated temperatures, temperature cycling, erosion and corrosion.

Service:

Historically, NSPI Boilers have been base-loaded units. However, with the introduction of renewable sources of generation, many units are experiencing increased cycling and reduced loading service.

Refurbishments and Component Replacements:

- Boiler Tube wastage rates are monitored and used to determine timing and scope of component replacements (waterwalls, reheaters, superheaters and econimizer sections).
- Typical refurbishment cycle is in the order of five to ten years, but is highly dependent on fuel and unit utilization. Gas units would have a much less frequent rate of refurbishment and component replacements.
- Refurbishments are completed in stages. Sections of waterwalls are replaced on a rotating basis as opposed to all at once.
- Selective Replacements: Smaller sections of boiler tubes are replaced annually based on inspection results.

Criticality and Condition Assessment:

Criticality: Very High. Failure of any internal component results in loss of generation. Furthermore, the elevated design temperature and pressures within the boilers result in higher potential consequences in the event of a failure.

Condition Assessment is based on the following factors:

- Operating and maintenance history
- Non-destructive testing (NDT)
- Hours of service
- Fuel
- Engineering assessments

Condensers:

Description:

Each generating unit includes a condenser (part of the condensing system) which serves two purposes:

- Converts turbine exhaust steam to water for reuse as boiler feed water. Large quantities of processed water are utilized in the steam cycle and the condenser is vital to minimizing the consumption and treatment of water.
- The condensing process creates a vacuum within the condenser thereby increasing the pressure drop across the turbine (low-pressure section of the turbine) and increasing the energy extracted from the steam.

The condenser is essentially a large heat exchanger. Cooler seawater is pumped through the tubes in the condenser which results in extraction of energy from turbine exhaust steam, thereby condensing the steam for delivery to the feed water system.

Quantity:

There are 12 condensers in the NSPI generation fleet.

Size Range:

Physically, condensers are very large and their footprint is comparable to the turbine itself. The condenser is designed and sized to service the condensing requirements of the steam turbine.

Operating Environment:

Condensers are subjected to harsh salt-water operating environments. The salt-water on one side of the condenser creates issues with biofouling and corrosion, while the condensing steam on the other side of the condenser introduces issues related to erosion.

Design:

Each condenser is designed to meet the condensing needs of its mated steam turbine. Material specification, cooling water source, volume of cooling water required and operating pressure are all considered in the unique design of each condenser.

Condensers contain a series of large valves which allow the manipulation of cooling water flow to enable 50 percent operation in support of trouble shooting and maintenance as well as backwashing (regular on-line cleaning).

Expected Life:

All condensers are generally designed to last the life of the generating unit. It is expected that major component replacements will be required approximately 25 years after the inservice date. In particular, it is common to have a major condenser tube replacement near midlife as a result of a particularly aggressive salt-water operating environment (bio-fouling or chemical attack).

Service:

Historically, NSPI's generating units have been base-loaded. With the introduction of renewable sources of generation, many units are experiencing increased cycling and reduced loading service. Although this operating mode will reduce effects of steam-side erosion, condenser biofouling and electrochemical concerns will need to be monitored to understand the effects on the cooling water side of the condenser.

Major Overhauls:

Condensers require annual inspection and maintenance. Tube plugging and tube inserts are the most common activities to reduce the incidence and effect of condenser tube leaks. It is anticipated that condensers will require a major re-tubing retrofit during the typical like of a unit. While tube failures are common, repair and mitigation methods are relatively inexpensive. Over time, accumulating failures will diminish condenser performance such that re-tubing is required.

Condensers require ongoing refurbishments to valves, waterboxes and associated piping and it should be anticipated to perform more major refurbishments to the condenser waterbox structure, waterbox lining, pipe lining, and valves several times throughout the life of the unit.

Criticality and Condition Assessment:

Criticality: High. Essential to the operation of the generating unit. However, most common failures can be remediated quickly and with modest expense.

Condition Assessment is based on the following factors:

- Maintenance History
- NDT (Eddy Current Testing) to detect tube anomalies
- Annual Inspections of Water Boxes, Tube Sheets, Valves and Steam Space

Cooling Water (CW) Pumps:

Description:

Cooling Water (CW) Pumps supply cooling water (sea water) to the condensers, and their function is critical to the operation of the generating Unit. It is typical for each generating Unit to have two CW pumps. During winter operation, the cooling water

temperature is low enough that only one pump is typically required to service the condensing requirements. During the warm water season, both pumps must operate together to supply a higher volume of warmer water to service the condensing requirements.

Quantity:

There are 24 CW Pumps in NSPI's thermal generation fleet.

Size Range:

CW pumps have motors that range from 500HP to 1,000 HP depending on the condensing system design. There are considerable condensing system design differences from plant to plant.

Operating Environment:

In many plants, the CW pumps operate in a very harsh salt-water environment. At Lingan, for example, sea water, sea water spray, seaweed, and heat all contribute to a severe operating environment. Point Aconi on the other hand, has a sophisticated seawater inlet system which provides for a much less harsh operating environment for the CW pumps.

Design:

Low speed, vertical, submersed pumps.

Expected Life:

Pumps are typically designed to last for the life of a plant and several refurbishments are required over the life of the pumps. In the most extreme service conditions, replacement versus refurbishment may be recommended provided that economic analysis supports this option.

Service:

The service varies by plant location, but generally, CW pump service is considered to be severe, as the pumps are often exposed to large matts of seaweed or mussels.

Refurbishments and Overhauls:

The average refurbishment cycle for a CW pump is approximately eight to ten years. Major midlife overhauls may include shaft and impeller refurbishment or replacement, bearing replacement, and extensive casing refurbishment. Refurbishment costs from plant to plant vary as a result of failure mechanisms specific to each plant, and difference in size of the pumps and design of the pumps and pump houses.

Criticality and Condition Assessment:

Criticality:

High. CW pumps are essential and pump redundancy is seasonal (winter months only).

Condition Assessment is based on the following factors:

- Pump operating history
- Vibration data
- Hours of service
- Engineering Assessments

Boiler Feed Pumps:

Description:

Boiler Feed Pumps (BFPs) supply water to the boiler. Their function is critical and it is typical for each Generating Unit to have two pumps, or 100% redundancy.

Quantity:

There are 24 BFPs in the NSPI generation fleet.

Size Range:

One of the largest rotating equipment elements in each Plant, with an average motor size of approximately 3,000HP

Environment:

Located in the plant and typically in a protected environment.

Design:

Multistage pumps of various designs.

Expected Life:

Generally the same as the expected life of the plant.

Service:

- Extremely high pressures.
- Historically base loaded, but an increasing number of BFPs are becoming exposed to cycling conditions.

Refurbishments:

- Infrequent but typically very costly.
- Rotating components (cartridge) requires rebuild approximately every 10 years depending on duty (cycling, start/stop, Unit upsets).

• Mid-life overhauls are typically required to manage effects of FAC (Flow-Assisted Corrosion) on the pump body, covers, and nozzles.

Criticality and Condition Assessment:

Criticality: High - Redundancy is built in which moderates criticality.

Condition Assessment is based on the following factors:

- Operating history
- Vibration data
- Oil analysis
- Non-destructive testing (NDT)
- Hours of service
- Balance pressure analysis
- Engineering assessments

Coal Pulverizers:

Description:

Pulverizers are used to size solid fuel (coal) for optimum combustion within the boiler. Most pulverizers within the fleet are table and roll design with the exception of Trenton Unit #5 and Unit#6, which utilizes ball mill pulverizers to pulverize the fuel.

Quantity:

There are 27 pulverizers throughout the fleet (Lingan, Point Tupper and Trenton Generating Stations). There are no pulverizers at Pt. Aconi or Tufts Cove.

Size Range:

Generally, each unit has excess pulverizing capability to enable maintenance on one pulverizer while maintaining full load capability of the generating unit. There are circumstance related to fuel blend or fuel quality during which all pulverizers are required to support full generating unit loading.

Environment:

Pulverizers are located within the Boiler House in close proximity to the boiler. By its very nature, pulverizing creates a very harsh operating environment.

Design:

The most common design is table and roll. Large rollers crush the coal on the table to a particle size small enough that the attached fan (exhauster) can lift the pulverized fuel from the pulverizer and deliver the fuel to the boiler.

Major Components include:

- Table
- Rolls
- Exhauster Fan
- Worm Gear
- Shafts
- Air Dampers

Expected Life:

Generally the same as the expected life of the plant. However, pulverizers require frequent refurbishments at approximately 10,000 hours of service. This service period varies widely dependent on the nature of the coal. In recent years, the upgrade to ceramic components has resulted in a dramatic increase in service life (approximately doubled) for key components.

Service:

It is typical to operate three of four pulverizers at high load while having reserve capability to address planned pulverizer outages. Frequent short outages to make adjustments and minor repairs is common, given the harsh operating environment.

Refurbishments:

- Pulverizer rebuilds typically include:
 - Roll and table weld overlay
 - Bearing repair and replacements
 - Exhauster fan repair
 - Exhauster body repair

Criticality and Condition Assessment:

Criticality: Medium. There is generally excess pulverizing capacity, so the consequence of a single failure is usually marginal.

Condition Assessment is based on the following factors:

- Operating and maintenance history
- Non-destructive testing (NDT)
- Hours of service
- Fuel
- Inspection results

Electrostatic Precipitators:

Description:

Electrostatic precipitators (ESP) are connected to the outlet of the steam generator (boiler) and are used to remove the flyash particulate resulting from the combustion of coal and heavy fuel oil. ESPs are critical to the operation of the steam generator to meet the plant operating permit for stack opacity and particulate emissions. A loss in performance of the ESP will result in a loss of generation capacity and/or a forced unit outage until the ESP is repaired.

Quantity:

There are 10 ESPs in the NSPI generation fleet.

Size Range:

See Table 1 for information on ESP location and design information.

Operating Environment:

ESPs treat hot dust-laden flue gas as it exits the generating unit and remove the flyash prior to the flue gas exiting the stack to the environment.

Design:

The NSPI ESPs all operate on the same principles. The ESP produces a high voltage (45,000 to 65,000 volts), low current DC charge on a series of electrodes which emit electrons to produce an electrostatic charge on the flyash particles. The charged particulate particles are then attracted to corresponding collector plates which are electrically connected to ground. The collector plates are then periodically rapped to dislodge the dust which then falls into collection hoppers for removal and transportation to flyash storage silo.

ESPs are rated based on their relative size for the amount of flue gas being treated. The rating is characterized as SCA (specific collection area) which is the ratio of the number of square feet of collecting surface per 1000 actual cubic feet per minute of flue gas.

Expected Life:

ESPs were designed to last the life of the generating unit. However, they operate in harsh, dirty and corrosive conditions and require regular inspection and repair to maintain their intended performance levels.

ESP controls are constructed of electronic modules, that much lie like personal computers, become obsolete and require replacement and/or upgrade after five to ten years of service.

Service:

ESPs were designed for specific fuels in use at the time of the original plant construction. Changes in the fuel characteristics can result in significant changes in the

performance of the ESP and the corresponding stack opacity. For example, the Lingan ESPs were designed for high sulphur, low resistivity flyash coals. Current low sulphur coals produce high resistivity flyash which is harder to collect which requires the ESP to maintain a higher level of performance and availability than when they were first constructed in order to maintain the stack opacity within the plant operating permit requirements

Refurbishments:

- Structural repairs to precipitator building and ash vessels
- Transport System (valve, piping) replacements

Major Overhauls:

ESPs require inspection and maintenance repairs at each regular unit maintenance outage.

ESP modifications and up-grades are sometimes required when fuel and plant operating conditions change from the original design conditions.

Condition Assessment is based on the following factors:

- Operating history
- Internal inspection
- External inspection
- Electrical equipment testing
- External expert technical support

Criticality and Condition Assessment:

Criticality: High

Precipitators are required in order to meet emissions requirements. They can be operated at partial load but this often results in a unit derating to maintain emission compliance.

Equipment failure impact: Loss of generation capacity up to and including a forced unit outage.

Ash Management:

Description:

Ash is a byproduct of the combustion process at all of NSPI's thermal generating stations using fossil fuels to generate electricity. The quantity of ash generated through the combustion of solid fuels such as coal is much greater than that produced from liquid fuels such as heavy fuel oil.

Ash is captured in combustion process in the form of:

- 1. Bottom Ash: heavy ash that drops out of the combustion process in the combustor or front end of the boiler.
- 2. Fly Ash: Ash that is carried in the flue gas to the back end of the combustor and is extracted in the precipitators or baghouses.

Ash is transported to ash sites where it is landfilled. Ongoing investment in ash sites is essential to ensure the ash sites are in compliance with environmental regulations as well as ensuring there is sufficient landfill capacity to sustain continued operation of the generating units. In addition to ash management, all ash-contacted water must also be captured and treated.

Quantity:

Each of NSPIs coal-fired generating stations operate and maintain ash handling sites and associated water management facilities.

Size Range:

The footprint of the ash management sites is a function of the amount of fuel consumed, the quantity of ash in the fuel and, in the case of Point Aconi, the quantity of limestone required to capture sulfur. Ash sites typically occupy many acres.

Environment:

Ash sites consist of very large outdoor ash management areas. They are exposed to the elements and therefore need to be managed through a range of environmental effects including: heavy rains - resulting in potential water management issues, dry weather - resulting in potential airborne ash issues.

Design:

Ash sites are typically designed in large cells with consideration for expansion to meet future ash management needs. Modern ash site development includes fabric or other barriers beneath the ash deposition areas. This ensures all ash-contacted water is captured, managed, reused where possible and treated before being releases to the environment.

Expected Life:

An ash site is generally selected to service the ash management needs of a generating station through its life. However, individual ash cells within each ash site are developed as required to provide an area for ash deposition over a five to ten year period.

Service:

Ash site utilization is a function of generating station operation and volume of ash created through the combustion process. The volume of ash generated is dependent on the quantity fuel used to generate electricity. A minimum level of monitoring and

maintenance of ash sites is required regardless of the volume of ash produced.

Refurbishments:

- Cell repairs to berms, liners
- Repairs to piping, valves, silos

Criticality and Condition Assessment:

Criticality: High. Ash sites rate high, as failures have potential to impact the environment and development of new ash cells is required to support ongoing operation of the generating station.

Condition Assessment is based on the following factors:

- Environmental monitoring
- Inspection
- Maintenance history

Dams:

Description:

The purpose of dams is to capture and store water during periods of rainfall and snowmelt, and use that water to generate electricity by channeling the water through a hydro turbine-generator located in the powerhouse. Dams typically consist of earthfill, rockfill, concrete, timber crib, or a combination of these materials.

Quantity:

NSPI owns and operates approximately 155 dams ranging in size from 3 feet to165 feet in length. These dams range in age from a few years old to more than 90 years old.

Service Life:

The anticipated service life of dams is dependent on their initial construction, the materials they are composed of and the service environment to which they are exposed. In general, a service life of greater than 60 years is expected.

Design Assessment / Performance Monitoring:

All of NSPI's dams are inspected semi-annually; once in the spring and once in the fall, by trained NSPI operating personnel. Data from instrumentation installed in the dams is also recorded and reviewed. In addition, a detailed condition assessment and design adequacy assessment of the dams is reviewed every seven years by external independent dam safety experts. These reviews are termed "Dam Safety Reviews".

Refurbishments:

The design and refurbishment of dams is carried out in accordance with the design

criteria of the Canadian Dam Association's Dam Safety Guidelines. Usually, refurbishments arise from findings of the Dam Safety Reviews, or from the semi-annual dam inspections. Refurbishments usually consist of revising the discharge facilities to increase their flood handling capacity, rehabilitating the structure to address material deterioration (concrete structures), or modifying the structures to address stability deficiencies in either the earthfill structures or concrete structures.

Pipelines:

Description:

Pipelines convey water from the reservoir (lake) to the hydro turbine-generator located in the powerhouse. Pipelines may be constructed of rolled plate steel, spiral-wound steel, fibre-reinforced plastic, plastic (high density polyethylene), reinforced concrete, or wood staves. In addition, pipelines may be buried below ground level, partially exposed, or fully exposed above grade supported on blocks or "saddles".

Quantity:

NSPI owns and operates approximately 20 sites where pipelines form a part of the water conveyance system. These pipelines range in age from a few years old to more than 90 years old.

Service Life:

Similar to dams, the anticipated service life of pipelines is dependent on their initial construction quality, the materials they are composed of and the service environment to which they are exposed. In general, a service life of 40 to 60 years is considered average.

Condition Assessments:

All of NSPI's pipelines are inspected periodically by NSPI operating personnel. Where issues are suspected, detailed engineering condition assessments are performed by either NSPI engineering personnel or external consultants specializing in this field of work.

Refurbishments and Replacements:

The refurbishment of pipelines usually consist of removal of vegetation near the pipeline, improvements to the surface drainage of the surrounding ground, improvements to the supporting elements (cradles), blasting and coating the exterior and interior of steel pipelines and replacement of deteriorated wood staves and pipe banding on wood stave pipelines. In some cases, complete removal and replacement of the entire pipeline is required.

Surge Tanks:

Description:

Surge tanks are vertical "chimney-like" water towers that form part of a pipeline. They are typically located close to the powerhouse and are only required on relatively long pipelines. The purpose of surge tanks is twofold: a) they reduce the rise in water

pressure inside the pipeline (limit the upsurge) when the generating unit shuts down and the water in the pipeline decelerates from its normal supply velocity to zero, and b) they provide a temporary volume of water for the unit when it first starts up (limit the downsurge) until the water in the pipeline accelerates from zero to its normal supply velocity.

Quantity:

NSPI owns and operates 14 sites with surge tanks. These surge tanks range in age from a few years old (Dickie Brook development) to more than 90 years old (Sandy Lake and Coon Pond developments).

Service Life:

Similar to pipelines, the anticipated service life of surge tanks is dependent on their initial construction quality, the materials they are composed of and the service environment to which they are exposed. In general, a service life of 40 to 60 years is considered average.

Condition Assessments:

All of NSPI's surge tanks are inspected periodically by NSPI operating personnel. In addition, detailed condition assessments are performed every seven years by external consultants specializing in this field of work.

Refurbishments:

The refurbishment of surge tanks usually consists of blasting and coating the exterior and interior of the surge tanks. In some cases, replacement of deteriorated concrete footings is required and for more advanced deterioration, complete removal and replacement of the entire surge tank.

Electrical Equipment:

Description:

The electrical equipment in the powerhouse generally refers to oil-filled circuit breakers, power cables, control relays, protective relays, and voltage regulators. This equipment is the link between the electrical generator in the powerhouse and the substation in the powerhouse yard. It provides protection and controls to the generator.

Quantity:

Electrical equipment of this nature is present at all 33 hydro generating powerhouses.

Service Life:

The service life of electrical equipment of this nature is in the 25 to 40 year range. However, this equipment generally becomes obsolete sooner, resulting in difficulty in obtaining spare parts and troubleshooting.

Condition Assessments:

A condition and risk assessment of the medium voltage switchgear at a number of NSPI powerhouses was undertaken by an external consultant. The assessment revealed the existing oil-filled circuit breakers, power cables, control relays, protective relays, and voltage regulators at five NSPI powerhouses are obsolete and have reached the end of their safe working life.

Refurbishments:

The refurbishments of electrical equipment generally consists of complete replacement of existing circuit breakers, power cables, control relays, protective relays, and voltage regulators with modern protection and control equipment.

Runners

Description:

A runner is the component of the mechanical equipment in the water passage which the water strikes and causes to turn, converting the static and kinetic energy of the water into mechanical energy. This turns the shaft in the generator, which generates electricity. There are typically three main types of runners: Kaplan, Francis, and Pelton. NSPI's runners are Kaplan and Francis style runners.

Quantity:

NSPI owns and operates 53 hydro generators and, therefore, 53 runners. These runners range in age from new to more than 90 years old.

Service Life:

The service life of a hydro runner is typically in the range of 40 years, depending on the actual run time on the runner, and the maintenance history.

Condition Assessments:

Annual mechanical inspections are carried out on all of NSPI's generating units, including the runners. The runners are checked for signs of cracking, cavitation, mechanical contact damage from debris in the water, seal clearances, etc. Repairs are undertaken in-situ where access allows for it. Significant repairs may require the turbine to be removed for repair in a machine shop.

Refurbishments and Replacements:

Runners are typically replaced rather than refurbished. Runners are usually replaced due to cracking or considerable cavitation (which both result from the older design of the original runners). Since modern runners are much more efficient than runners from several decades ago, runners may also be replaced to take advantage of efficiency increases.

3.4.1 Generation – Renewable Energy Investment

Table 3.4.1: Generation – Renewable Energy Investment Capital Items

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital Items 2012 & +/- 2 years				
Wind G	Wind Generation							
36882	Nuttby Mountain Wind Project Development	\$168,000	\$111,605,284	2009 - CI 37942 – Nuttby Wind Project Substation- \$2,895,574 2009 - CI 37944 – Nuttby Wind Project Transmission Interconnection- \$516,173				
39323	Digby Wind Project	206,184	65,894,181	2010 - CI 39626 – Digby Wind Project Substation- \$4,586,277 2010 - CI 39627 – Digby Wind Project Network Upgrades- \$4,156,325 2010 - CI 39628 – Digby Wind Project Interconnection- \$3,270,060				
Wind G Renewa Total	eneration Plant - ble Energy Investments	\$374,184	\$177,499,466					
Hydro (Generation							
38868	HYD Marshall Falls Hydro Station	\$2,815,495	\$18,233,184	NA				
28678	HYD Renewable In-Stream Tidal Generation Project	400,000	3,347,378	2011 - CI 41005 – Parrsboro Tidal Interconnection U&U- \$1,734,780				
Hydro Renewa Total	Generation Plant - ble Energy Investments	\$3,215,495	\$21,580,563					
Steam G	Generation							
39029	Port Hawkesbury Biomass Project	\$55,971,533	\$206,942,205	NA				
Steam G Renewa Total	Generation Plant - ble Energy Investments	\$55,971,533	\$206,942,205					
Generat Investm	tion- Renewable Energy ent Total	\$59,561,212	\$406,022,233					

3.4.2 Generation – Mercury Abatement Capital Items

Table 3.4.2: Generation – Mercury Abatement Capital Items

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital Items 2012 & +/- 2 years
34203	LIN Unit #3 Mercury Abatement Project	\$75,883	\$4,912,300	NA
34223	POT Mercury Abatement Project	75,528	2,923,968	NA
34242	TRE Unit #6 Mercury Abatement	75,528	2,221,649	NA
34182	LIN Unit #1 Mercury Abatement Project	75,203	2,139,692	NA
34222	LIN Unit #4 Mercury Abatement Project	75,528	2,070,251	NA
34202	LIN Unit #2 Mercury Abatement	74,995	2,059,949	NA
34224	TRE Unit#5 Mercury Abatement Program	75,528	1,961,439	NA
Steam Generation Plant - Mercury Abatement Total		\$528,192	\$18,289,249	

3.4.3 Generation – Regulatory Compliance

Figure 3.4.3 Steam Generation - Regulatory Compliance Capital Items: 2012 Spending Forecasted by Asset Class

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital Items 2012 & +/- 2 years			
Ash Management							
39932	TRE - Ash Site Phase 2 Development	\$4,563,325	\$5,783,337	NA			
41074	POA - Ash Cell Site Capping	4,652,680	4,652,680	NA			
35083	LIN 2011 Ash Site Sealing and Capping	973,936	1,037,847	NA			
28457	TRE Ash Lagoon Closure	93,494	537,724	NA			
41526	TRE - Ash Site Management	147,833	147,833	2010 - CI 34506 - TRE Ash Site Management - \$113,560 2011 - CI 39948 - TRE Ash Site Management - \$200,351			
41484	POT - Ash Cell Capping Cell D	143,979	143,979	2011 - CI30082 POT Develop New Ash Cells \$377,117			
Ash M	anagement Total	\$10,575,248	\$12,303,401				

Nova Scotia Power Inc. 2012 Annual Capital Expenditure Plan

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital Items 2012 & +/- 2 years			
Fire Protection							
41229	LIN - Cable Spreading Rooms Fire Protection	\$918,292	\$918,292	2010 - CI 38846 - LIN1 Fire Protection / Turbine - \$293,207 2011 - 40184 LIN2 Fire Protection Turbine Hall \$343,611 2011 - 40427 LIN3 Fire Protection Turbine Hall \$348,710 2011 - 40212 LIN 3,4 Burner Fronts Fire Protection \$ 51,889			
41508	TRE6 - Turbine/Generator Fire Protection	347,079	347,079	Note 1			
41620	TUC3 Turbine Generator Fire Protection	272,743	272,743	2010 - CI39563 - TUC U&U Burner Front Sprinkler System - \$48,678			
41524	TRE6 - Motor control Centre (MCC) Room Fire Protection	173,605	173,605	Note 1			
41527	TRE6 - 4kV Switchgear Room Fire Protection	151,152	151,152	Note 1			

Note 1: All of the 2012 TRE6 Fire Protection Capital Items (CI 41508, CI41524, CI41527) are related projects. Total estimated spending on fire protection for TRE6 in 2012 is \$671,863. The following capital items are also related to each of the preceding TRE6 Fire Protection Capital Items:

2010 - CI40483 - TRE U&U Burner Front Fire Protection - \$55,252

Fire P	rotection Total	\$1,862,871	\$1,862,871	
Electro	ostatic Precipitators			
30954	LIN3-ESP Gas Flow Modification	\$ 1,608,606	\$ 1,627,487	NA
Electro	ostatic Precipitators Total	\$1,608,606	\$1,627,487	

^{2011 -} CI 40444 - TRE6 Burner Front Fire Protection - \$56,915

CI#	Project Title	2012 Estima	te Total Estimate	Related Capital Items 2012 & +/- 2 years
Asbes	stos Abatement			
41238	TUC - Asbestos Abatement Program	\$227,423	\$227,423	2010 - CI 34484 - TUC Asbestos Abatement - \$200,672 2011 - CI 39760 - TUC Asbestos Abatement \$384,297
41531	TRE - Asbestos Abatement	160,565	160,565	2010 - CI 34502 - TRE Asbestos Abatement - \$253,199 2011 - CI 39945 - TRE Asbestos Abatement - \$250,928
41444	POT - Asbestos Abatement	120,755	120,755	2010 - CI 34545 - POT Asbestos Abatement - \$103,470 2011 - CI 40331 - POT Asbestos Abatement - \$214,520 2013 - CI 41483 - POT Asbestos Abatement - \$117,780
Asbes	tos Abatement Total	\$508,743	\$508,743	
Other	r Asset Classes			
Stacks 41266	TUC2 - CEM Upgrade	\$131,642	\$131,642	NA
Instru	ment Air System			
41271	TUC2 - Instrument Air Receiver Replacement	55,180	55,180	NA
Other	r Asset Classes Total	\$186,822	\$186,822	
Steam Regula Total	Generation Plant - atory Compliance	\$14,742,289	\$16,489,323	

3.4.4: Generation – Equipment Replacement (End of Life)

Hydro Generation: Equipment Replacement (End of Life)

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Pipelines				
40309	HYD - St. Margaret's Bay - Tidewater Pipeline Replacement	\$7,704,424	\$7,704,424	2011 - CI 41110 - U&U Tidewater pipeline repairs - \$243,303
Pipelines Total		\$7,704,424	\$7,704,424	
Electrical	Equipment			
23125	HYD - Sissiboo Falls - Electrical Equipment Replacement	\$845,755	\$845,755	NA
17583	HYD - BER-GUL - Electrical Refurbishment	805,646	805,646	NA
Electrical	Equipment Total	\$1,651,401	\$1,651,401	

Nova Scotia Power Inc. 2012 Annual Capital Expenditure Plan

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years		
~						
Generator 41127	'S HYD - Nictaux - Headcover Replacement	\$219,362	\$525,680	2010 - CI 39082- U&U Nictaux Headcover - \$429,815		
41133	HYD - Standby Generator Replacement	153,699	153,699	NA		
Generator	rs Total	\$373,061	\$679,379			
Dams 41145	HYD - Mersey - Upper Lake Falls Rip Rap Replacement	\$516,420	\$516,420	NA		
Dams Tota	al	\$516,420	\$516,420			
Culverts 40316	HYD - Barteaux Culvert Refurbishment	\$376,162	\$467,860	NA		
Culverts 7	Fotal	\$376,162	\$467,860			
Powerhou 41137	ses HYD - Gulch Powerhouse Window Replacement	\$102,978	\$102,978	2011 - CI 40824 - HYD Powerhouse Civil and Architecture Assessment - \$73,685		
Powerhou	ses Total	\$102,978	\$102,978			
Roofing 41136	HYD - Gisborne Roof Hatch Replacement	\$38,552	\$38,552	NA		
Roofing Total		\$38,552	\$38,552			
Hydro Ge	Hydro Generation Plant - Equipment					
Replacem	ent (End of Life) Total	\$10,762,998	\$11,161,014			

Steam Generation: Equipment Replacement (End of Life)

Figure 3.4.4.2 Steam Generation - Equipment Replacement (End of Life): 2012 Spending Forecasted by Asset Class

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Turbines 39566	LIN2 Steam Turbine Last Stage Blades Replacement	\$601,589	\$1,815,030	2012 - CI 31583- LIN L-1 Steam Turbine Blading Replacement - \$1,077,882, 2011 - CI 40330 - HT Fastener
31583	LIN2 L-1 Steam Turbine Blading Replacement	\$833,163	\$1,077,882	Replacement - \$760,740 NA
41228	TUC - Unit 3 Turbine HP Impulse Blades Replacement	882,152	882,152	2012 - CI 41251 - TUC3 Turbine High Pressure Cylinder Fastener Replacement - \$265,925
40330	LIN2 HT Fastener Replacement	532,691	760,741	2012- CI 31583- LIN L1 Steam Turbine Blading Replacement - \$1.185,579, 2012 - CI39566 - LIN2 Steam Turbine Last Stage Blade Replacement - \$1,077,882
41549	TRE5- Main Steam Attemperator Replacement	535,227	535,227	NA
41251	TUC3 - Turbine High Pressure (HP) Cylinder Fastener Replacement	275,729	275,729	2012 - CI 41228 - TUC Unit 3 Turbine High Pressure (HP) Impulse Blades Replacement - \$882,152
41621	POA-Turbine Thrust Bearing Replacement	136,159	136,159	2012 - CI41054 - Turbine Vibration Monitoring replacement - \$308,93 2011- CI 40406 - POA L0 Low Pressure Turbine Blade Replacement - \$2,989,721
41272	TUC2 - Turning Gear Worm Shaft Replacement	54,508	54,508	NA
Turbines T	otal	\$3,851,219	\$5,537,429	

Table 3.4.4.2 Steam Generation - Equipment Replacement (End of Life) Capital Items

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Boilers				
41045	POA - Boiler Refractory Replacement	\$710,539	\$710,539	Reference Note 1
41303	TRE6 - Waterwall Panel Replacements	548,225	548,225	2010 – CI 34504 – TRE6 Waterwall Panel Replacements \$425,086 2012 -CI41544 - TRE6 O2 Sensor Replacement - \$72,171 2012 - CI41513 - TRE Unit 1-4 Stabilization - \$307,987
41563	POA-Combustor Watwall Panel Replacement	505,357	505,357	Reference Note 1
41566	POA - Center Drain	302,188	302,188	Reference Note 1
41078	Replacement POA-Sidewall Feeder Replacement	297,394	297,394	Reference Note 1
41567	POA - Loop Seal Fluidizing Nozzle Replacement	246,949	246,949	Reference Note 1
41084	POA - Boiler Arrowhead Replacement	124,728	124,728	Reference Note 1
41544	TRE6 - O2 Sensor Replacement	72,171	72,171	2012- CI41303 - TRE6 Waterwall Panel Replacements - \$548,224 2012- CI41533 - TRE6 Boiler Thermoprobe Upgrade - \$74,126
41083	POA - Boiler Expansion Joint Replacement	61,821	61,821	Reference Note 1
41545	TRE5 - O2 Sensor Replacement	56,924	56,924	

Note 1: All of the 2012 POA Boiler Capital Items (CI 41045, CI 41563, CI 41566, CI 41078, CI 41567, CI 41084 & CI 41083, CI 41057, CI 41077) are all related projects. Total estimated spending on the POA Boiler in 2012 is \$2,889,372. The following capital items are also related to each of the preceding POA Boiler Capital Items:

2010 - CI 34367 - POA 2010 Refractory Program - \$484,142
2010 - CI 40523 - POA U&U Arrowhead Replacements - \$125,193
2010 - CI 36567 - POA Auxiliary Control Upgrade - \$53,967
2011 - CI 40034 - POA 2011 Refractory Program - \$692,044
2011 - CI 41105 - POA U&U Superheater 3 Boiler Tube Refurbishment - \$197,380
2011 - CI 40027 - POA Arrowhead Replacement Program - \$104,271
2011 - CI 31725 - POA Boiler Expansion Joint Replacement - \$49,674

Boilers Total	\$2,926,296	\$2,926,296

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital Items 2012 & +/- 2 years
Plant Infra	structure			
41441	TRE - Siding Replacement (Phase 2)	608,916	608,916	2011 - CI 39933 - TRE Siding Replacement - \$603,707 2013 - CI TBD - TRE Siding Replacement (Phase 3) - \$350,000
40256	POT - Plant Siding	392,601	392,601	NA
41081	POA - Coal Road Paving Replacement	101,050	101,050	NA
Plant Infra	structure Total	\$1,102,567	\$1,102,567	
Fuel Hand 41523	ling TRE6 - 6F and 6G Conveyor Belt Replacement	193,117	193,117	NA
39951	TRE5 - Coal Bunkerette Replacement	135,329	135,329	NA
39982	TRE - Gauge Replacements	73,230	110,114	NA
41053	POA - Carbon Sulphur Analyzer Replacement	91,100	91,100	NA
Fuel Hand	ling Total	\$492,777	\$529,661	
Heating Ve	entilation and Air Conditionin	ng (HVAC)		
40319	TRE - HVAC Replacements (2011)	131,597	312,010	NA
41669	POT - HVAC Equipment Replacement	106,848	106,848	NA
41587	POA - HVAC Equipment Replacement	100,661	100,661	NA
HVAC Tot	al	\$339,105	\$519,518	
Valves 41226	LIN Boiler Feed Pump Recirculation Piping and Valve Replacement	233,206	233,206	NA
39953	TRE6 - Coal Feeder Valve Replacement	136,516	136,516	NA

			Total	Related Capital items 2012 & +/-
CI#	Project Title	2012 Estimate	Estimate	2 years
40334	POT - Refurbish Underground Valves & Hydrants	131,398	131,398	NA
Valvas Tat	<u></u>	\$501 120	\$501 120	
valves 10ta	41	¢301,120	\$301,120	
Bottom Asl	1			
41528	TRE6 - Bottom Ash Chain Replacement	148,251	148,251	Reference Note 2 2010- CI 37563 - TRE6 Bottom Ash System Refurbishment - \$401884
41645	TRE6 - Bottom Ash Seal Replacement	120,240	120,240	Reference Note 2 2011- CI 37563 - TRE6 Bottom Ash System Refurbishment - \$636,729
28152	TRE6 - Bottom Ash Overhead Door Replacement	81,004	81,004	Reference Note 2 2011- CI 37563 - TRE6 Bottom Ash System Refurbishment - \$636,729
41071	POA - Bottom Ash Drag Chain Replacement	62,741	62,741	2011- CI37422 - POA BA Drag Chain Replacement - \$40,779

Note 2: All of the 2012 TRE6 Bottom Ash Capital Items (CI 41528, CI41645, CI28152) are related projects. Total estimated spending on the TRE6 Bottom Ash System in 2012 is \$349,494.

Bottom Ash Total		\$412,236	\$412,236		
Common Water Piping					
41125	LIN - Common Water (CW) Piping Replacement	198,076	198,076	2010 - CI37610 - LIN Common Water Upgrades- \$205,184 2011 -CI40225 -LIN Common Water Lines Upgrade - \$201,890 2013 -CI TBD - \$TBD	
37824	TRE5 - Common Water Pipe Replacement	128,289	128,289	2013 - CI TBD - \$TBD	
Common V	Vater Piping Total	\$326,364	\$326,364		

Nova Scotia Power Inc. 2012 Annual Capital Expenditure Plan

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years				
Other Asset Classes								
Vacuum Pu	Vacuum Pumps							
41584	POT Vacuum Pump Replacement	332,994	332,994	NA				
Ash Handli	ing							
39944	TRE6 - Fly Ash Line Replacement	216,127	233,349	NA				
Actuators								
41514	TRE6 - Condenser Actuator Replacements	208,589	208,589	2010 - CI28685 - TRE5 Actuator Upgrade - \$128,178				
Stacks								
31262	LIN - Unit 1-2 Stack Insulation Replacement	158,427	158,427	NA				
41277	TUC2 - Stack Breeching Seal Replacement	61,402	61,402	NA				
Cooling W	ator							
41236	TUC - Cooling Water (CW) Piping Refurbishment	197,626	197,626	NA				
Air Heater	e							
41157	LIN4 Air Heater Baskets Replacement	173,236	173,236	NA				
Compresso	rs							
38643	TRE6 - 6B Fly Ash Compressor Replacement	150,984	150,984	NA				
Dryers								
41260	TUC2- H2 Dryer Replacement	127,932	127,932	NA				
Cooling W	ater (CW) Strainers							
41275	TUC2- ACW Strainer Replacement	114,909	114,909	NA				
Fans								
41570	POA- Reverse Air Fan Replacement	107,983	107,983	NA				
Fire Protec	tion							
41267	TUC - Fire Protection System Foam Tank Replacement	94,872	94,872	2010 - CI39563 - TUC U&U Burner Front Sprinkler System - \$48,678				
Daliahawa								
41151	LIN3 - Polisher Resin Replacement	82,777	82,777	NA				

Nova Scotia Power Inc. 2012 Annual Capital Expenditure Plan

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Starters 41543	TRE6 - Motor Control Centre (MCC) Starter Replacements	\$80,558	\$80,558	NA
Screw Co	oolers			
41050	POA - Screw Cooler Cover and Trough Replacement	80,103	80,103	2010 - CI34368 - POA Screw Cooler rotor Replacement - 136,618
High Pre 41571	essure (HP) Piping POA-High Pressure Piping and Valve Insulation Upgrade	79,123	79,123	NA
Power Su 37022	applies POT - 129V Battery Charger Replacement	74,578	74,578	NA
Water T	reatment			
41076	POA - B Train Cation and Anion Resin Replacement	60,501	60,501	NA
Other As	sset Classes Total	\$2,402,721	\$2,419,943	3
Steam G Replacer	eneration Plant - Equipment nent (End of Life) Total	\$12,354,405	5 \$14,275,13	4
Generati (End of l	on Equipment Replacement ife) Total	\$23,117,403	3 \$25,436,14	8

3.4.5 Generation - Equipment Replacement (Obsolescence)

Hydro Generation: Equipment Replacement (Obsolescence)

Table 3.4.5.1 Hydro Generation - Equipment Replacement (Obsolescence) Capital Item

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Electrica 41131	al Equipment HYD - Relay Testing Equipment	\$67,727	\$67,727	NA
Electrical	Equipment Total	67,727	67,727	NA
Hydro Generation Plant - Equipment Replacement (Obsolescence) Total		\$67,727	\$67,727	

Steam Generation: Equipment Replacement (Obsolescence)

Figure 3.4.5.1 Steam Generation - Equipment Replacement (Obsolescence): 2012 Spending Forecasted by Asset Class

CI# Project Title		2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years			
Automatic Voltage Regulators (AVRs)							
39926	TUC - Unit 3 Generator Excitation and AVR System Replacement	\$742,715	\$881,456	NA			
39923	TUC - Generator Excitation and AVR System Replacement	141,183	844,543	NA			
37611	LIN3 - Generator Excitation & AVR System Replacement	819,469	819,469	NA			
AVR Tota	al	\$1,703,366	\$2,545,468				
Other Ass	set Classes						
Waste Wa	ater						
41595	POT - Sternson PLC Replacement	\$596,976	\$596,976	NA			
Generato	rs						
39542	U&U Generator Protection Improvements	338,518	520,798	2012 - CI 40363 - LIN3 High voltage Bushing Refurbishment - \$500,829			
Turbines							
41054	POA - Turbine Vibration Monitoring Replacement	308,939	308,939	2011- CI 40406 - POA L0 Low Pressure Turbine Blade Replacement - \$2,989,721 2011 - CI41107 - POT U&U Turbine Control Valve Refurbishment -\$99,441 2012 - CI 41621 - POA Turbine Thrust Bearing Replacement - \$ 136,192			
Power Su	pplies						
41122	LIN 4 Battery & Charger Replacement	210,704	210,704	NA			
Chargers							
41055	POA - UPS Inverter Chargers Replacement	162,865	162,865	NA			
Other Ass	sets Classes Total	\$1,618,002	\$1,800,282				
Steam Ge Replacem	neration Plant - Equipment ent (Obsolescence) Total	\$3,321,368	\$4,345,750				
Total Gen	eration Equipment						
Replacme	ent (obsolecence)	\$3,389,095	\$4,413,476				
Concret	n Fauinmant Darla annart						
Total	m - Equipment Replacement	\$26,506,498	\$27,530,879				

Table 3.4.5.2 Steam Generation - Equipment Replacement (Obsolescence) Capital Items
3.4.6: Generation – Equipment Refurbishment

Hydro Generation: Equipment Refurbishment

Figure 3.4.6.1: Hydro Generation - Equipment Refurbishment: 2012 Spending Forecasted by Asset Class

ms
1

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital Items 2012 & +/- 2 years
Dams				
31245	HYD - St. Margaret's Bay - Sandy Lake Dam Refurbishment	\$5,579,410	\$5,579,410	NA
40282	HYD- St Margaret's Bay - Coon Pond Dam Refurbishment	2,595,361	2,595,361	NA
31204	HYD - Dickie Brook - Donahoe Lake Dam Refurbishment	1,597,494	1,597,494	NA
Dams Tot	a	\$9,772,265	\$9,772,265	
Surge Ta	nks			
41143	HYD - St Margarets Bay - Tidewater Surge Tank Refurbishment	\$1,211,641	\$1,211,641	NA
41138	HYD - Black River - Hollow Bridge Surge Tank Refurbishment	930,048	930,048	NA
Surge Ta	nks Total	\$ 2,141,689	\$2,141,689	

Nova Scotia Power Inc. 2012 Annual Capital Expenditure Plan

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital Items 2012 & +/- 2 years
Stop Log	jS			
41126	HYD Annapolis - Sluiceway and Powerhouse Stop Log Refurbishment	\$1,115,739	\$1,115,739	NA
Stop Log	s Total	\$1,115,739	\$1,115,739	
Generato	ors			
41806	HYD - Big Falls - #6 Refurbishment	\$497,566	\$497,566	NA
Generato	ors Total	\$497,566	\$497,566	
Tailraces	5			
41140	HYD Sissiboo Falls - Tailrace Concrete Refurbishment	\$314,412	\$314,412	NA
Tailraces	s Total	\$314,412	\$314,412	
Spillway	S			
41141	HYD - Sissiboo Grand Lake Spillway Refurbishment	\$181,972	\$181,972	NA
Spillway	s Total	\$181,972	\$181,972	
Hydro G Refurbis	eneration Plant - Equipment hments Total	\$14,023,644	\$14,023,644	

Steam Generation: Equipment Refurbishment

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Generato	rs			
40363	LIN3 High Voltage Bushing Refurbishment	\$433,360	\$500,829	2010 - CI39542 Generator Protection Improvements - \$458,840 2012 - CI37611 - LIN3 Generator Excitation and AVR Replacement - \$819,582
Generato	rs Total	\$433,360	\$500,829	
Boilers				
41233	LIN3 Boiler Refurbishment	\$755,711	\$755,711	2011 -CI40422 - LIN3 Boiler Refurbishment - \$738,274
41235	LIN1 Boiler Refurbishment	749,186	749,186	2011 CI 38943- LIN1 Boiler Refurbishment - \$1,658,592
41234	LIN4 Boiler Refurbishment	494,102	494,102	2011 -CI40423 - LIN4 Boiler Refurbishment - \$752,329
41057	POA - Sootblower Refurbishment	40,143	40,143	Refer to Note 1 Table 1.3
Boilers To	otal	\$2,039,141	\$2,039,141	
Pulverize	rs			
40655	LIN - Pulverizer Refurbishment	\$461,279	\$461,279	2011- CI39903 - LIN 2011 Mill Refurbishment - \$760,079
28393	POT 2A Mill and Feeder Refurbishment	287,344	449,843	2012 -CI41585 - POT Pulverizer Exhauster Lubrication - \$51,072
38163	TRE6 Pulverizer Refurbishments	311,074	311,074	2010- CI38622 - TRE6 Pulverizer Refurbishment - \$277,432
41525	TRE5 - 5-1 Pulverizer Refurbishment	170,873	170,873	NA
41585	POT - Pulverizer Exhauster Lubrication Cooling System Upgrade	51,072	51,072	2011 - CI28393 - POT 2A Mill and Feeder Refurbishment - \$424,712
Pulverize	rs Total	\$1,281,642	\$1,444,141	

Table 3.4.6.2 Steam Generation - Equipment Refurbishment Capital Items

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Cooling V	Vater (CW) Pumps			
41121	LIN - Cooling Water (CW) Pump Refurbishment	\$447,687	\$447,687	NA
41588	POA - Cooling Water (CW) Pump Refurbishment	278,820	278,820	NA
26472	TRE - 6A Cooling Water Pump Refurbishment	218,564	238,562	2011- CI 26472 - TRE 6A CW Pump Refurbishment - \$349,690
41245	TUC2 - Cooling Water (CW) Pump Refurbishment	140,001	140,001	NA
CW Pum	o Total	\$1,085,073	\$1,105,070	
Cooling V	Vater (CW) Screens			
41124	LIN-Cooling Water (CW) Screen Refurbishment	\$251,544	\$251,544	NA
39950	TRE5 - 5-2 Cooling Water (CW) Screen Refurbishment	154,308	154,308	NA
41448	POT - Screen Wash System Refurbishment	121,385	121,385	NA
41048	POA - Cooling Water (CW) Screen Refurbishment	80,061	80,061	NA
CW Scree	ens Total	\$607,298	\$607,298	

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Air Heat	ers			
41507	TRE6 - Air Heater Refurbishment	\$553,438	\$553,438	2010 – CI 38582 – TRE6 Air Heater Refurbishment - \$501,532 2014 – CI TBD – TRE6 Air Heater Refurbishment - \$TBD
Air Heat	ers Total	\$553,438	\$553,438	
Valvos				
41503	TRE6 - Steam Turbine Control Valve Refurbishment	\$359,507	\$359,507	NA
40337	POT - Replace WTP and WWTP Valves	102,091	102,091	
41082	POA-2012 Valve Refubishment Program	76,443	76,443	2011 - CI40847 - U&U POA Misc. Valve Refurbishment - \$75,169
Valves Te	otal	\$538,041	\$538,041	
Motors				
41150	LIN 4160V and 600V Motor Refurbishment	\$150,049	\$150,049	NA
40060	TRE5 - 4kV Motor Refurbishment	103,806	103,806	NA
41532	TRE6 - 4kV Motor Refurbishment	85,048	85,048	NA
41279	TUC - 4KV Motor Refurbishment	74,826	74,826	NA
41046	POA - 4KV Motor Refurbishment	53,816	53,816	NA
Motors T	otal	\$467,544	\$467,544	
Stantumo	Componente			
41079	POA - Structural Steel Refurbishment	\$405,364	\$405,364	NA
Strutural	Total	\$405,364	\$405,364	
Condense	ers			
41511	TRE6 - Condenser Waterbox and Cooling Water (CW) Piping Refurbishment	\$392,172	\$392,172	NA
Condense	ers Total	\$392,172	\$392,172	
Boiler Fe	ed Pumps (BFP)			
40032	POA - Boiler Feed Pump Refurbishment	\$220,641	\$220,641	NA
41250	TUC2- South Boiler Feed Pump (BFP) Refurbishment	153,940	153,940	NA
Boiler Fe	ed Pumps Total	\$374,581	\$374,581	

Nova Scotia Power Inc. 2012 Annual Capital Expenditure Plan

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Breakers				
41149	LIN - 4kV and 600V Breaker Refurbishment	\$116,470	\$116,470	2010 - CI36222 - TUC #2 U&U Generator Refurbishment - \$1,654,783 2011 - CI40234 - LIN 4160V and 600V Breaker Refurbishment - \$91,572
41268	TUC - 4kV and 600V Breaker Refurbishment	75,267	75,267	NA
41047	POA - 4KV & 600V Breaker Refurbishment	64,756	64,756	2012 -CI36563 - POA 4kV Breaker Refurbishment - \$37,589 2011 - CI40033 - POA 4KV Breaker Refurbishment - \$47,067
41546	TRE5 - 4kV Breaker Refurbishment	40,854	40,854	2010 - CI37645 - TRE 4kV Breakers - \$60,398
41547	TRE6 - 4kV Breaker Refurbishment	40,854	40,854	2010 - CI37645 - TRE 4kV Breakers - \$60,398
Breakers	s Total	\$338,200	\$338,200	
39940	TRE5 - Bottom Ash Refurbishment	\$205,214	\$256,034	2011 - CI22954 - TRE5 Bottom Ash/Boiler Seal Replacement - \$294,996
Stacks				
41516	TRE6 - Stack Breaching Inlet Ductwork Refurbishment	252,948	252,948	2012 - CI28697 - TRE6 Stack Lighting system upgrades - \$155,535
Cooling	(CW) Systems			
39762				
	TUC - Unit 3 CW Intake Steel Sheet Piling Refurbishment	176,007	191,984	2011 - CI39762 - TUC 3 CW Intake SSP Refurbishment - \$191,832
Fuel Har	TUC - Unit 3 CW Intake Steel Sheet Piling Refurbishment adling	176,007	191,984	2011 - CI39762 - TUC 3 CW Intake SSP Refurbishment - \$191,832
Fuel Ha r 41560	TUC - Unit 3 CW Intake Steel Sheet Piling Refurbishment ndling POT E-belt Fire Protection System Refurbishment	176,007	191,984 132,088	2011 - CI39762 - TUC 3 CW Intake SSP Refurbishment - \$191,832 NA
Fuel Har 41560 41059	TUC - Unit 3 CW Intake Steel Sheet Piling Refurbishment ndling POT E-belt Fire Protection System Refurbishment POA - Coal Chute and Reclaim Refurbishment	176,007 132,088 50,040	191,984 132,088 50,040	2011 - CI39762 - TUC 3 CW Intake SSP Refurbishment - \$191,832 NA NA
Fuel Har 41560 41059 Compres	TUC - Unit 3 CW Intake Steel Sheet Piling Refurbishment adling POT E-belt Fire Protection System Refurbishment POA - Coal Chute and Reclaim Refurbishment ssors	176,007 132,088 50,040	191,984 132,088 50,040	2011 - CI39762 - TUC 3 CW Intake SSP Refurbishment - \$191,832 NA NA
Fuel Han 41560 41059 Compres 41239	TUC - Unit 3 CW Intake Steel Sheet Piling Refurbishment ndling POT E-belt Fire Protection System Refurbishment POA - Coal Chute and Reclaim Refurbishment ssors TUC6- West Gas Compressor Refurbishment	176,007 132,088 50,040 136,399	191,984 132,088 50,040 136,399	2011 - CI39762 - TUC 3 CW Intake SSP Refurbishment - \$191,832 NA NA NA
Fuel Har 41560 41059 Compres 41239 Crusher	TUC - Unit 3 CW Intake Steel Sheet Piling Refurbishment ndling POT E-belt Fire Protection System Refurbishment POA - Coal Chute and Reclaim Refurbishment ssors TUC6- West Gas Compressor Refurbishment S	176,007 132,088 50,040 136,399	191,984 132,088 50,040 136,399	2011 - CI39762 - TUC 3 CW Intake SSP Refurbishment - \$191,832 NA NA NA

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Condensa	te Extraction Pumps			
41278	TUC2- Condensate Extraction Pump Refurbishment	93,871	93,871	NA
Exciters				
41261	TUC1- Direct Current (DC) Exciter Refurbishment	\$91,617	\$91,617	NA
Tanks				
41274	TUC3 - Water Treatment Plant Anion & Cation Tank Refurbishment	76,878	76,878	NA
Other Ass	set Classes Total	\$ 1,329,253	\$ 1,396,049	
Steam Ge Refurbish	neration Plant - Equipment ments Total	\$ 9,845,106	\$10,161,868	
Generatio Total	on - Equpment Refurbishment	\$23,868,750	\$24,185,512	

3.4.7: Generation – Equipment Upgrades

Hydro Generation: Equipment Upgrades

Table 3.4.7.1 Hydro Generation - Equipment Upgrades Capital Items

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital Items 2012 & +/- 2 years
Runners 12079	HYD - SHH - RUF 1&2 Runner Replacement	\$744,394	\$822,853	NA
16387	HYD- Ruth Falls #3 Runner Replacement	373,086	673,953	NA
17853	HYD - STM-Sandy Lake #4 Runner Replacement	248,157	428,814	NA
Runner T	otal	\$1,365,637	\$1,925,620	
Ladders &	& Climbing Equipment			
39543	HYD - U&U Ladder Upgrades	\$364,417	\$1,132,830	NA
Ladders &	& Climbing Equipment Total	\$364,417	\$1,132,830	
Hydro Eq	uipment Upgrade Total	\$1,730,054	\$3,058,450	

Steam Generation: Equipment Upgrades

Figure 3.4.7.1: Steam Generation - Equipment Upgrades: 2012 Forecasted Spending by Asset Class

Table 3.4.7.2 Steam Generation - Equipment Upgrades

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Condense	rs			
18448	TUC - Cooling Water System Biofouling Control	\$2,752,157	\$2,752,157	2011 - CI40378 - TUC Condenser Drain Improvements - \$81,190 , 2010 - CI 39606 - TUC U&U #3 Condenser Pit Refurbishment
14521	POT - Biofoulant Control System Upgrade	98,986	98,986	2010 - CI22467 - POT Condenser Waterbox Replacement - \$250,497, 2011 -CI41485 - POT U&U Condenser Refurbishment- \$535,177
Condense	r Total	\$2,851,143	\$2,851,143	
Plant Infr	astructure			
39939	TRE - Security Improvements (Phase 1)	\$144,449	\$328,372	date TBD - CI 41510 - TRE - Security Improvements (Phase 2)
41248	TUC - Lube Oil Storage Building	288,657	288,657	NA
41561	POT - Maintenance Facilities Refurbishment	258,558	258,558	NA

Nova Scotia Power Inc. 2012 Annual Capital Expenditure Plan

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
40371	LIN Training Facilities Upgrade	117,447	250,208	NA
41446	POT- Emergency response team (ERT) room upgrade	165,646	165,646	NA
41080	POA - Coal Gate Upgrade	102,912	102,912	NA
41594	POT - Lab Upgrades Phase 2	97,943	97,943	2011 -CI27116 - POT Lab Upgrades - \$53,238
41056	POA - Plant Access Upgrade	88,031	88,031	NA
41066	POA - Heated Storage Upgrade	71,275	71,275	NA
Plant Inf	rastructure Total	\$1,334,917	\$1,651,602	
Distribut	ed Control & Management System TRE6 - Human Machine Interface	(DCMS)		
28674	(HMI) Upgrade	\$867,805	\$867,805	NA
41569	POA - DCMS Upgrades	194,780	194,780	NA
DCMS T	otal	\$1,062,585	\$1,062,585	
Fire Prot	ection			
38602	TRE - Fire System Upgrades	\$176,387	\$378,104	NA
Fire Prot	ection Total	\$176,387	\$378,104	
Water Ti	reatment			
39946	TRE - Wastewater Treatment Plant Upgrades	\$176,099	\$335,013	NA
41597	POA - Inline Sodium Analyzer Replacement	40,131	40,131	NA
Water Ti	reatment Total	\$216,231	\$375,144	
Point Tu	upper Marine Terminal (PTMT)			
30283	POT - Tupper Marine Coal Terminal Vessel Access	\$129,272	\$271,231	NA
PTMT Total		\$129,272	\$271,231	

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Boilers				
41077	POA- Auxiliary Boiler Mud Drum Steam Coil Upgrade	\$100,254	\$100,254	See note 1 POA Boiler Repl End Life
30862	TRE5 - Boiler Thermoprobe Upgrade	\$74,366	\$74,366	2012 -CI41545 - TRE5 O2 Sensor Replacement - \$56,924
41533	TRE6 - Boiler Thermoprobe Upgrade	74,126	74,126	2012 - CI41303 - TRE6 Waterwall Panel Replacement - \$548,224, 2012 - CI41544 - TRE6 O2 Sensor Replacement - \$72,186
Boilers To	otal	\$248,746	\$248,746	
Other Ass	et Classes			
Turbines				
28645	TRE6 - Turbine Controls Power Supplies Replacement	\$321,691	\$321,691	NA
Ash Hand	ling			
38850	LIN-Flyash System Upgrade Hopper Level Indicators	56,003	216,322	NA
Stacks				
28697	TRE6 - Stack Lighting System Upgrade	155,535	155,535	2012 -CI41516 - TRE6 Stack Breaching inlet Ductwork - \$252,942
Generator	rs			
40207	TUC- CO2 Purge System Upgrade	139,842	151,979	2010- CI39542 - Generator Protection Improvements - \$458,840
Electrosta	tic Precipitators			
41568	POT - Electrostatic Precipitator Supervisory System Upgrade	94,848	94,848	2011 -CI40342 - POT Refurbish Unit2 Precipitator - \$35,444
Misc. Equ	ipment			
41073	POA - Plant Industrial Vaccum System	90,064	90,064	NA
Fans				
41591	POT - Induced Draft (ID) Fan Bearings Cooling System Upgrade	53,805	53,805	2011 - CI41624 - POT U&U ID Fan Structural Steel - \$79,689
Coal Crac	ekers			
41052	POA - Cracker Soft Start Installation	42,434	42,434	NA
Other Ass	et Classes Total	\$954,221	\$1,126,678	
Steam Ger Upgrades	neration Plant - Equipment Total	\$6,973,503	\$7,965,233	
Generatio	n - Equipment Upgrades Total	\$8,703,558	\$11,023,684	

3.4.8: Generation – Asset Retirements

Hydro Generation: Hydro Asset Retirements

Table 3.4.8 Hydro Asset Retirements Capital Items

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Dams				
39042	HYD - Sheet Harbour - Ten Mile Lake Dam Decommissioning	\$1,018,923	\$1,018,923	NA
17653	HYD Uniacke Lake Dam Decomissioning	119,266	119,266	NA
Dams To	tal	\$1,138,189	\$1,138,189	
Asset Ret	tirements Total	\$1,138,189	\$1,138,189	

3.4.9: Generation – Capital Spare Parts

Table 3.4.9 Generation Capital Spare Parts

CI#	Project Title	2012 Estimate	Total Estimate	Related Capital items 2012 & +/- 2 years
Generators				
41051	POA - HV Bushing Capital Spare	\$235,399	\$235,399	NA
Generators	Total	\$235,399	\$235,399	
Capital Spa	res Total	\$235,399	\$235,399	

Generation Cls 1 – 31

Generation

Hydro Cls 1 – 9

CI Number: 40282

Title:

HYD - St. Margaret's Bay - Coon Pond Dam Refurbishment

Start Date:	2012/04
Final Cost Date:	2012/12
Function:	Generation
Forecast Amount:	\$2,595,361

DESCRIPTION:

This project consists of refurbishing the Coon Pond dam and spillway to meet the Canadian Dam Safety Guidelines. The project scope includes increasing the length and stability of the spillway structure and raising the dam crest. The external Consultant Dam Safety report pertaining to this work was filed with the Board on June 30, 2010.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Health & Safety

Sub Criteria: Equipment Replacement

Why do this project?

In 2009, Nova Scotia Power completed a Flood Study and Dam Safety Review of the structures in the St. Margaret's Bay Hydro System in accordance with the Canadian Dam Association's (CDA) Dam Safety Guidelines.

The Dam Safety Review of Coon Pond concluded that there is presently insufficient freeboard to meet the minimum freeboard requirements and the spillway and dam structures do not meet the criteria for stability. At Coon Pond, the Inflow Design Flood (IDF) is the Probable Maximum Flood (PMF).

Why do this project now?

Since 1986, NSPI has carried out dam safety related work on a priority basis based on risk .The work at Coon Pond is scheduled for 2012, based on the downstream risk associated with the dam's breaching or overtopping.

Why do this project this way?

Refurbishing the dam and spillway is the only practical means of addressing the freeboard and stability deficiencies and is consistent with the previous projects of a similar nature approved by the UARB.

CI Number : 40282-H614 - HYD-S

- HYD- St. Margaret's Bay - Coon Pond Dam Refurbishment

Project Number H6

H614

2012 ACE Plan

Budget Version

Parent CI Number :

- 440-St.Margaret's Hydro System

.

Capital Item Accounts

Cost Centre : 440

	ivity
/ironme	* - HGP - Environme
ns & Sl	3 - HGP - Dams & SI
ns & Sp	3 - HGP - Dams & Sp
ns & Sp	3 - HGP - Dams & Sp
ns & Sp	3 - HGP - Dams & Sp
	5 Design
	5 Design
	5 Design
& Ops.	Field Super.& Ops.

_OCa P#: itle:	tion: Hydro 40282 HYD - St. Margaret's Bay - Coon Pond [Dam Refurbishme	ent			ova Scotia POWER er n Emera Company er	nergy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1		001 Regula	Labour				
1.1	Hydro Regular Labour	lot	1	20,700	20,700		
1.2	Environmental Services	lot	1	2,000	2,000		
1.3				Sub-Total	- 22 700		
				Oub Total	22,700		
2		012 Mate	erials				-
2.1							
2.2							
2.4							
				Sub-Total			
3	01;	3 Power Produc	tion Contrac	ts			
3.1	Construction Costs	lot	1			Cost Support Item #1	
3.2	Contingency	%		1			
5.5	I		I	Sub-Total	-		
							-
4		002 Overtim	e Labour	0E 000	0E 000		1
4.1 4.2		IOT		25,000	25,000		+
4.3							
				Sub-Total	25,000		
5		004 Term	abour				
5.1	Term Labour	lot	1				
5.2							
5.3				Sub-Total			
				oub rotai			
6		011 Travel E	xpenses				
6.1 6.2	Travel Expenses	lot	1	29,300	29,300		
6.3							
				Sub-Total	29,300		
7		028 Cana				1	
		028 CONS	ulting			Cost Support Item #2	
7.1	Preliminary Engineering	lot	1	-		(Page 6)	
72	Datailed Design	lot	1				17830 - STM Big Indian
7.3	Environmental Consulting	lot	1	-			Dain Salety
				Sub-Total			
						1	
8 1	Meals and Entertainment	Id Meals and E	ntertainment	7 000	7 000		
8.2	modelo and Entondaminoni	lot		1,000	1,000		
8.3				Cub T-t-1	7 000		
				Sub-10tal	7,000	L	1
9	06	6- Other Goods	and Service	s			
9 9.1	Other Goods and Services	6- Other Goods	and Service	s 1,000	1,000		
9.1 9.2 9.3	Other Goods and Services	6- Other Goods	and Service	s 1,000	1,000		
9 9.1 9.2 9.3	Other Goods and Services	i6- Other Goods	and Service	s 1,000 Sub-Total	1,000		
9 9.1 9.2 9.3	Other Goods and Services	lot	and Service	s 1,000 Sub-Total	1,000		
9 9.1 9.2 9.3 9	Other Goods and Services	094 Interest C	and Service	s 1,000 Sub-Total	1,000		
9 9.1 9.2 9.3 9 9.1 9.2	Other Goods and Services	094 Interest C	and Service	s 1,000	1,000 1,000 43,803		
9 9.1 9.2 9.3 9 9 9.1 9.2 9.3	Other Goods and Services	094 Interest C	and Service	s 1,000 Sub-Total	1,000 1,000 43,803 -		
9 9.1 9.2 9.3 9 9.1 9.2 9.3	Other Goods and Services	094 Interest C	and Service	s 1,000 Sub-Total	1,000 1,000 43,803 - - 43,803		
9 9.1 9.2 9.3 9 9.1 9.2 9.3 10	Other Goods and Services	66- Other Goods	and Service	s 1,000 Sub-Total	1,000 1,000 43,803 - 43,803		
9 9.1 9.2 9.3 9.1 9.2 9.3 9.3 10 10.1	Other Goods and Services	66- Other Goods	and Service 1 apitalized ve Overhead	s 1,000 Sub-Total	1,000 1,000 43,803 - - 43,803 4,193		
9 9.1 9.2 9.3 9.1 9.2 9.3 10.1 10.1 10.2 10.2	Other Goods and Services Other Goods and Services Interest Interest Other Regular Labour AO Hydro OT Labour AO Hydro OT Labour AO	66- Other Goods	and Service 1 apitalized ve Overhead	s 1,000 Sub-Total	1,000 1,000 43,803 - - - 43,803 4,193 2,309		
9 9.1 9.2 9.3 9.1 9.2 9.3 9.1 9.2 9.3 10.1 10.1 10.2 10.3 10.4	Other Goods and Services Other Goods and Services Interest Interest Hydro Regular Labour AO Hydro OT Labour AO Hydro Term Labour AO Thermal & Hydro Contracts AO	66- Other Goods	and Service	s 1,000 Sub-Total Sub-Total	1,000 1,000 43,803 - - 43,803 4,193 2,309		
9 9.1 9.2 9.3 9.1 9.2 9.3 10.1 10.2 10.3 10.4	Other Goods and Services Other Goods and Services Interest Interest Hydro Regular Labour AO Hydro OT Labour AO Hydro Term Labour AO Thermal & Hydro Contracts AO	66- Other Goods	and Service	s 1,000 Sub-Total Sub-Total Sub-Total Sub-Total	1,000 1,000 43,803 - - 43,803 4,193 2,309 118,992		
9 9.1 9.2 9.3 9.1 9.2 9.3 10.1 10.2 10.3 10.4 Projec	Other Goods and Services Other Goods and Services Interest Interest Hydro Regular Labour AO Hydro OT Labour AO Hydro OT Labour AO Thermal & Hydro Contracts AO ct Cost Estimate	6- Other Goods	and Service 1 sapitalized ve Overhead	s 1,000 Sub-Total Sub-Total Sub-Total Sub-Total Total	1,000 1,000 43,803 - - 43,803 4,193 2,309 118,992 2,595,362		
9 9.1 9.2 9.3 9.1 9.2 9.3 10.1 10.2 10.3 10.4 Project	Other Goods and Services Other Goods and Services Interest Interest Hydro Regular Labour AO Hydro OT Labour AO Hydro OT Labour AO Thermal & Hydro Contracts AO ct Cost Estimate Original Cost	i6- Other Goods	and Service	s 1,000 Sub-Total Sub-Total Sub-Total Sub-Total Total	1,000 1,000 43,803 - - 43,803 4,193 2,309 118,992 2,595,362		
9 9.1 9.2 9.3 9.1 9.2 9.3 10.2 10.2 10.3 10.4 10 .4 Projec 11 11.1	Other Goods and Services Other Goods and Services Interest Interest Hydro Regular Labour AO Hydro OT Labour AO Hydro OT Labour AO Thermal & Hydro Contracts AO ct Cost Estimate Original Cost	i6- Other Goods	and Service 1 sapitalized ve Overhead	s 1,000 Sub-Total Sub-Total Sub-Total Sub-Total Total	1,000 1,000 43,803 - - 43,803 4,193 2,309 118,992 2,595,362 \$193,684		

18-Oct-11

40282

H614

Disc Pay

25.3 years

0.0 years

0.0 years

0.0 years

IRR

6.87%

#NUM!

#NUM!

#NUM!

Recommendation :
Based on positive NPV, it is recommended that the Coon Pond Dam be refurbished
Notes/Comments -
Coop Dond Dam Defurbishment
Capital cost for dam refurbishment = \$2,595,361 and avoided Capital Cost to Decommission Dam = \$1,000,000
2012 Operating costs = \$35,000
zors operating costs = \$33,700
Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.
Calculations:
Total annual avoided cost = [Replacement energy costs] - [Annual operating costs]
Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x
[Estimated annual lost generation]
Avoided replacement energy cost $(2012) = 1 \times 1$ (1 outside) x = \$166,250
[0,1] = [0,1
Avoided replacement energy cost (2013) = x [1 outage] x [1 outage] = \$166,250
Total avoided cost (2013)= [\$166,250] - [\$35,700] = \$ 130,550

Devenio	Onorating Coefe	IntideO			CELT	Annicable Tayoe	JEAT	Discount Eactor		
venue	Uperating Costs	Capital	۲CLA	nuc	2	Applicable Laxes	CLAI	DISCOUNT FACTOR		CNPV
•	131,250.0	(1,595,362.0)	47,860.9	1,547,501.1	(1,464,112.0)	(29,629.0)	(1,493,741.0)	1.000	(1,493,741.0)	(1,493,741.0)
-	130,550.0	•	92,850.1	1,454,651.1	130,550.0	(12,988.9)	117,561.1	0.937	110,210.1	(1,383,530.9)
	133,161.0		87,279.1	1,367,372.0	133,161.0	(14,459.3)	118,701.7	628.0	104,321.2	(1,279,209.7)
•	135,824.2		82,042.3	1,285,329.7	135,824.2	(16,672.4)	119,151.8	0.824	98,168.9	(1,181,040.9)
•	138,540.7		77,119.8	1,208,209.9	138,540.7	(19,248.9)	119,291.8	0.772	92,138.6	(1,088,902.3)
	141,311.5	•	72,492.6	1,135,717.3	141,311.5	(21,333.9)	119,977.7	0.724	86,873.8	(1,002,028.5)
	144,137.7		68,143.0	1,067,574.3	144,137.7	(23,558.4)	120,579.4	0.679	81,850.1	(920,178.4)
•	147,020.5		64,054.5	1,003,519.8	147,020.5	(25,719.5)	121,301.0	0.636	77,191.3	(842,987.1)
•	149,960.9		60,211.2	943,308.6	149,960.9	(27,822.4)	122,138.5	0.597	72,864.2	(770,122.8)
	152,960.1	•	56,598.5	886,710.1	152,960.1	(29,872.1)	123,088.0	0.559	68,839.1	(701,283.8)
•	156,019.3		53,202.6	833,507.5	156,019.3	(31,873.2)	124,146.1	0.524	65,089.4	(636,194.3)
•	159,139.7	•	50,010.5	783,497.1	159,139.7	(33,830.1)	125,309.6	0.492	61,591.3	(574,603.1)
•	162,322.5		47,009.8	736,487.2	162,322.5	(35,746.9)	126,575.6	0.461	58,323.3	(516,279.7)
•	165,569.0	•	44,189.2	692,298.0	165,569.0	(37,627.7)	127,941.2	0.432	55,266.3	(461,013.4)
•	168,880.3		41,537.9	650,760.1	168,880.3	(39,476.2)	129,404.2	0.405	52,403.0	(408,610.4)
•	172,258.0		39,045.6	611,714.5	172,258.0	(41,295.8)	130,962.1	0.380	49,717.7	(358,892.6)
•	175,703.1	•	36,702.9	575,011.6	175,703.1	(43,090.1)	132,613.0	0.356	47,196.5	(311,696.2)
•	179,217.2	•	34,500.7	540,510.9	179,217.2	(44,862.1)	134,355.1	0.334	44,826.5	(266,869.7)
•	182,801.5	•	32,430.7	508,080.3	182,801.5	(46,615.0)	136,186.6	0.313	42,596.4	(224,273.3)
•	186,457.5		30,484.8	477,595.5	186,457.5	(48,351.5)	138,106.0	0.293	40,495.7	(183,777.5)
•	190,186.7		28,655.7	448,939.7	190,186.7	(50,074.6)	140,112.1	0.275	38,515.0	(145,262.6)
•	193,990.4	•	26,936.4	422,003.4	193,990.4	(51,786.8)	142,203.7	0.258	36,645.7	(108,616.9)
•	197,870.2	•	25,320.2	396,683.2	197,870.2	(53,490.5)	144,379.7	0.242	34,879.9	(73,737.0)
	201,827.6	•	23,801.0	372,882.2	201,827.6	(55,188.3)	146,639.4	0.226	33,210.7	(40,526.3)
	205,864.2	•	22,372.9	350,509.2	205,864.2	(56,882.3)	148,981.9	0.212	31,631.4	(8,894.9)
•	209,981.5		21,030.6	329,478.7	209,981.5	(58,574.8)	151,406.7	0.199	30,136.1	21,241.3
•	•	•	19,768.7	309,710.0	•	6,128.3	6,128.3	0.187	1,143.5	22,384.8
•			18,582.6	291,127.4	•	5,760.6	5,760.6	0.175	1,007.7	23,392.5
•			17,467.6	273,659.7	•	5,415.0	5,415.0	0.164	888.0	24,280.5
	•	•	16,419.6	257,240.1	•	5,090.1	5,090.1	0.154	782.5	25,063.0
	•	•	15,434.4	241,805.7	-	4,784.7	4,784.7	0.144	689.6	25,752.6
•	•	•	14,508.3	227,297.4	-	4,497.6	4,497.6	0.135	607.7	26,360.2
•		•	13,637.8	213,659.5		4,227.7	4,227.7	0.127	535.5	26,895.7
	•	•	12,819.6	200,840.0	•	3,974.1	3,974.1	0.119	471.9	27,367.6
	•	•	12,050.4	188,789.6	-	3,735.6	3,735.6	0.111	415.8	27,783.5
	•		11,327.4	177,462.2	-	3,511.5	3,511.5	0.104	366.4	28,149.9
		•	10,647.7	166,814.5		3,300.8	3,300.8	860'0	322.9	28,472.8
	•	•	10,008.9	156,805.6	•	3,102.7	3,102.7	0.092	284.6	28,757.4
			9,408.3	147,397.3	•	2,916.6	2,916.6	0.086	250.8	29,008.2
•			8,843.8	138,553.4	•	2,741.6	2,741.6	0.081	221.0	29,229.1
•			8,313.2	130,240.2	•	3,169.0	3,169.0	0.076	239.5	29,468.6
	4.312.805.6	(1.595.362.0)	1,465,121.8	23,751,255.6	2.717.443.6	(887,714.7)	1,829,729.0	14.9	29.468.6	(14,558,665.3)

Coon Pond Dam Refurbishment

CI Number: 31204

Title:

HYD – Dickie Brook - Donahoe Lake Dam Refurbishment

Start Date:	2012/04
Final Cost Date:	2012/10
Function:	Generation
Forecast Amount:	\$1,597,494

DESCRIPTION:

This project consists of refurbishing the Donahoe Lake dam and spillway to meet the Canadian Dam Safety Guidelines. The project scope includes increasing the length and stability of the spillway and refurbishment of the dam. The Dam Safety report pertaining to this work was filed with the Board in 2007.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Hydro

Sub Criteria: Maintenance

Why do this project?

In 2009, Nova Scotia Power completed a Flood Study in accordance with the Canadian Dam Association's (CDA) Dam Safety Guidelines that evaluated the required spillway capacity for the structures on the Dickie Brook Hydro System. In 2006, Nova Scotia Power completed a Dam Safety Review of the structures in the Dickie Brook Hydro System in accordance with the Canadian Dam Association's (CDA) Dam Safety Guidelines.

The Flood Study and Dam Safety Review of Donahoe Lake concluded that there is presently insufficient freeboard to meet the minimum freeboard requirements and the spillway and dam structures do not meet the criteria for stability. At Donahoe Lake, the Inflow Design Flood (IDF) is the Probable Maximum Flood (PMF).

Why do this project now?

Since 1986, NSPI has carried out dam safety related work on a priority basis based on risk. The work at Donahoe Lake is scheduled for 2012 based on the downstream risk associated with the dam breaching or overtopping.

Why do this project this way?

Refurbishing the dam and spillway is the only practical means of addressing the freeboard and stability deficiencies.

CI Number : 31204-H564

- HYD - Dickie Brook - Donahoe Lake Dam Refurbishment

Project Number H564

er H564

2012 ACE Plan

Budget Version

Parent CI Number :

407-Dickie Brook Hydro

•

Capital Item Accounts

Cost Centre : 407

Cap						
	V dot		A 2461 (144)	Forecast	Amora	Moriosoo
ACCI	ACIV	Account	ACIIVILY	Amount	AITIOUIIL	valiatice
094		094 - Interest Capitalized		18,925	0	18,925
095		095-Hydro Overtime Labour AO		2,771	0	2,771
095		095-Hydro Regular Labour AO		3,026	0	3,026
095		095-Thermal & Hydro Contracts AO			0	
095		095-Hydro Term Labour AO			0	
011	200	011 - Travel Expense	007 - HGP - Environmental	749	0	749
028	200	028 - Consulting	007 - HGP - Environmental		0	
001	028	001 - HYDRO Regular Labour	028 - HGP - Dams & Spillways	16,386	0	16,386
013	028	013 - POWER PRODUCTION Contract:	s 028 - HGP - Dams & Spillways		0	
011	085	011 - Travel Expense	085 Design	1,200	0	1,200
002	087	002 - HYDRO Overtime Labour	087 Field Super.& Ops.	30,000	0	30,000
004	087	004 - HYDRO Term Labour	087 Field Super.& Ops.		0	
011	087	011 - Travel Expense	087 Field Super.& Ops.	24,000	0	24,000
041	087	041 - Meals & Entertainment	087 Field Super.& Ops.	6,000	0	6,000
066	087	066 - Other Goods & Services	087 Field Super.& Ops.	600	0	600
			Total Cost:	1,597,494	0	1,597,494
			Original Cost:	153,656		

)#: tle:	31204 HYD - Dickie Brook - Donahoe Lake D	am Refurbishment				POWER An Emera Company	energy everywhere
em	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Not 1
1	 [001 Regular	r Labour				
I.1	Hydro Reg Labour	lot	1	13,000	13,000		
.2	Environmental Services	lot	1	3,386	3,386		
.3				Sub-Total	16,386		
2		012 Mate	ariale				
2.1		012 Mate	1013				
2.2							
2.3							
			•	Sub-Total			
3		013 Power Produc	tion Contrac	ts			
3.1	Construction	lot %	1			Cost Support Item #1	
3.2 3.3	Contingency	/6					
				Sub-Total			
4		002 Overtime	e Labour				
1.1	Site Supervision	lot	1	30,000	30,000		17830
1.3							
				Sub-Total	30,000		
5		004 Term I	Labour				
5.1	Site Supervision	lot	1				17830
5.2 5.3							
	•	•		Sub-Total			
6		011 Travel E	xpenses				
6.1		lot	1	25,949	25,949		
5.2 5.3							
	•			Sub-Total	25,949		
7		028 Cons	ulting				
7.1	Detailed Design	lot %	1			Cost Support Item #2	
.2 7.3	Wetland Assessment	lot	1			Cost Support Item #3	
Sub-Total							
8		041 Meals and E	ntertainment				
3.1 2.2		lot	1	6,000	6,000		
3.3							
				Sub-Total	6,000		
9		066- Other Goods	and Service	s			-
9.1 9.2					600		-
9.3							
				Sub-Total	600		
9		094 Interest C	apitalized				
).1).2					18,925		
9.3					-		
				Sub-Total	18,925		
10		095 Administrati	ive Overhead				•
0.1 0.2	Hydro Regular Labour AO Hydro OT Labour AO				3,026		
0.3	Hydro Term Labour AO				_,		
0.4	Thermal & Hydro Contracts AO						
	memai Ney. Laboul AO	I	I	Sub-Total	72,812		
ojec	t Cost Estimate			Total	\$1,597,493		
							1
1	Original Cost						

REDACTED 2012 ACE CI 32104 Attachment 3 Page 1 of 3

Donahoe Lake Dam Refurbishment Summary of Alternatives

energy everywhere. Summary

Budget Year :	2012	Date :	28-Oct-11
Division :	Power Production	CI Number:	31204
Department :	Hydro Production	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Donahoe Lake Dam Refurbishment	6.67%	2,169,765	1	19.98%	7.5 years
	0	6.67%	NA	NA	#NUM!	0.0 years
	0	6.67%	NA	NA	#NUM!	0.0 years
	0	6.67%	NA	NA	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the Donahoe Lake Dam and Spillway be Refurbished

Notes/Comments :
Donahoe Lake Dam Refurbishment
Assumptions and Inputs:
Capital cost for dam refurbishment = \$1,597,493
2012 Operating costs = \$100,000
2013 Operating costs = \$102,000
Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.
Calculations:
i otal annual avoided cost = [Replacement energy costs] - [Annual operating costs]
Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x
[Estimated annual lost generation]
Avoided replacement energy cost (2012) = [MWM] x [1 outage] x MWh] = \$434,625
Total avoided cost (2012) = [\$434,625] - [\$100,000] = \$ 334,625
Avoided replacement energy cost (2013) = [MWM] x [1 outage] x MWh] = \$434,625
Total avoided cost (2013)= [\$434,625]- [\$102,000] = \$332,625

Donahoe La	Total Bayania	Decreting Control	Canital		J	CEDT	Anninchio Tovoc	CEAT	Discount Footor		
2040				1005	1 540 500	(1 20 20)	Applicable lakes	14 264 6241			
2102	•	334,020	(1,597,495)	41,925	1,549,568	(1,202,808)	(98,756)	(1,301,024)	-	(1,301,024)	(1,301,024)
2013	•	332,625	•	92,974	1,456,594	332,625	(78,624)	254,001	1	238,119	(1,123,506)
2014	•	339,278		87,396	1,369,198	339,278	(78,320)	260,958	1	229,343	(894,163)
2015	•	346,063	•	82,152	1,287,047	346,063	(81,812)	264,251	1	217,715	(676,447)
2016	•	352,984		77,223	1,209,824	352,984	(85,695)	267,290	1	206,449	(469,998)
2017	•	360,044	•	72,589	1,137,234	360,044	(89,111)	270,933	•	196,178	(273,820)
2018	•	367,245	•	68,234	1,069,000	367,245	(92,693)	274,552	-	186,367	(87,453)
2019	•	374,590	•	64,140	1,004,860	374,590	(96,239)	278,350	-	177,131	89,679
2020	•	382,082	•	60,292	944,569	382,082	(99,755)	282,327	-	168,428	258,106
2021	•	389,723		56,674	887,895	389,723	(103,245)	286,478	1	160,218	418,324
2022	•	397,518		53,274	834,621	397,518	(106,716)	290,802	1	152,467	570,791
2023	•	405,468	•	50,077	784,544	405,468	(110,171)	295,297	0	145,142	715,933
2024	•	413,577	•	47,073	737,471	413,577	(113,616)	299,961	0	138,216	854,148
2025	•	421,849	•	44,248	693,223	421,849	(117,056)	304,793	0	131,660	985,809
2026		430,286	•	41,593	651,629	430,286	(120,495)	309,791	0	125,452	1,111,261
2027		438,892	•	39,098	612,532	438,892	(123,936)	314,956	0	119,568	1,230,829
2028		447,669	•	36,752	575,780	447,669	(127,384)	320,285	0	113,988	1,344,817
2029	•	456,623	•	34,547	541,233	456,623	(130,844)	325,779	0	108,694	1,453,510
2030	•	465,755	•	32,474	508,759	465,755	(134,317)	331,438	0	103,667	1,557,178
2031	•	475,070	•	30,526	478,233	475,070	(137,809)	337,261	0	98,892	1,656,070
2032	•	484,572	•	28,694	449,539	484,572	(141,322)	343,250	0	94,355	1,750,425
2033	•	494,263		26,972	422,567	494,263	(144,860)	349,403	0	90,041	1,840,466
2034	•	504,149	•	25,354	397,213	504,149	(148,426)	355,722	0	85,937	1,926,403
2035	•	514,231	•	23,833	373,380	514,231	(152,024)	362,208	0	82,032	2,008,435
2036	•	524,516	•	22,403	350,977	524,516	(155,655)	368,861	0	78,315	2,086,750
2037	•	535,006	•	21,059	329,919	535,006	(159,324)	375,683	0	74,776	2,161,527
2038	•		•	19,795	310,124	•	6,136	6,136	0	1,145	2,162,672
2039	•	•		18,607	291,516	•	5,768	5,768	0	1,009	2,163,681
2040	•	•		17,491	274,025	•	5,422	5,422	0	889	2,164,570
2041	•	•	•	16,442	257,584	•	5,097	5,097	0	784	2,165,354
2042	•	•	•	15,455	242,129	•	4,791	4,791	0	690	2,166,044
2043	•	•	•	14,528	227,601	•	4,504	4,504	0	608	2,166,652
2044	•	•	•	13,656	213,945	•	4,233	4,233	0	536	2,167,189
2045	•	•	•	12,837	201,108	•	3,979	3,979	0	473	2,167,661
2046	•	•	•	12,066	189,042	•	3,741	3,741	0	416	2,168,078
2047	•	•	•	11,343	177,699	•	3,516	3,516	0	367	2,168,445
2048	•	•	•	10,662	167,037	•	3,305	3,305	0	323	2,168,768
2049	•	•	•	10,022	157,015	•	3,107	3,107	0	285	2,169,053
2050	•	•	•	9,421	147,594	•	2,920	2,920	0	251	2,169,304
2051	•	•	•	8,856	138,738	•	2,745	2,745	0	221	2,169,525
2052	•	•		8,324	130,414	•	3,173	3,173	0	240	2,169,765
Fotal		10,988,703	(1,597,493)	1,467,079	23,782,981	9,391,210	(2,965,767)	6,425,443	15	2,169,765	51,640,207

Donahoe Lake Dam Refurbishment

CI Number: 41143

Title:

HYD - St. Margaret's Bay - Tidewater Surge Tank Refurbishment

Start Date:	2012/05
Final Cost Date:	2012/09
Function:	Generation
Forecast Amount:	\$1,211,641

DESCRIPTION:

The refurbishment of the Tidewater Surge Tank consists of concrete foundation repairs, sandblasting and painting the interior and exterior of the surge tank, replacing the ladders and vertical lifeline systems, miscellaneous steel repairs, and installation of a new fiberglass bubbler building designed to prevent freezing in the vertical piping connected to the surge tank.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Hydro

Sub Criteria: Maintenance

Why do this project?

These refurbishments are required in order to maintain the structural integrity of the tank and its foundations and ensure the strength and stability of the tank is not compromised. The existing foundations have started to show signs of degradation and must be refurbished to mitigate the risk of stability issues with the tank. The ladder and vertical lifeline system do not meet current Occupational Health and Safety Code requirements and must be replaced.

Why do this project now?

Completing this project now will ensure the structural integrity and stability of the tank is not compromised and provide climbing devices designed to current Codes and standards. Completing the refurbishment now will avoid more costly future repairs or replacement.

Why do this project now?

Recent inspections have identified significant areas of corrosion. Foundation and steel refurbishment are required to preserve the structural integrity of the structure.

Why do this project this way?

Refurbishment is a feasible and cost effective solution compared to replacing the surge tank and its foundations.

CI Number : 41143

2012 ACE Plan

Budget Version

 440-St.Margaret's Hydro System Cost Centre : 440

.

Capit	tal Item A	Accounts					
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
094		094 - Interest Capitalized			12,001	0	12,001
095		095-Thermal & Hydro Contracts AO				0	
095		095-Hydro Term Labour AO				0	
004	027	004 - HYDRO Term Labour	027 - HGP - Waterways			0	
011	027	011 - Travel Expense	027 - HGP - Waterways		4,140	0	4,140
012	027	012 - Materials	027 - HGP - Waterways		0	0	0
013	027	013 - POWER PRODUCTION Contra	ts 027 - HGP - Waterways			0	
028	027	028 - Consulting	027 - HGP - Waterways		1,000	0	1,000
041	027	041 - Meals & Entertainment	027 - HGP - Waterways		5,180	0	5,180
				Total Cost:	1,211,641	0	1,211,641
				Original Cost:	100,648		

Loca FP#: Title:	tion: Hydro 41143 HYD - St. Margaret's Bay - Tidewater Surge ⁻	Tank Refurb	bishment			An Emera Company	energy everywhere."
Item	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
4			Labour				
1.1		hr	Labour				
1.2		hr					
1.3		hr		Sub-Total			
2		012 Mate	erials	T			
2.1							
2.3							
2.4				Sub-Total			
				ous rolar			
3	013 Pov	wer Produc	tion Contrac	ts		0	
3.1	Painting of the Surge Tank	lot				Cost Support Item #1 - 2011 Pricing for Item 1-4 and 5	
3.2	Pricing escalation and contingency	%					
3.3							
	I	I	I	Sub-Total			
		0.0	. l. e. h. e				
4 4 1	0	02 Overtim	e Labour				
4.2							
4.3							
				Sub-Total			
5		004 Term	Labour			Ī	
5.1	On-site construction supervisor	lot	1				
5.2 5.3							
				Sub-Total			
6	0	11 Travel F	vnonsos			ľ	
6.1		lot	1	4,140	4,140		
6.2							
6.3				Sub-Total	4,140		
					.,		4
7		028 Cons	ulting	1			
7.1	Dept. of Environment site investigation for blasting/painting	lot	1	1.000	1.000		
7.2				.,	.,		
7.3				Sub Total	1 000		
				Sub-Total	1,000		
8	041 M	leals and E	ntertainment	t			-
8.1	Meals and Entertainment		1	5,180	5,180		
o.∠ 8.3				+			+
	•			Sub-Total	5,180		
9	00/	1 Interest C	anitalized			r	
9.1	Interest	T INTEREST C	apitalizeu		12,001		
9.2					-		
9.3		1		Sub-Total	- 12 001		
<u> </u>				000-10101	12,001	_	1
10	095 A	dministrati	ve Overhead				
10.1 10.2	Hydro Regular Labour AO Hydro OT Labour AO				-		
10.3	Hydro Term Labour AO						
10.4	Thermal & Hydro Contracts AO			0.1.7.1	=0.1		
Proiec	t Cost Estimate			Sub-Total Total	59,408 \$1.211 641		1
,					+ .,=,0+1		
11	Original Cost				A		
11.1 Note 1	Beference to "Completed similar projects (EF	P#'s)" is to b	e provided w	hen the item estima	\$100,468 te is based on work	of similar scope for a recently con	npleted project
						s. s. mar scope for a recently con	npiotod projoot

Tidewater Surge Tank Refurbishment Summary of Alternatives

energy everywhere."

Budget Year :	2012	Date :	18-Oct-11
Division :	Power Production	CI Number:	41143
Department :	Hydro Production	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Tidewater Surge Tank Refurbishment	6.67%	414,113	1	7.31%	23.4 years
	0	6.67%	NA	NA	#NUM!	0.0 years
	0	6.67%	NA	NA	#NUM!	0.0 years
	0	6.67%	NA	NA	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the surge tank be refurbished

Notes/Comments :

Tidewater Surge Tank Refurbishment
Assumptions and Inputs:
Conital cost for surge tents refurbishment - \$1,211,611
Capital cost for surge tank returbisment = $\frac{1}{2}$ ($\frac{1}{2}$ ($\frac{1}{2}$) (
Additional 2012 system capital costs: 7,500,000 for Pipeline replacement (CI 12419)
Estimated avoided capital decommissioning costs = \$2,000,000
2012 Operating costs = \$60,000
2013 Operating costs = \$61,200
Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually. Calculations:
Total annual avoided cost = [Replacement energy costs] - [Annual operating costs]
Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [Estimated annual lost generation]
Avoided replacement energy cost (2012) = x [1 outage] x [1 outage] = \$546,250 Total avoided cost (2012) = [546,250] - [\$60,000] = \$486,250
Avoided replacement energy cost (2013) = x [1 outage] x [1 outage] = \$546,250 Total avoided cost (2013)= [\$546,250] - [\$61,200] = \$485,050

Tidewater Si Tidewater St	urge Tank Refurt <u>urge</u> Tank Refurb	oishment vishment									
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012	•	486,250	(6,916,065)	207,482	6,708,583	(6,429,815)	(100,316)	(6,530,131)	1	(6,530,131)	(6,530,131)
2013	•	485,050		402,515	6,306,068	485,050	(30,016)	455,034	1	426,581	(6,103,550)
2014	•	620,262	•	378,364	5,927,704	620,262	(76,011)	544,251	1	478,316	(5,625,234)
2015	•	632,667	•	355,662	5,572,042	632,667	(85,872)	546,796	1	450,504	(5,174,731)
2016	•	645,321	•	334,323	5,237,719	645,321	(97,313)	548,008	1	423,270	(4,751,461)
2017		658,227	•	314,263	4,923,456	658,227	(106,629)	551,598	1	399,403	(4,352,058)
2018	•	671,392		295,407	4,628,049	671,392	(116,555)	554,836	1	376,627	(3,975,431)
2019	•	684,819		277,683	4,350,366	684,819	(126,212)	558,607	1	355,476	(3,619,955)
2020	•	698,516		261,022	4,089,344	698,516	(135,623)	562,893	1	335,805	(3,284,150)
2021	.	712,486	•	245,361	3,843,983	712,486	(144,809)	567,677	1	317,483	(2,966,666)
2022	•	726,736		230,639	3,613,344	726,736	(153,790)	572,946	1	300,394	(2,666,273)
2023	•	741,271		216,801	3,396,544	741,271	(162,586)	578,685	0	284,431	(2,381,842)
2024	.	756,096	•	203,793	3,192,751	756,096	(171,214)	584,882	0	269,501	(2,112,341)
2025	•	771,218	•	191,565	3,001,186	771,218	(179,692)	591,525	0	255,519	(1,856,822)
2026	•	786,642	•	180,071	2,821,115	786,642	(188,037)	598,605	0	242,409	(1,614,413)
2027	•	802,375	•	169,267	2,651,848	802,375	(196,264)	606,112	0	230,101	(1,384,312)
2028	•	818,423	•	159,111	2,492,737	818,423	(204,387)	614,036	0	218,533	(1,165,779)
2029	•	834,791	•	149,564	2,343,173	834,791	(212,420)	622,371	0	207,649	(958,130)
2030	•	851,487	•	140,590	2,202,582	851,487	(220,378)	631,109	0	197,398	(760,732)
2031	.	868,517	•	132,155	2,070,427	868,517	(228,272)	640,244	0	187,734	(572,998)
2032	•	885,887		124,226	1,946,202	885,887	(236,115)	649,772	0	178,614	(394,384)
2033	•	903,605		116,772	1,829,430	903,605	(243,918)	659,687	0	170,000	(224,384)
2034	•	921,677		109,766	1,719,664	921,677	(251,692)	669,984	0	161,858	(62,526)
2035	.	940,110	•	103,180	1,616,484	940,110	(259,448)	680,662	0	154,155	91,629
2036	•	958,912		96,989	1,519,495	958,912	(267,196)	691,716	0	146,863	238,492
2037	.	978,091	•	91,170	1,428,325	978,091	(274,946)	703,145	0	139,955	378,447
2038	•	•		85,700	1,342,626	•	26,567	26,567	0	4,957	383,404
2039	•	•	•	80,558	1,262,068	•	24,973	24,973	0	4,368	387,773
2040	•	•	•	75,724	1,186,344		23,474	23,474	0	3,850	391,622
2041	•	•	•	71,181	1,115,164	-	22,066	22,066	0	3,392	395,015
2042	•	•	•	66,910	1,048,254	-	20,742	20,742	0	2,989	398,004
2043	•	•	•	62,895	985,358	-	19,498	19,498	0	2,634	400,638
2044	•	•	•	59,122	926,237	-	18,328	18,328	0	2,321	402,960
2045	•	•	•	55,574	870,663		17,228	17,228	0	2,046	405,006
2046	•	•	•	52,240	818,423	-	16,194	16,194	0	1,803	406,808
2047		•	•	49,105	769,318		15,223	15,223	0	1,589	408,397
2048	•	•	•	46,159	723,159		14,309	14,309	0	1,400	409,797
2049	•	•	•	43,390	679,769		13,451	13,451	0	1,234	411,030
2050	•	•	•	40,786	638,983	-	12,644	12,644	0	1,087	412,117
2051				38,339	600,644	•	11,885	11,885	0	958	413,075
2052	•	•		36,039	564,605	-	13,738	13,738	0	1,038	414,113
Total	•	19,840,825	(6,916,065)	6,351,460	102,964,235	12,924,760	(4,199,392)	8,725,369	15	414,113	(55,789,971)

CI Number: 39042

Title:

HYD – Sheet Harbour - Ten Mile Lake Dam Decommissioning

Start Date:	2012/04
Final Cost Date:	2012/10
Function:	Generation
Forecast Amount:	\$1,018,923

DESCRIPTION:

This project includes removing the dams and spillway at Ten Mile Lake. The existing dams no longer meet the Canadian Dam Association Safety guidelines and it is more economical to decommission the dams than to refurbish them.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Hydro

Why do this project?

The dams and spillways no longer meet the Canadian Dam Safety guidelines for freeboard and stability. The completed economic analysis supports removal of the structures over refurbishing them based on minimal energy production loss while maintaining installed generation capacity.

Why do this project now?

The options for these structures in 2012 include refurbishment and removal. Completing the decommissioning and removal in 2012 will mitigate the risk of these structures becoming a future liability.

Why do this project this way?

Decommissioning and removal of these structures is the most practical and cost effective option.

CI Number : 39042-H579

- HYD - Sheet harbour - Ten Mile Lake Dam Decommissioning

Project Number H579

2012 ACE Plan

Budget Version

ecommissioning

Parent CI Number :

.

Cost Centre : 450 - 450-Sheet Harbour Hydro System

Canital Itam Accounts

Capi	tal Item /	Accounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
095		095-Thermal & Hydro Contracts AO			0	
095		095-Hydro Regular Labour AO			0	
011	007	011 - Travel Expense	007 - HGP - Environmental		0	
041	007	041 - Meals & Entertainment	007 - HGP - Environmental	3,220	0	3,220
066	007	066 - Other Goods & Services	007 - HGP - Environmental	612	0	612
001	028	001 - HYDRO Regular Labour	028 - HGP - Dams & Spillways	10,785	0	10,785
012	028	012 - Materials	028 - HGP - Dams & Spillways	0	0	0
013	028	013 - POWER PRODUCTION Conti	acts 028 - HGP - Dams & Spillways		0	
028	028	028 - Consulting	028 - HGP - Dams & Spillways		0	
066	028	066 - Other Goods & Services	028 - HGP - Dams & Spillways	0	0	0
			Total Cost:	1,018,923	0	1,018,923
			Original Cost:	152,570		

Loca FP#: Title:	tion: Hydro 39042 HYD - Sheet Harbour - Ten Mile Lake Dam D	ecommissio	oning		~	Nova Scotia POWER An Emera Company	energy everywhere.
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1	0	01 Regular	Labour				
1.1	Hydro Regular Labour	lot	1	10,785	10,785		
				Sub-Total	10,785		
2		012 Mate	rials			r	
2.1		012 mate	11010				
2.2							
2.3							
2.7				Sub-Total			
3	013 Pov	ver Produc	tion Contract	ts		Cost Support Itom #1	
3.1	Decommissioning	IOL	1			Cost Support item #1	
3.3							
				Sub-Total			
4	00	2 Overtim	e Labour			ſ	
4.1		_ over unit	Laboul		-		
4.2					-		
4.3				Sub Total	-		
				Sub-Total	-		
5		004 Term I	abour			1	
5.1					-		
5.2					-		
5.3				Sub-Total	-		
				Cub Fotal			
6	0'	1 Travel E	xpenses				
6.1	Consultant Travel	lot	1				
6.2 6.3							
				Sub-Total			
							-
7	Detailed Design	028 Cons	ulting	1		0	1
7.1	Contingency	%	20%			Cost Support Item #2	
7.3	Environmental Consulting	70	1			Cost Support Item #3	
				Sub-Total			
						r	
8	U41 M	eals and E	ntertainment	3 220	2 220		1
0.1		101	1	5,220	5,220		
8.3							
				Sub-Total	3,220		
9	066- 01	her Goods	and Service	S		1	
9.1					612		
9.2					-		
9.3	1		I	Sub-Total	-		<u> </u>
				Gub-Tulai	012		1
9	094	Interest C	apitalized				
9.1					-		
9.2 9.3					-		ł
0.0	1		1	Sub-Total	-		1
10 1	095 A	dministrati	ve Overhead	,	4.000		1
10.1 10.2	Thermal Reg. Labour AO				1,992		<u> </u>
10.3	Thermal & Hydro Contracts AO						1
_				Sub-Total			
Proje	ct Cost Estimate			Total	\$1,018,924		
11	Original Cost						
11.1					\$152,570		
Note 1	: Reference to "Completed similar projects (FF	"#'s)" is to b	e provided wh	nen the item estima	te is based on work	of similar scope for a rece	ently completed project

Ten Mile Lake Dam Decommissioning energy everywhere." Summary of Alternatives

 Budget Year :
 2011

 Division :
 Power Production

 Department :
 Hydro Production

 Originator :
 Image: Comparison of Comp

Date : Cl Number: Project No. :

21-Oct-11
39042

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Ten Mile Lake Dam Refurbishment	6.67%	-1,740,136	1	-5.26%	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years

Recommendation :

Decommission the	Ten Mile I ake	Dam, as	refurbishment	has a n	egative N	PV.
Decommission the		Dam, as	reiuibisiinieni	nas a n	legative in	v.

Notes/Comments :

Ten Mile Lake Dam Decommissioning											
Assumptions and Inputs:											
Capital cost for dam refurbishment = \$3,200,000											
Estimated avoided decommissioning costs = \$1,018,924											
Operating Costs per year = \$10,000											
Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.											
Calculations:											
Total annual avoided cost = [Replacement energy costs] - [Operating Costs]											
Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x											
[Estimated annual lost generation]											
Avoided replacement energy cost (2012) -10 [1 \times [1 \times [1 \times [1 \times [2 \times]]])])])]											
Total avoided cost (2012) = $(9,000)$											
Avoided replacement energy cost (2013) = [[1000 and] x [1 outage] x [1 outage] 1 - 10.000 = \$9.000											
Total avoided cost (2013)= \$9,000											
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
-------	---------------	-----------------	-------------	-----------	------------	-------------	------------------	-------------	-----------------	-------------	--------------
2012	•	9,040	(2,181,076)	55,243	2,125,833	(2,172,036)	13,955	(2,158,081)	1	(2,158,081)	(2,158,081)
2013	•	13,080		107,987	2,017,846	13,080	29,823	42,903	1	40,220	(2,117,860)
2014		13,342		103,073	1,914,774	13,342	27,486	40,828	1	35,882	(2,081,979)
2015		13,608		98,328	1,816,446	13,608	26,263	39,872	1	32,850	(2,049,129)
2016		13,881		93,753	1,722,693	13,881	24,463	38,344	1	29,616	(2,019,513)
2017		14,158		89,347	1,633,346	14,158	23,308	37,467	1	27,129	(1,992,384)
2018		14,441	•	85,107	1,548,239	14,441	21,906	36,348	1	24,673	(1,967,711)
2019	•	14,730	•	81,032	1,467,207	14,730	20,554	35,284	1	22,453	(1,945,257)
2020	•	15,025	•	77,119	1,390,088	15,025	19,249	34,274	-	20,447	(1,924,811)
2021		15,325		73,365	1,316,723	15,325	17,992	33,318	-	18,633	(1,906,177)
2022		15,632		69,766	1,246,957	15,632	16,782	32,414	-	16,994	(1,889,183)
2023	•	15,944		66,319	1,180,638	15,944	15,616	31,561	0	15,512	(1,873,670)
2024	•	16,263	•	63,020	1,117,618	16,263	14,495	30,758	0	14,173	(1,859,498)
2025	•	16,589		59,864	1,057,753	16,589	13,415	30,004	0	12,961	(1,846,537)
2026	•	16,920	•	56,848	1,000,905	16,920	12,378	29,298	0	11,864	(1,834,673)
2027		17,259	•	53,966	946,939	17,259	11,379	28,638	0	10,872	(1,823,801)
2028	•	17,604		51,215	895,724	17,604	10,420	28,024	0	9,973	(1,813,827)
2029	•	17,956		48,591	847,133	17,956	9,497	27,453	0	9,159	(1,804,668)
2030		18,315		46,087	801,046	18,315	8,609	26,925	0	8,421	(1,796,246)
2031		18,681	•	43,701	757,344	18,681	7,756	26,438	0	7,752	(1,788,494)
2032		19,055		41,428	715,916	19,055	6,936	25,991	0	7,145	(1,781,350)
2033	•	19,436	•	39,263	676,653	19,436	6,146	25,583	0	6,593	(1,774,757)
2034		19,825		37,203	639,450	19,825	5,387	25,212	0	6,091	(1,768,666)
2035		20,221		35,243	604,207	20,221	4,657	24,878	0	5,634	(1,763,032)
2036	•	20,626		33,378	570,829	20,626	3,953	24,579	0	5,219	(1,757,813)
2037	•	21,038	•	31,605	539,224	21,038	3,276	24,314	0	4,840	(1,752,974)
2038	•	•	•	29,920	509,304		9,275	9,275	0	1,731	(1,751,243)
2039	•	•	•	28,320	480,984	•	8,779	8,779	0	1,536	(1,749,707)
2040	•	•	•	26,800	454,184	•	8,308	8,308	0	1,362	(1,748,345)
2041		•		25,357	428,827	•	7,861	7,861	0	1,208	(1,747,137)
2042	•	•	•	23,987	404,841		7,436	7,436	0	1,072	(1,746,065)
2043	•	•	•	22,687	382,154		7,033	7,033	0	950	(1,745,115)
2044	•	•		21,454	360,700		6,651	6,651	0	842	(1,744,272)
2045	•	•	•	20,285	340,415	•	6,288	6,288	0	747	(1,743,526)
2046		•		19,176	321,239	•	5,945	5,945	0	662	(1,742,864)
2047	•	•		18,126	303,113	•	5,619	5,619	0	586	(1,742,277)
2048	•	•	•	17,130	285,983	•	5,310	5,310	0	520	(1,741,758)
2049	•	•	•	16,187	269,797	•	5,018	5,018	0	460	(1,741,298)
2050	•	•	•	15,293	254,503		4,741	4,741	0	408	(1,740,890)
2051	•	•	•	14,447	240,056	•	4,479	4,479	0	361	(1,740,529)
Total		427,996	(2,181,076)	1,941,020	35,587,631	(1,753,080)	468,444	(1,284,636)	15	(1,740,529)	(73,517,115)
		(

Title:

HYD - Black River - Hollow Bridge Surge Tank Refurbishment

Start Date:	2012/07
Final Cost Date:	2012/11
Function:	Generation
Forecast Amount:	\$930,048

DESCRIPTION:

The refurbishment of the Hollow Bridge Surge Tank consists of concrete foundation repairs, sand-blasting and painting the interior and exterior of the surge tank, replacing the ladders and vertical lifeline systems, miscellaneous steel repairs, and installation of a new fiberglass bubbler system building designed to prevent freezing in the vertical piping connected to the surge tank.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Hydro

Sub Criteria: Maintenance

Why do this project?

These refurbishments are required in order to maintain the structural integrity of the tank and its foundations to ensure the strength and stability of the tank is not compromised. The existing foundations have started to show signs of degradation and must be refurbished to mitigate the risk of stability issues with the tank. The ladder and vertical lifeline system do not meet current Occupational Health and Safety Code requirements and must be replaced.

Why do this project now?

It has been approximately 20 years since this surge tank has been previously refurbished. Completing this project now will ensure the structural integrity and stability of the tank is not compromised and provides climbing devices designed to current Codes and standards. Completing the refurbishment now will avoid increased future repairs or replacement costs.

Why do this project this way?

Refurbishment is the most feasible option and is more cost effective than replacing the surge tank and its foundations.

- 460-Black River Hydro System

.

2012 ACE Plan **Budget Version**

Cost Centre : 460

Capit	tal Item A	Accounts					
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
094		094 - Interest Capitalized			9,241	0	9,241
095		095-Hydro Term Labour AO				0	
095		095-Thermal & Hydro Contracts AO				0	
004	027	004 - HYDRO Term Labour	027 - HGP - Waterways			0	
011	027	011 - Travel Expense	027 - HGP - Waterways		8,380	0	8,380
012	027	012 - Materials	027 - HGP - Waterways		6,257	0	6,257
013	027	013 - POWER PRODUCTION Contr	acts 027 - HGP - Waterways			0	
041	027	041 - Meals & Entertainment	027 - HGP - Waterways		7,140	0	7,140
				Total Cost:	930,048	0	930,048
				Original Cost:	70,178		

						Nova Scotia	
Loca	tion: Hydro					POWER	nerov everywhere*
CI#:	41138 UVD Block Biver, Hellow Bridge Suge Ten	k Dofurbich	mont			An Emera Company	nergy everywhere.
riue.	HTD - Black River - Hollow Bridge Suge Tar	K REIUIDISI	ment				1
						Cost Support	Completed Similar
Item	Description	Unit	Quantity	Unit Estimate	Total Estimate	Reference	Projects (CI#'s) Note 1
1		012 Mat	erials				•
1 1	Eibroglass Building				¢6 257		
1.1	Fibreglass Building		-	-	φ0,237 -		
1.2					-		
1.4					-		
				Sub-Total	6,257		
2	013 Pov	ver Produc	ction Contrac	ts			
2.1	Surge Tank Foundation Repairs	lot	1	_		Cost Support Item #1	
2.2	Application of protective coating for tank	lot	1	-		Cost Support Item #2	
2.3	Miscellaneous Steel Repairs	IOT	1	-		Cost Support Item #2	
	Removal and reinstatement of fence and						
2.4	bubbler system	lot	1	_		Cost Support Item #2	
2.5	Replace existing Ladder and VLL	lot	1	-		Cost Support Item #2	
2.6	Engineering Site Cleanup and restoration	lot	1	-		Cost Support Item #2	
2.1	Site Cleanup and restoration	101		Sub-Total		Cost Support item #2	
3		004 Term	Labour			1	
3.1	On-site construction supervisor	lot	1				
3.2	·						
3.3							
				Sub-Total			
		11 Traval F	Vnanasa			1	
4			-xpenses	8 380	8 380		1
4.1		101		0,300	0,500		
4.3							
	•			Sub-Total	8,380		
5	041 M	eals and E	Intertainment				
5.1	Meals and Entertainment	lot	1	7,140	7,140		
5.2							
5.3				Sub Total	7 1 40		
_				Sub-Total	7,140		
6	09/	1 Interest (Capitalized			1	
6.1	Interest Capitalized				9.241		I
6.2					- /		
6.3							
				Sub-Total	9,241		
_							
7	095 A	dministrat	ive Overhead				1
/.1 7.2	Hydro OT Labour AO				-		<u> </u>
7.2	Hydro Term Labour AO				_		
7.4	Thermal & Hydro Contracts AO						
	· · · · · ·			Sub-Total	47,093		
Projec	t Cost Estimate			Total	\$930,049		
8	Original Cost				<u>.</u>		
8.1	· Defenses to "Operation in the instance of the	141-)" · · · ·			\$70,178	of similar second from	l .
note 1	. Reference to Completed similar projects (C	1#S) IS 10 1	se broviaea Mi	ien me item estima	te is pased on WORK	or similar scope for a fec	enny completea project

Hollow Bridge Surge Tank Refurbishment energy everywhere." Summary of Alternatives

Budget Year :	2012	Date :	18-Oct-11
Division :	Power Production	CI Number:	41138
Department :	Hydro Production	Project No. :	
Originator :			

		After Tax				
_	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Hollow Bridge Surge Tank Refurbishment	6.67%	11,217,389	1	457.66%	1.2 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years

Recommendation :

Based on a positive NP	V, it is recommended that th	ne surge tank be refurbi	shed at Hallow Bridge
------------------------	------------------------------	--------------------------	-----------------------

Notes/Comments : Hollow Bridge Surge Tank Refurbishment Assumptions and Inputs: Capital cost for surge tank refurbishment = \$930,048 2012 Operating costs = \$100,000 2013 Operating costs = \$102,000 Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually. Calculations: Total annual avoided cost = [Replacement energy costs] - [Annual operating costs] Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [Estimated annual lost generation] Avoided replacement energy cost (2012) = x [1 outage] x = \$1,235,000 Total avoided cost (2012) = [\$1,235,000] - [\$100,000] = \$ 1,135,000 Avoided replacement energy cost (2013) = x [1 outage] x = \$1,235,000 Total avoided cost (2013)= [\$1,235,000]- [\$102,000] = \$1,133,000

Hollow Brid Hollow Brid	ge Surge Tank Re	sfurbishment									
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012		1,135,000	(930,048)	27,901	902,147	204,952	(377,158)	(172,206)	1	(172,206)	(172,206)
2013		1,133,000	•	54,129	848,018	1,133,000	(351,062)	781,938	1	733,044	560,838
2014		1,155,660	•	50,881	797,137	1,155,660	(342,619)	813,041	1	714,542	1,275,380
2015		1,178,773		47,828	749,308	1,178,773	(350,593)	828,180	-	682,336	1,957,715
2016	•	1,202,349		44,959	704,350	1,202,349	(358,912)	843,436	1	651,453	2,609,168
2017	•	1,226,396	•	42,261	662,089	1,226,396	(367,082)	859,314	1	622,215	3,231,383
2018		1,250,924		39,725	622,364	1,250,924	(375,471)	875,452	-	594,263	3,825,646
2019		1,275,942		37,342	585,022	1,275,942	(383,966)	891,976	-	567,619	4,393,265
2020	•	1,301,461		35,101	549,921	1,301,461	(392,571)	908,889	1	542,216	4,935,482
2021		1,327,490		32,995	516,925	1,327,490	(401,293)	926,197	1	517,991	5,453,473
2022	•	1,354,040	•	31,016	485,910	1,354,040	(410,138)	943,902	1	494,885	5,948,358
2023		1,381,121	•	29,155	456,755	1,381,121	(419,109)	962,011	0	472,841	6,421,199
2024	.	1,408,743		27,405	429,350	1,408,743	(428,215)	980,528	0	451,807	6,873,005
2025		1,436,918	•	25,761	403,589	1,436,918	(437,459)	999,459	0	431,733	7,304,738
2026		1,465,656	•	24,215	379,374	1,465,656	(446,847)	1,018,810	0	412,573	7,717,312
2027		1,494,969		22,762	356,611	1,494,969	(456,384)	1,038,585	0	394,283	8,111,594
2028	.	1,524,869	•	21,397	335,214	1,524,869	(466,076)	1,058,792	0	376,820	8,488,414
2029	.	1,555,366	•	20,113	315,102	1,555,366	(475,929)	1,079,438	0	360,146	8,848,560
2030		1,586,474	•	18,906	296,196	1,586,474	(485,946)	1,100,528	0	344,223	9,192,783
2031	•	1,618,203	•	17,772	278,424	1,618,203	(496,134)	1,122,069	0	329,015	9,521,798
2032		1,650,567		16,705	261,718	1,650,567	(506,497)	1,144,070	0	314,490	9,836,288
2033	•	1,683,578		15,703	246,015	1,683,578	(517,041)	1,166,537	0	300,615	10,136,903
2034		1,717,250		14,761	231,254	1,717,250	(527,772)	1,189,478	0	287,360	10,424,263
2035	•	1,751,595	•	13,875	217,379	1,751,595	(538,693)	1,212,902	0	274,696	10,698,959
2036	•	1,786,627	•	13,043	204,336	1,786,627	(249,811)	1,236,816	0	262,597	10,961,556
2037	•	1,822,359		12,260	192,076	1,822,359	(561,131)	1,261,229	0	251,036	11,212,593
2038		•		11,525	180,552		3,573	3,573	0	667	11,213,259
2039	•	•	•	10,833	169,718		3,358	3,358	0	587	11,213,847
2040	•	•	•	10,183	159,535	•	3,157	3,157	0	518	11,214,364
2041	•			9,572	149,963	•	2,967	2,967	0	456	11,214,821
2042	•		-	8,998	140,965	•	2,789	2,789	0	402	11,215,223
2043	•	•	•	8,458	132,508	•	2,622	2,622	0	354	11,215,577
2044	•	•	•	7,950	124,557		2,465	2,465	0	312	11,215,889
2045		•	•	7,473	117,084	•	2,317	2,317	0	275	11,216,164
2046		•	•	7,025	110,059		2,178	2,178	0	242	11,216,407
2047	•	•	•	6,604	103,455	•	2,047	2,047	0	214	11,216,620
2048		•	•	6,207	97,248	•	1,924	1,924	0	188	11,216,808
2049	•	•	•	5,835	91,413		1,809	1,809	0	166	11,216,974
2050	•	•	•	5,485	85,928	•	1,700	1,700	0	146	11,217,121
2051				5,156	80,772		1,598	1,598	0	129	11,217,249
2052	•	•		4,846	75,926		1,847	1,847	0	140	11,217,389
Total		37,425,330	(930,048)	854,122	13,846,267	36,495,282	(11,387,558)	25,107,724	15	11,217,389	338,006,183

Title:

HYD - Sissiboo - Powerhouse Electrical Refurbishment

Start Date:	2012/02
Final Cost Date:	2012/12
Function:	Generation
Forecast Amount:	\$845,755

DESCRIPTION:

This project consists of replacing the existing medium voltage switchgear, electrical cables and control equipment at the Sissiboo powerhouse.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: HYDRO

Sub Criteria: Equipment Replacement

Why do this project?

The electrical equipment to be replaced was commissioned with the Hydro Station when it entered service. The existing circuit breakers, power cables, control relays, protective relays, and voltage regulators have reached the end of their useful lives and replacement parts are no longer available.

Why do this project now?

This equipment has reached the end of its reliable operational life. Completing this project now will mitigate the risk of equipment failure. Failure of the switchgear or protective relays could expose the turbine generator to the potential for damage, extended forced outage and costly repairs.

Why do this project this way?

Upgrading obsolete equipment of this vintage is not a practical option due to the unavailability of spare parts and replacement is the only available option.

CI Number : ²³¹²⁵

2012 ACE Plan

Budget Version

Parent CI Number :

Cost Centre : 411 - 411-Sissiboo/Weymouth System

.

Canital Item Accounts

Activity
10
r AO
0
0
ts AO
Q
AO
PO
our 022 - HGP - E
r 022 - HGP - E
022 - HGP - E
022 - HGP - E
ur 022 - HGP - E
022 - HGP - E
022 - HGP - E
Contracts 022 - HGP - EI
022 - HGP - EI
022 - HGP - Ek
s 022 - HGP - EI

108,700

Original Cost:

Locat FP#: Title:	tion: Hydro 23125 HYD - Sissiboo Falls - Electrical Equipment R	eplacement			~	Nova Scotia POWER An Emera Company	energy everywhere."
Item	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1	(01 Regula	r Labour				
1.1	Hydro Reg Labour - Design / Proj Mngt	lot	1	4,500	\$4,500		
1.2	Hydro Reg Labour - Commissioning	lot	1	26,500	26,500		
1.3	T&D Regular Labour	lot	1	43,000	10.500		
				Sub-Total	84,500		16495, 16497
2	Switchasor Supply	012 Mate	erials				
2.1	Generator Neutral Grounding Equipment	lot	1				
2.3	AC & DC Panelboards and Transfer Switch	lot	1				
2.4	Control Panel	lot	1				
2.5	Field Breaker Panel	lot	1				_
2.0	Miscellarieous Material	101	1				
				Sub-Total			16495, 16497
_	A40 B					-	
3	013 Po	wer Produc	tion Contract	5			
3.1		101	<u> </u>		-		
3.3					-		
				Sub-Total			16495, 16497
4	0	02 Overtim	e Labour			1	
4.1	V Hvdro OT Labour - Design / Proi Mngt	lot	1	1.000	1.000		
4.2	Hydro OT Labour - Commissioning	lot	1	11,500	11,500		
4.3	T&D OT Labour	lot	1	5,000	5,000		
				Sub Total	17 500		
				Sub-Total	17,500	<u></u>	
6	0	11 Travel E	xpenses]	
6.1	Travel Expenses	lot	1	11,000	11,000		
6.2							
0.3				Sub-Total	11,000		
7		028 Cons	ulting				
7.1	Site Supervision	lot	1	-			
7.3	Design	lot	1				
				Sub-Total			16495, 16497
						1	
8 8.1	041 Meals and Entertainment	leals and E	ntertainment	7 500 00	7 500 00		
8.2		101		7,300.00	-		
8.3							
				Sub-Total	7,500		
٩	-060-O	ther Goods	and Services			1	
9.1	Other Goods and Services				2,500		
9.2					-		
9.3				Sub-Total	- 2 500		
				Sub-Total	2,500		
9	09	4 Interest C	Capitalized			<u> </u>	
9.1	Interest				12,165		
9.2					-		
3.3	1	1	1	Sub-Total	12,165		
						•	
10	095 A	dministrati	ive Overhead	 			
10.1	Hydro Regular Labour AO				5,726		
10.3	Hydro Term Labour AO		1		-	1	
10.4	Thermal & Hydro Contracts AO						
10.5	Thermal Regular Labour AO				10,324		
10.6	COPS Regular Labour		<u> </u>		8,105 1 930		
10.8	Veh T&D Reg. Labour AO		1		5,320	1	
10.9	Veh T&D OT. Labour AO				1.267		
Decis	t Coat Estimate			Sub-Total	045 755		
Projec	t Cost Estimate			iotai	\$845,755		
11	Original Cost						
11.1					\$108,700		
Note 1	: Reference to "Completed similar projects (FP	#`s)" is to b	e provided whe	en the item estimate	e is based on work o	r similar scope for a rec	enuy completed project

Sissiboo Falls Electrical Equipment Replacement Summary of Alternatives

energy everywhere."

Budget Year :	2012	Date :	31-Oct-11
Division :	Power Production	CI Number:	23125
Department :	Hydro Production	Project No. :	
Originator :			

		After Tax				
-	Alternatives	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Sissiboo Falls Electrical Refurbishment	6.67%	9,888,095	1	117.44%	1.9 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the Sissiboo falls electrical refurbishment be compeleted

Notes/Comments :

Sissiboo Falls Spillway Refurbishment
Assumptions and Inputs:
Capital cost for electrical refurbishment = \$845,755 with an additional \$314,412 and \$181,972 expected on the system for the tailrace refurbishment (Cl41140) and spillway refurbishment (Cl41141) respectively
2012 Operating costs = \$100,000 2013 Operating costs = \$102,000
Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually. Calculations:

Total annual avoided cost = [Replacement energy costs] - [Annual operating costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [Estimated annual lost generation]

Avoided replacement energy cost (2012) = /MWh] x [1 outage] x MWh] = \$1,139,520 Total avoided cost (2012) = [\$1,139,520] - [\$100,000] = \$1,039,520

Avoided replacement energy cost (2013) = /MWh] x [1 outage] x MWh] = \$1,139,520 Total avoided cost (2013)= [\$1,139,520]- [\$102,000] = \$1,037,520

Voor	Total Boundary		Conito		J	CEDT	Anniachia Tavac	CEAT	Discount Easter		
IEdi	I OLAI REVEILUE				000						
2012	•	1,039,520	(1,342,139)	53,686	1,288,453	(302,619)	(336,247)	(638,866)	-	(638,866)	(638,866)
2013	•	1,037,520	•	103,076	1,185,377	1,037,520	(304,294)	733,226	1	687,378	48,512
2014	•	1,058,270	•	94,830	1,090,547	1,058,270	(298,855)	759,416	-	667,414	715,926
2015	•	1,079,436		87,244	1,003,303	1,079,436	(307,580)	771,856	-	635,930	1,351,856
2016	•	1,101,025		80,264	923,039	1,101,025	(316,595)	784,430	-	605,877	1,957,733
2017	•	1,123,045	•	73,843	849,196	1,123,045	(325,253)	797,792	-	577,668	2,535,401
2018	•	1,145,506	•	67,936	781,260	1,145,506	(334,047)	811,459	-	550,824	3,086,226
2019	•	1,168,416	•	62,501	718,759	1,168,416	(342,834)	825,582	-	525,369	3,611,594
2020	•	1,191,784	•	57,501	661,259	1,191,784	(351,628)	840,156	-	501,212	4,112,807
2021	.	1,215,620	•	52,901	608,358	1,215,620	(360,443)	855,177	-	478,272	4,591,079
2022	•	1,239,932		48,669	559,689	1,239,932	(369,292)	870,641	-	456,474	5,047,553
2023	•	1,264,731		44,775	514,914	1,264,731	(378,186)	886,545	0	435,748	5,483,301
2024	•	1,290,026		41,193	473,721	1,290,026	(387,138)	902,888	0	416,031	5,899,333
2025		1,315,826		37,898	435,823	1,315,826	(396,158)	919,668	0	397,266	6,296,599
2026	•	1,342,143		34,866	400,957	1,342,143	(405,256)	936,887	0	379,398	6,675,997
2027	•	1,368,986		32,077	368,881	1,368,986	(414,442)	954,544	0	362,378	7,038,374
2028	•	1,396,365	•	29,510	339,370	1,396,365	(423,725)	972,640	0	346,159	7,384,533
2029	•	1,424,293	•	27,150	312,221	1,424,293	(433,114)	991,178	0	330,699	7,715,232
2030	•	1,452,778		24,978	287,243	1,452,778	(442,618)	1,010,160	0	315,958	8,031,190
2031		1,481,834		22,979	264,264	1,481,834	(452,245)	1,029,589	0	301,898	8,333,088
2032		1,511,471		21,141	243,123	1,511,471	(462,002)	1,049,469	0	288,485	8,621,573
2033	•	1,541,700	•	19,450	223,673	1,541,700	(471,898)	1,069,803	0	275,686	8,897,260
2034		1,572,534		17,894	205,779	1,572,534	(481,939)	1,090,596	0	263,471	9,160,731
2035		1,603,985		16,462	189,317	1,603,985	(492,132)	1,111,853	0	251,811	9,412,542
2036		1,636,065		15,145	174,171	1,636,065	(502,485)	1,133,580	0	240,678	9,653,220
2037		1,668,786		13,934	160,238	1,668,786	(513,004)	1,155,782	0	230,048	9,883,268
2038	•	•	•	12,819	147,419	•	3,974	3,974	0	742	9,884,010
2039	•	•	•	11,793	135,625	•	3,656	3,656	0	640	9,884,649
2040	•	•		10,850	124,775	•	3,364	3,364	0	552	9,885,201
2041		•	•	9,982	114,793	•	3,094	3,094	0	476	9,885,676
2042			•	9,183	105,610	•	2,847	2,847	0	410	9,886,087
2043			•	8,449	97,161	•	2,619	2,619	0	354	9,886,441
2044			•	7,773	89,388	•	2,410	2,410	0	305	9,886,746
2045			•	7,151	82,237	•	2,217	2,217	0	263	9,887,009
2046		•		6,579	75,658	•	2,039	2,039	0	227	9,887,236
2047				6,053	69,605	•	1,876	1,876	0	196	9,887,432
2048				5,568	64,037	•	1,726	1,726	0	169	9,887,601
2049				5,123	58,914	•	1,588	1,588	0	146	9,887,746
2050				4,713	54,201	•	1,461	1,461	0	126	9,887,872
2051		•	•	4,336	49,865	•	1,344	1,344	0	108	9,887,980
2052	•	•		3,989	45,876		1,521	1,521	0	115	9,888,095
le	•	34,271,597	(1,342,139)	1,296,263	15,578,099	32,929,458	(10,267,671)	22,661,786	15	9,888,095	293,205,842

ment	
eplace	
lent R	
Equipn	
=	ļ
ectrica	
iii.	i
alls	
5	ļ
ssiboc	;
ŝ	i

Title:

HYD – Nictaux - Headcover Replacement

Start Date:	2012/04
Final Cost Date:	2013/09
Function:	Generation
Forecast Amount:	\$525,680

DESCRIPTION:

This project provides for the detailed engineering design, fabrication and installation of a new hydro turbine headcover for the Nictuax Unit.

Summary of Related CI's +/- 2 years: 2010 CI 39082 U&U Nictaux Headcover \$429,815

JUSTIFICATION:

Justification Criteria: Hydro

Sub Criteria: Equipment Replacement

Why do this project?

During a planned outage in 2009, the headcover was removed, inspected, and cracks and erosion defects were repaired. As identified under CI 39082 – HYD U&U Nictaux Headcover, the repairs were short term in nature and only intended to provide lead time until the new replacement headcover could be installed in 2012. The new headcover must be installed to ensure the pressure boundry of the generating Unit is not compromised.

Why do this project now?

The turbine headcover must be replaced now to mitigate the risk of a headcover failure and compromising the pressure boundary.

Why do this project this way?

Replacing the headcover is the most viable and economically feasible option.

.

431-Nictaux/Paradise System

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 431

	ומו ורכווו ג					
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		13,491	0	13,491
095		095-Hydro Regular Labour AO		9,789	0	9,789
001	022	001 - THERMAL Regular Labour	022 - HGP - Elec Contr.Equip.	0	0	0
001	022	001 - HYDRO Regular Labour	022 - HGP - Elec Contr.Equip.	53,000	0	53,000
002	022	002 - HYDRO Overtime Labour	022 - HGP - Elec Contr.Equip.	11,000	0	11,000
011	022	011 - Travel Expense	022 - HGP - Elec Contr.Equip.	3,000	0	3,000
012	022	012 - Materials	022 - HGP - Elec Contr.Equip.		0	
013	022	013 - POWER PRODUCTION Contri	cts 022 - HGP - Elec Contr.Equip.	0	0	0
028	022	028 - Consulting	022 - HGP - Elec Contr.Equip.		0	
041	022	041 - Meals & Entertainment	022 - HGP - Elec Contr.Equip.	1,000	0	1,000
066	022	066 - Other Goods & Services	022 - HGP - Elec Contr.Equip.	0	0	0
			Total Cost:	525,680	0	525,680
			Original Cost:	59,153		

Loca FP#: Title:	tion: Hydro 41127 HYD - Nictaux Headcover Replacement					Nova Scotla POWER energ An Emera Company	y everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1	0 Unit Disessembly	01 Regula	r Labour	8 000	000.03		
1.1	Unit Disassembly	lot	1	20,000	\$0,000 20,000		ł
1.2	Misc. Shop Work	lot	1	20,000	15 000		
1.4	Project Management	lot	1	5,000	5,000		
1.5	Spec. & Procurement	lot	1	5,000	5,000		
				Sub-Total	53,000		28857 - Ruth Falls #1 Headcover
						1	_
2	Llandanuar	012 Mat	erials			Coot Support Hom #1	1
2.1	Contingency	101	1			Cost Support Item #1	
2.2	Water lubricated bearing	/0 lot	1 1			Cost Support Item #2	
2.4	Contingency	%				ecce copport tom #2	
2.5	Miscellaneous (Bolts, distributor ring, etc.)	lot	1	30,000			
2.6	· · · · · · · · · · · · · · · · · · ·						
				Sub-Total			
2		02 Overtim	a Labour			1	
31	Unit Disasembly	lot		4 000	4 000		
3.1	Unit Disasembly	lot	1	4,000	7,000		
3.3		101		1,000	1,000		
			•	Sub-Total	11,000		
4	0	11 Travel I	Expenses				
4.1	Travel expenses	lot	1	3,000	3,000		
4.2							
4.2				Sub-Total	3.000		
					-,		
5		028 Cons	sulting			1	
5.1	Site Supervision	lot	1				
5.2							
5.3				Out Tatal			
				Sub-Total			
6	041 N	leals and F	ntertainment			1	
6.1	Meals and entertainment	lot	1	1.000	1.000		
6.2				1	,		
6.3							
				Sub-Total	1,000		
-	00	1 Interact (Conitolized			1	
71	094	4 Interest C	apitalized		13 /01		1
7.1					13,431		
							1
			•	Sub-Total	13,491		
						-	
8	095 A	dministrat	ive Overhead				
8.1	Hydro Regular Labour AO				9,789		
	Hydro UT Labour AO				-		
					-		
<u> </u>			1	Sub-Total	9 789		1
Projec	t Cost Estimate			Total	\$525,680		1
							1
9	Original Cost						
9.1	l				\$59,153		
Note 1	: Reference to "Completed similar projects (FF	P#'s)" is to	be provided wl	hen the item estima	te is based on work	of similar scope for a recently	completed project

Nictaux Headcover Replacement Summary of Alternatives

Budget Year : Division : Department : Originator :

2012		
P	ower Production	
H	lydro Production	

Date : Cl Number: Project No. :

18-Oct-11	
41127	

	Alternative	After Tax WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Nictaux Headcover Replacement	6.67%	15,147,409	1	#NUM!	2.2 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years

Recommendation :

Based on positive NPV, it is recommended to replace the headcover at Nictaux

Notes/Comments :
Nictaux Headcover Replacement
Assumptions and Inputs:
Capital cost for headcover replacement = \$513,235
2012 Operating costs = \$100,000
2013 Operating costs = \$102,000
Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.
Total annual avoided cost = [Replacement energy costs] - [Annual operating costs]
Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [Estimated annual lost generation]
Avoided replacement energy cost (2012) = x [1 outage] x = \$1,852,500 Total avoided cost (2012) = [\$1,852,500] - [\$100,000] = \$1,752,500
Avoided replacement energy cost (2013) = x [1 outage] x = \$1,852,500 Total avoided cost (2013)= [\$1,852,500]- [\$102,000] = \$1,750,500

Vorr	Total Dovonio	Onorating Poete	Canital	۷	L L L	CEPT	Annlicable Taves	CEAT	Discount Factor		
1 5 4 1 0	I OLAL NEVELINE			2 202 27		1 700 107 0		010010			
2102	•	0.006,267,1	(2.16,015.0)	11,281.2	198,/33.8	1,536,485.0	(290,138.3)	946,346.7	000.1	946,346.7	940,340.7
2013	•	1,750,500.0	(2,316,819.7)	108,526.3	2,407,027.2	(566,319.7)	(534,860.0)	(1,101,179.7)	0.937	(1,032,323.7)	(85,977.1)
2014	•	1,785,510.0	(0.000,000)	207,547.2	3,099,480.0	885,510.0	(489,703.1)	395,806.9	0.879	347,855.4	261,878.3
2015	•	1,821,220.2	(1,061,208.0)	236,812.6	3,923,875.4	760,012.2	(491,166.3)	268,845.9	0.824	221,501.4	483,379.7
2016	•	1,857,644.6		263,531.6	3,660,343.8	1,857,644.6	(494,806.4)	1,362,838.2	0.772	1,052,628.5	1,536,008.2
2017	•	1,894,797.5	•	245,471.8	3,414,872.1	1,894,797.5	(511,291.0)	1,383,506.5	0.724	1,001,773.9	2,537,782.1
2018		1,932,693.4		228,675.4	3,186,196.7	1,932,693.4	(528,245.6)	1,404,447.8	0.679	953,348.8	3,491,130.9
2019	•	1,971,347.3	•	213,052.2	2,973,144.5	1,971,347.3	(545,071.5)	1,426,275.8	0.636	907,627.1	4,398,758.1
2020	•	2,010,774.3		198,518.6	2,774,625.9	2,010,774.3	(561,799.2)	1,448,975.0	0.597	864,415.5	5,263,173.5
2021	•	2,050,989.7	•	184,997.1	2,589,628.8	2,050,989.7	(578,457.7)	1,472,532.0	0.559	823,538.9	6,086,712.4
2022	•	2,092,009.5		172,415.7	2,417,213.0	2,092,009.5	(595,074.1)	1,496,935.5	0.524	784,838.2	6,871,550.6
2023		2,133,849.7		160,707.7	2,256,505.3	2,133,849.7	(611,674.0)	1,522,175.7	0.492	748,168.7	7,619,719.3
2024	•	2,176,526.7		149,811.3	2,106,694.0	2,176,526.7	(628,281.8)	1,548,244.9	0.461	713,398.4	8,333,117.7
2025		2,220,057.3		139,668.9	1,967,025.1	2,220,057.3	(644,920.4)	1,575,136.9	0.432	680,406.5	9,013,524.2
2026	•	2,264,458.4	•	130,227.4	1,836,797.7	2,264,458.4	(661,611.6)	1,602,846.8	0.405	649,082.5	9,662,606.7
2027	•	2,309,747.6	•	121,437.3	1,715,360.4	2,309,747.6	(678,376.2)	1,631,371.4	0.380	619,324.7	10,281,931.4
2028	•	2,355,942.5		113,252.7	1,602,107.7	2,355,942.5	(695,233.8)	1,660,708.7	0.356	591,039.8	10,872,971.2
2029	•	2,403,061.4	•	105,631.1	1,496,476.6	2,403,061.4	(712,203.4)	1,690,858.0	0.334	564,141.6	11,437,112.8
2030	•	2,451,122.6	•	98,532.8	1,397,943.8	2,451,122.6	(729,302.8)	1,721,819.8	0.313	538,550.4	11,975,663.2
2031	•	2,500,145.1	•	91,921.3	1,306,022.5	2,500,145.1	(746,549.4)	1,753,595.7	0.293	514,192.6	12,489,855.9
2032		2,550,148.0		85,762.5	1,220,260.0	2,550,148.0	(763,959.5)	1,786,188.5	0.275	490,999.9	12,980,855.7
2033	•	2,601,150.9	•	80,024.6	1,140,235.4	2,601,150.9	(781,549.2)	1,819,601.8	0.258	468,908.6	13,449,764.3
2034	•	2,653,173.9	•	74,678.4	1,065,557.0	2,653,173.9	(799,333.6)	1,853,840.3	0.242	447,859.5	13,897,623.8
2035	•	2,706,237.4	•	69,696.6	995,860.4	2,706,237.4	(817,327.7)	1,888,909.8	0.226	427,797.7	14,325,421.5
2036		2,760,362.2		65,053.7	930,806.7	2,760,362.2	(835,545.6)	1,924,816.5	0.212	408,671.4	14,734,092.9
2037		2,815,569.4		60,726.3	870,080.3	2,815,569.4	(854,001.4)	1,961,568.1	0.199	390,432.5	15,124,525.5
2038	•	•	•	56,692.5	813,387.8	-	17,574.7	17,574.7	0.187	3,279.4	15,127,804.8
2039	•	•	•	52,932.0	760,455.9	•	16,408.9	16,408.9	0.175	2,870.4	15,130,675.2
2040	•	•		49,425.7	711,030.1	-	15,322.0	15,322.0	0.164	2,512.6	15,133,187.8
2041	•	•	•	46,156.3	664,873.8		14,308.5	14,308.5	0.154	2,199.7	15,135,387.5
2042	•	•	•	43,107.4	621,766.4	•	13,363.3	13,363.3	0.144	1,925.9	15,137,313.5
2043	•	•	•	40,263.7	581,502.7		12,481.8	12,481.8	0.135	1,686.4	15,138,999.9
2044		•	•	37,611.3	543,891.4	-	11,659.5	11,659.5	0.127	1,476.8	15,140,476.7
2045	•	•		35,136.9	508,754.4		10,892.4	10,892.4	0.119	1,293.4	15,141,770.1
2046	•	•	•	32,828.4	475,926.0	-	10,176.8	10,176.8	0.111	1,132.9	15,142,903.0
2047		•	•	30,674.5	445,251.5	-	9,509.1	9,509.1	0.104	992.3	15,143,895.3
2048		•	•	28,664.5	416,587.0	-	8,886.0	8,886.0	0.098	869.3	15,144,764.6
2049	•	•	•	26,788.7	389,798.3	-	8,304.5	8,304.5	0.092	761.6	15,145,526.3
2050		•		25,037.9	364,760.5		7,761.7	7,761.7	0.086	667.3	15,146,193.6
2051	•	•	•	23,403.6	341,356.9	-	7,255.1	7,255.1	0.081	584.8	15,146,778.4
2052	•	•	•	21,878.0	319,478.9	-	8,339.9	8,339.9	0.076	630.2	15,147,408.6
Total	•	57,821,539.7	(4,494,042.7)	4,174,563.8	60,511,695.7	53,327,497.0	(16,708,239.6)	36,619,257.4	14.9	15,147,408.6	435,092,614.7

Nictaux Headcover Replacement

Title:

HYD – Mersey - Upper Lake Falls Riprap Replacement

Start Date:	2012/04
Final Cost Date:	2012/09
Function:	Generation
Forecast Amount:	\$516,420

DESCRIPTION:

This project includes the replacement of the riprap (comprised of loose rocks and boulders) on the dam at Upper Lake Falls.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Hydro

Sub Criteria: Maintenance

Why do this project?

The riprap protects the dam from the ongoing eroding action of waves. Upper Lake Falls is located on Lake Rossignol along a shoreline that is exposed to prevailing winds which can produce significant-size waves. The existing riprap has eroded and must be replaced to prevent deterioration of the impermeable core of the dam.

Why do this project now?

Riprap replacement is required to avoid compromising the integrity of the dam structure.

Why do this project this way?

Replacing the riprap is an effective technical solution to protect against the wave induced erosion.

- HYD - Mersey - Upper Lake Falls Rip Rap Replacement

Project Number

Number

2012 ACE Plan

Budget Version

Parent CI Number :

Cost Centre : 405 - 405-Hydro Production Administration

.

Canital Item Accounts

Capit	al Item /	Accounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
94		094 - Interest Capitalized		2,254	0	2,254
<u> 95</u>		095-Hydro Regular Labour AO		554	0	554
<u> 95</u>		095-Thermal & Hydro Contracts AO			0	
95		095-Hydro Term Labour AO			0	
101	028	001 - HYDRO Regular Labour	028 - HGP - Dams & Spillways	3,000	0	3,000
04	028	004 - HYDRO Term Labour	028 - HGP - Dams & Spillways		0	
11	028	011 - Travel Expense	028 - HGP - Dams & Spillways	8,900	0	8,900
113	028	013 - POWER PRODUCTION Contre	cts 028 - HGP - Dams & Spillways		0	
128	028	028 - Consulting	028 - HGP - Dams & Spillways		0	
41	028	041 - Meals & Entertainment	028 - HGP - Dams & Spillways	2,000	0	2,000
990	028	066 - Other Goods & Services	028 - HGP - Dams & Spillways	500	0	500
			Total Cost:	516,420	0	516,420
			Original Cost:	333,575		

Locat FP#: Title:	ion: Hydro 41145 HYD - Mersey - Upper Lake Falls Rip Rap	Replacement				ova Scotia POWER e n Emera Company	nergy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1		001 Regular I	abour				
1.1	Engineering	hr	1	3,000	\$3,000		
1.2		hr					
1.3		hr		Sub Total	2 000		-
				Sub-Total	3,000		
2	013 P	ower Production	on Contracts				_
2.1	Supply & Installation	Cubic Yards	15,000				28726
2.2							+
2.0			l	Sub-Total			
3	Sita Supanvisian	004 Term La	bour 1				
3.1		IOL					
3.3							
				Sub-Total			
4		011 Travel Ex	nenses			1	
4.1	Travel Expenses	lot	1	8,900	8,900		Т
4.2	·						
4.3				Sub Total	8 000		-
				Sub-Tolai	8,900		
5		028 Consul	ting				
5.1	Detailed Design	lot	1				
5.2							
5.3				Sub-Total			
6	041	Meals and Ent	ertainment				
6.1 6.2		lot	1	2,000	2,000		
6.3							
				Sub-Total	2,000		
- 1		<u></u>					
71	066-	Other Goods a	nd Services		500		T
7.2					500		1
7.3							
				Sub-Total	500		
8		94 Interest Ca	oitalized				
8.1					2,254		
8.2							
8.3		l		Sub-Total	2 254		-
				Oub Total	2,204		
9	095	Administrative	overhead				-
9.1	Hydro Regular Labour AO				554		4
9.2 9.3	Hydro Term Labour AO				-		
9.4	Thermal & Hydro Contracts AO						
				Sub-Total	24,766		
Projec	t Cost Estimate			i otal	\$516,420		
10	Original Cost						+
10.1	-				\$333,575		
Note 1	Reference to "Completed similar projects (FI	P#'s)" is to be pr	ovided when t	he item estimate is	based on work of si	milar scope for a recentl	y completed project

REDACTED 2012 ACE CI 41145 Attachment 2 Page 1 of 3

Upper Lake Falls Riprap Replacement energy everywhere."

Budget Year :	2012	Date :	18-Oct-11
Division :	Power Production	CI Number:	41145
Department :	Hydro Production	Project No. :	
Originator :			

Summary of Alternatives

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Upper Lake Falls Riprap Replacement	6.67%	11,065,203	1	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the Upper Lake Falls riprap be replaced	

Notes/Comments :
Upper Lake Falls Riprap Replacement
Assumptions and Inputs:
Capital cost for riprap replacement = \$516,420
2012 Operating costs = \$100,000
2013 Operating costs = \$102,000
Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually. Calculations:
Total annual avoided cost = [Replacement energy costs] - [Annual operating costs]
Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [Estimated annual lost generation]
Avoided replacement energy cost (2012) = [\$1,187,500] = [\$1,00,000] = \$1,087,500 = \$1,187,500
Avoided replacement energy cost (2013) = x [1 outage] x = \$1,187,500 Total avoided cost (2013)= [\$1,187,500]- [\$102,000] = \$1,085,500

CNPV	206,184	902,015	1,581,065	2,229,874	2,849,717	3,442,024	4,008,006	4,548,861	5,065,731	5,559,701	6,031,808	1 6,483,036	1 6,914,324	7,326,568	7,720,619	1 8,097,293	8,457,365	8,801,574	9,130,627	9,445,198	9,745,930	10,033,436	10,308,303	10,571,091	10,822,333	11,062,540	11,062,910	11,063,236	11,063,524	11,063,777	11,064,000	11,064,197	11,064,370	11,064,523	11,064,658	11,064,776	11,064,881	11,064,973	11,065,054	11,065,126	11,065,203	337,310,431
PV of CF	206,184	695,830	679,050	648,809	619,843	592,308	565,982	540,855	516,870	493,971	472,107	451,228	431,288	412,243	394,052	376,674	360,071	344,209	329,053	314,571	300,732	287,506	274,867	262,788	251,242	240,207	370	326	287	253	223	197	173	153	135	119	105	92	81	22	28	11.065.203
Discount Factor	1	•	1	F	F	•	•	F	1	•	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15
CFAT	206,184	742,242	772,657	787,487	802,511	818,011	833,789	849,918	866,402	883,247	900,457	918,039	935,998	954,341	973,073	992,201	1,011,732	1,031,672	1,052,028	1,072,808	1,094,020	1,115,670	1,137,767	1,160,319	1,183,335	1,206,822	1,984	1,865	1,753	1,648	1,549	1,456	1,369	1,286	1,209	1,137	1,068	1,004	944	887	1,026	24.322.915
Applicable Taxes	(364,896)	(343,258)	(334,553)	(341,867)	(349,431)	(356,969)	(364,691)	(372,532)	(380,496)	(388,590)	(396,816)	(405,179)	(413,684)	(422,335)	(431,137)	(440,093)	(449,208)	(458,487)	(467,934)	(477,553)	(487,349)	(497,326)	(507,488)	(517,842)	(528,389)	(539,137)	1,984	1,865	1,753	1,648	1,549	1,456	1,369	1,286	1,209	1,137	1,068	1,004	944	887	1,026	(11.017.056)
CFBT	571,080	1,085,500	1,107,210	1,129,354	1,151,941	1,174,980	1,198,480	1,222,449	1,246,898	1,271,836	1,297,273	1,323,218	1,349,683	1,376,676	1,404,210	1,432,294	1,460,940	1,490,159	1,519,962	1,550,361	1,581,369	1,612,996	1,645,256	1,678,161	1,711,724	1,745,959	•			•			•	•	•		•	•	•	•	•	35.339.970
ncc	500,927	470,872	442,619	416,062	391,099	367,633	345,575	324,840	305,350	287,029	269,807	253,619	238,402	224,097	210,652	198,012	186,132	174,964	164,466	154,598	145,322	136,603	128,407	120,702	113,460	106,653	100,253	94,238	88,584	83,269	78,273	73,576	69,162	65,012	61,111	57,445	53,998	50,758	47,713	44,850	42,159	7.688.301
CCA	15,493	30,056	28,252	26,557	24,964	23,466	22,058	20,734	19,490	18,321	17,222	16,188	15,217	14,304	13,446	12,639	11,881	11,168	10,498	9,868	9,276	8,719	8,196	7,704	7,242	6,808	662'9	6,015	5,654	5,315	4,996	4,696	4,415	4,150	3,901	3,667	3,447	3,240	3,045	2,863	2,691	474.261
Capital	(516,420)	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•		•	•	•	•	•	•	(516.420)
acement Operating Costs	1,087,500	1,085,500	1,107,210	1,129,354	1,151,941	1,174,980	1,198,480	1,222,449	1,246,898	1,271,836	1,297,273	1,323,218	1,349,683	1,376,676	1,404,210	1,432,294	1,460,940	1,490,159	1,519,962	1,550,361	1,581,369	1,612,996	1,645,256	1,678,161	1,711,724	1,745,959	•	•	•	•	•	•	•	•	•	•	•		•	•	•	35,856,390
Total Revenue	•	•	•	•	•	•	•	•	•			•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•			•		•	•	•	•	•	•	•
<u>Upper Lake</u> Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	Total

Title:

HYD - Sissiboo - Sissiboo Falls Tailrace Concrete Refurbishment

Start Date:	2012/04
Final Cost Date:	2012/12
Function:	Generation
Forecast Amount:	\$314,412

DESCRIPTION:

This project includes the reconstruction of the concrete tailrace deck (including stair access and supporting sub-structure) and refurbishment of the associated steel tailrace gate and its structural steel support system.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Hydro

Sub Criteria: Equipment Replacement

Why do this project?

The existing tailrace concrete deck and sub-structure has experienced normal degradation over time and must now be refurbished. Completing this project will mitigate the risk of further degradation and potential for issues related to structural integrity. The concrete supporting sub-structure is also showing signs of degradation and requires refurbishment.

The protective coatings previously applied to the tailrace gate and support structure have started to degrade and require refurbishment to preserve the tailrace gate.

Why do this project now?

Refurbishing the tailrace concrete now will maintain the structural integrity of the tailrace and continue to provide safe working conditions. Refurbishing the tailrace gate and structural steel support system now will prevent further degradation and more costly repairs in the future.

Why do this project this way?

Refurbishing the tailrace concrete, gate and structural steel support system is the most feasible and effective option and will avoid the need for complete replacement of these components.

2012 ACE Plan

Budget Version

Parent CI Number :

Cost Centre : 411 - 411-Sissiboo/Weymouth System

.

Capital Item Accounts

	Variance	3,449			92	1,000		1,000				1,000	1,000	314,412	
	Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Forecast Amount	3,449			92	1,000		1,000				1,000	1,000	314,412	40.410
														Total Cost:	Original Cost
						Waterways	Waterways	Waterways	Waterways	Waterways	Waterways	Waterways	Waterways		
	Activity					027 - HGP -	027 - HGP -	027 - HGP -	027 - HGP -	acts 027 - HGP -	027 - HGP -	027 - HGP -	027 - HGP -		
	Account	094 - Interest Capitalized	095-Hydro Term Labour AO	095-Thermal & Hydro Contracts AO	095-Hydro Overtime Labour AO	002 - HYDRO Overtime Labour	004 - HYDRO Term Labour	011 - Travel Expense	012 - Materials	013 - POWER PRODUCTION Contre	028 - Consulting	041 - Meals & Entertainment	066 - Other Goods & Services		
	Actv					027	027	027	027	027	027	027	027		
•	Acct	094	095	095	095	002	004	011	012	013	028	041	066		

Loca FP#: Title:	tion: Hydro 41140 HYD - Siissiboo Falls - Tailrace Concrete Refur	bishment			~	Nova Scotia POWER An Emera Company	energy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1		012 Mater	rials			-	
							17618 - HYD -Bear
1.1 1.2	Seals and Miscellaneous materials	lot			-		River Tailrace Deck
1.3 1.4					-		
				Sub-Total			
2	013 Pow	er Product	ion Contracts	6		1	
2.1	Concrete Rerfurbishment	lot					17618 - HYD -Bear River Tailrace Deck
	Charl Defurbishment and Decention	lat					17618 - HYD -Bear
2.2	Steel Refurbishment and Recoating	IOL					17618 - HYD -Bear
2.3	Scaffolding and Miscellaneous Safety Items	lot		Sub-Total			River Tailrace Deck
_		2 Ouentime	Labarra				
з 3.1	00	lot		1,000	1,000		
3.2							
5.5				Sub-Total	1,000		
4		004 Term L	abour			T	
4.1		lot	1				
4.2 4.3							
	-			Sub-Total			
5	01	1 Travel Ex	penses]	
5.1 5.2			1	1,000	1,000		
5.3				Out Tatal	1 000		
				Sub-1 otal	1,000		
6	Design Management	028 Consu	liting				
6.2	Inspections	lot	1				
6.3				Sub-Total			
	·			Oub Total			
7	041 Me	als and En	tertainment	1 000	1 000		
7.2				1,000	-		
7.3				Sub-Total	- 1,000		
9	066.04	her Goode	and Services				
8.1		iai Goous	and Gervices	1000	1,000	<u> </u>	
8.2 8.3							
	-			Sub-Total	1,000		
9	094	Interest Ca	pitalized			1	
9.1				3449	3,449		
9.3							
<u> </u>				Sub-Total	3,449	l	
10	095 Ad	Iministrativ	e Overhead	1		1	
10.1 10.2	Hydro Regular Labour AO Hydro OT Labour AO				92		
10.3	Hydro Term Labour AO						
10.4				Sub-Total	10,963	<u> </u>	
Projec	t Cost Estimate			Total	\$314,412		
11	Original Cost						
11.1 Note 1	Reference to "Completed similar projects (FP#	's)" is to be	provided whe	n the item estimate	\$40,410 is based on work of	f similar scope for a rec	cently completed project
1		,					, ,

REDACTED 2012 ACE CI 41140 Attachment 2 Page 1 of 3

 Sissiboo Falls Tailrace Concrete Refurbishment Summary of Alternatives

energy everywhere."

Budget Year :	2012	Date :	18-Oct-11
Division :	Power Production	CI Number:	41140
Department :	Hydro Production	Project No. :	
Originator :			

		After Tax				
	Alternatives	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Sissiboo Falls Spillway Refurbishments	6.67%	9,893,181	1	117.54%	1.9 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years
		6.67%	NA	NA	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the Sissiboo tailrace refurbishment be compeleted

Notes/Comments :

Sissiboo Falls Spillway Refurbishment Assumptions and Inputs: Capital cost for tailrace refurbishment = \$314,412 with an additional \$181,972 and \$845,755 expected on the system for spillway refurbishment (Cl41141) and electrical refurbishment (Cl23125) respectively.

2012 Operating costs = \$100,000 2013 Operating costs = \$102,000

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually. Calculations:

Total annual avoided cost = [Replacement energy costs] - [Annual operating costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [Estimated annual lost generation]

Avoided replacement energy cost (2012) = x [1 outage] x = \$1,140,000 Total avoided cost (2012) = [\$1,140,000] - [\$100,000] = \$1,040,000 Avoided replacement energy cost (2013) = x [1 outage] x = \$1,140,000 Total avoided cost (2013) = [\$1,140,000] - [\$102,000] = \$1,038,000

Sissiboo Fai Sissiboo Fal	IIS Tailrace Concr IIs Tailrace Concr	ete Kerurpisnment ete Refurbishment									
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012		1,040,000	(1,342,139)	53,686	1,288,453	(302,139)	(336,410)	(638,549)	1	(638,549)	(638,549)
2013	•	1,038,000		103,076	1,185,377	1,038,000	(304,450)	733,550	1	687,681	49,132
2014		1,058,760	•	94,830	1,090,547	1,058,760	(299,006)	759,754	1	667,710	716,843
2015	•	1,079,935	•	87,244	1,003,303	1,079,935	(307,734)	772,201	1	636,214	1,353,057
2016	•	1,101,534	•	80,264	923,039	1,101,534	(316,753)	784,781	1	606,149	1,959,206
2017	•	1,123,565	•	73,843	849,196	1,123,565	(325,414)	798,151	L	577,928	2,537,134
2018	•	1,146,036		67,936	781,260	1,146,036	(334,211)	811,825	-	551,072	3,088,206
2019	•	1,168,957	•	62,501	718,759	1,168,957	(343,001)	825,955	L	525,606	3,613,812
2020	•	1,192,336		57,501	661,259	1,192,336	(351,799)	840,537	1	501,439	4,115,252
2021		1,216,182		52,901	608,358	1,216,182	(360,617)	855,565	1	478,489	4,593,741
2022	•	1,240,506	•	48,669	559,689	1,240,506	(369,470)	871,036	L	456,681	5,050,423
2023	•	1,265,316	•	44,775	514,914	1,265,316	(378,368)	886,948	0	435,946	5,486,369
2024		1,290,623	•	41,193	473,721	1,290,623	(387,323)	903,299	0	416,221	5,902,590
2025		1,316,435	•	37,898	435,823	1,316,435	(396,347)	920,088	0	397,447	6,300,038
2026	•	1,342,764	•	34,866	400,957	1,342,764	(405,448)	937,315	0	379,572	6,679,609
2027	•	1,369,619	•	32,077	368,881	1,369,619	(414,638)	954,981	0	362,544	7,042,153
2028	•	1,397,011	•	29,510	339,370	1,397,011	(423,925)	973,086	0	346,318	7,388,470
2029		1,424,952	•	27,150	312,221	1,424,952	(433,319)	991,633	0	330,851	7,719,321
2030	•	1,453,451	•	24,978	287,243	1,453,451	(442,827)	1,010,624	0	316,103	8,035,424
2031		1,482,520	•	22,979	264,264	1,482,520	(452,457)	1,030,062	0	302,037	8,337,461
2032	•	1,512,170	•	21,141	243,123	1,512,170	(462,219)	1,049,951	0	288,618	8,626,078
2033	•	1,542,413		19,450	223,673	1,542,413	(472,119)	1,070,295	0	275,813	8,901,892
2034	•	1,573,262	•	17,894	205,779	1,573,262	(482,164)	1,091,098	0	263,593	9,165,484
2035	•	1,604,727	•	16,462	189,317	1,604,727	(492,362)	1,112,365	0	251,927	9,417,411
2036	•	1,636,821		15,145	174,171	1,636,821	(502,720)	1,134,102	0	240,789	9,658,200
2037	•	1,669,558		13,934	160,238	1,669,558	(513,243)	1,156,314	0	230,154	9,888,354
2038	•	•		12,819	147,419	•	3,974	3,974	0	742	9,889,096
2039	•	•	•	11,793	135,625	•	3,656	3,656	0	640	9,889,735
2040	•	•	•	10,850	124,775	•	3,364	3,364	0	552	9,890,287
2041	•	•	•	9,982	114,793	•	3,094	3,094	0	476	9,890,763
2042	•	•		9,183	105,610	•	2,847	2,847	0	410	9,891,173
2043	•	•		8,449	97,161	•	2,619	2,619	0	354	9,891,527
2044	•	•		7,773	89,388	•	2,410	2,410	0	305	9,891,832
2045	•	•	•	7,151	82,237	•	2,217	2,217	0	263	9,892,095
2046	•	•		6,579	75,658	•	2,039	2,039	0	227	9,892,322
2047	•	•	•	6,053	69,605	•	1,876	1,876	0	196	9,892,518
2048	•	•		5,568	64,037	•	1,726	1,726	0	169	9,892,687
2049	•	•	•	5,123	58,914	•	1,588	1,588	0	146	9,892,833
2050	•	•	•	4,713	54,201	•	1,461	1,461	0	126	9,892,958
2051	•	•	•	4,336	49,865	•	1,344	1,344	0	108	9,893,067
2052	•	•	•	3,989	45,876	•	1,521	1,521	0	115	9,893,181
Total		34,287,451	(1,342,139)	1,296,263	15,578,099	32,945,312	(10,272,608)	22,672,704	15	9,893,181	293,363,186

Generation

Steam Cls 10 -31

Title:

LIN Fire Suppression - Cable Spreading Rooms

Start Date:	2012/06
Final Cost Date:	2012/10
Function:	Generation
Forecast Amount:	\$918,292

DESCRIPTION:

This project includes the addition of a fixed fire protection system for the four cable spreading rooms at the Lingan Generating Station. At the time of construction, the fire protection infrastructure was adequate, but a recent risk analysis identified that existing fire protection in the cable spreading rooms no longer meets current industry standards.

The cable spreading rooms contain a high concentration of critical power and communication cables and fire protection systems that meet current industry standards are required to protect these cables.

This project completes the planned fire protection upgrades as identified in the most recent assessment of fire protection systems for all NSPI thermal plants.

Summary of Related CI's +/- 2 years: 2010 CI 38846 LIN1 Fire Protection/ Turbine \$293,207 2011 CI 40184 LIN2 Fire Protection Turbine Hall \$343,611 2011 CI 40212 LIN3,4 Burner Fronts Fire Protection \$51,889

JUSTIFICATION:

Justification Criteria: Health and Safety

Why do this project?

In a recent assessment of fire protection systems at all NSPI thermal plants, the cable spreading rooms were identified as a risk and requiring upgrades to the fire protection system. This risk is best mitigated by applying a fixed fire protection system around the equipment in these rooms.

Why do this project now?

As a result of recent inspections, NSPI's insurance providers have recommended the need to introduce additional fire protection system modifications. Completing this project now will ensure the fire protection system is returned to current industry standards providing adequate loss control.

Why do this project this way?

The benchmark study used for assessing loss control practices was NFPA 850 and FM DS7-1 01. Although they are recommended practices, they have become industry guidelines, widely used by insurers in risk assessments for power generation facilities. The new fire protection system will be integrated into the current system that exists at the plant. A clean gaseous system is proposed in order to limit the risk of water damaging the equipment in the cable.

- LIN - Cable Spreading Rooms Fire Protection

Project Number

•• Parent CI Number

- 304-Lingan 1&2 Prod. Unit Cost Centre : 304

.

2012 ACE Plan **Budget Version**

- u
-
-
_
_
_
-
•
_
-
•
_
_
<u> </u>
_
<u> </u>
- 6
-
_
_
_
_
- 63
_
_
_
_
-
-

Capit	al Item /	Accounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		16,512	0	16,512
095		095-Thermal Regular Labour AO		22,979	0	22,979
095		095-Thermal & Hydro Contracts AO			0	
001	004	001 - THERMAL Regular Labour	004 - SGP - Misc.Equipment	95,708	0	95,708
002	004	002 - THERMAL Overtime Labour	004 - SGP - Misc.Equipment	0	0	0
004	004	004 - THERMAL Term Labour	004 - HGP - Misc.Equipment	0	0	0
011	004	011 - Travel Expense	004 - SGP - Misc.Equipment	2,000	0	2,000
012	004	012 - Materials	004 - SGP - Misc.Equipment		0	
013	004	013 - POWER PRODUCTION Contrac	ts 004 - SGP - Misc.Equipment		0	
028	004	028 - Consulting	004 - DP - Misc.Equipment	0	0	0
041	004	041 - Meals & Entertainment	004 - SGP - Misc.Equipment	0	0	0
			Total Cost:	918,292	0	918,292

Original Cost:

Location: Cl#: Title:	Lingan 41229 LIN - Cable Spreading Rooms Fire Protection					ower e	nergy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (CI#'s) Note 1
1	001 Regular	Labour					
1.1	Plant / Generation Services Engineering - Technical and Project Support	hr			\$7,000		
1.2	Mech Trades Supervision -	hr	80	45.00	3,600		
1.3	Mech Trades - Install Supports	hr	160	39.50	6,320		
1.4	Elect Trades - El Panel and Connections	hr	1259	42.50	53,508		
1.5	Mech Trades - Room Seal	hr	640	39.50	25,280		
				Sub-Total	95,708		
2	012 Mater	ials					
2.1	Fire Supression materials	ea	4	-		Aug 2, 2011 Budget Pricing - Note 2	
2.3					-		
				Sub-Total			
3	013 Power Product	ion Contrac	ts				
3.1	Fire Protection System Fixed Price Contract incl Matis	ea	4			Aug 2, 2011 Budget Pricing - Note 2	
3.3				Sub-Total			
4 4.1	Gen Services Engineering Travel, Meals - 3 trips	ea	1	2000	2,000		
4.2							
4.0				Sub-Total	2,000		
5	094 Interest Ca	pitalized					
5.1 5.2					16,512		
5.3							
				Sub-Total	16,512		
6	095 Administrativ	e Overhead					
6.2	Thermal Regular labour AO				22,979		
6.3				Sub-Total			
Project	Cost Estimate			Total	\$918,292		
7 7.1	Uriginal Cost						
Note 1: Refe	rence to "Completed similar projects (Cl#'s)" is to be provided when the it	em estimate	e is based on v	vork of similar scop	e for a recently corr	pleted project.	
Note 2: Budg Staff estimate	et estimate of \$375K is for two rooms. Therefore, budget estimate for su e 30% of the total cost for materials and 70% for contracts. For each of t	pply of mate he four room	erials and insta ns - \$56,250 m	allation for all four r aterials, and \$131,	ooms is \$750K. Bas 250 for contracts.	sed on previous exper	ience, NSPI Engineering
Generating Station	Area	Protection	0100		stment lime	irrame	1100
-----------------------	--	---	------	-------	-------------	--------	------
	Unit 1 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler	X	- 107	7117	2107	2017
	Fire System Electrical Panel Upgrades		×>				
	rite Systerii vaive Kepiacement. Unit 1 Burner Front	Wet Automatic Sprinkler	< ×				
	Unit 2 Burner Front	Wet Automatic Sprinkler	×				
	Unit 2 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler		×			
	Unit 3 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler		×			
uepai I	Unit 3 Burner Front	Wet Automatic Sprinkler		× >			
спидал	Unit 4 Burner From Thit 1/2 Cable Spreading Room Fley, 112 5 m (4 m ¥ 12 m ¥	Wet Autornatic Sprinkier Clean Gaseoriis (Noviec 1230, Inergen), Vietarilic		<			
	36 m) 1728 cubic metres, 61,000 cubic feet	Vortex or VEWFD with Pre-Action			×		
	Unit 1/2 Cable Spreading Room Elev. 120.2 m (3 m X 12 m X 12 3 2 m) 1522 m (100 m) 1523 m) 173 m) 1523 m) 1000 m) 1523 m) 1523 m) 1523	Clean Gaseous (Novec 1230, Inergen), Victaulic			×		
	42.3 mJ 1322 cubic menes, 34,000 cubic reet 1 Ibit 3/4 Cable Spreading Room Elev. 112 5 m (4 m ¥ 12 m ¥	Clean Gaseotis (Noviec 1230 Inergen) Victaulic					
	36 m) 1728 cubic metres, 61,000 cubic feet	Vortex or VEWFD with Pre-Action			×		
	Unit 3/4 Cable Spreading Room Elev. 120.2 m (3 m X 12 m X	Clean Gaseous (Novec 1230, Inergen), Victaulic			×		
	42.3 m) 1522 cubic metres, 54,000 cubic reet	VOITEX OF VE WFU WITH PTE-ACTION		>			
	Unit I Burner Froms Thit 1 Switch Gear Boom Elevation 107.2 m /25 m Y 11.5 m Y	Wet Autornatic Sprinkier Clean Gaseoriis (Noviec 1230, Inergen), Vietarilic		<			
Doint Accel	6 m) 2175 cubic metres, 77,000 cubic feet	Vortex or VEWFD with Pre-Action		×			
	Unit 1 Relay Room Elevation 113.2 m (25 m X 14.5 m X 6 m)	Clean Gaseous (Novec 1230, Inergen), Victaulic		×			
	Z175 cubic metres, 77,000 cubic reet Hibit 1 Turbine - Generator Sprinkler System	VOITEX OF VE WYFU WITH PRE-ACTION Dra-Action Water Sprinklar					×
	Unit 1 Jubrite - Generator Spininker System Init 1/2 Cable Seconding Boom Elevation 7100 m V 6 m V	Fle-Addul Watel Spillinel Close Germanie (Novice 1230 Incread) Victorialia					<
	2.5 m) 1250 cubic metres. 45.000 cubic feet	Vortex or VEWFD with Pre-Action				×	
Point Tupper	Fire System Electrical Panel Upgrade					×	
	Unit 1 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler					Х
	Replace Fire Pumps - More Capacity						Х
	Fire System Upgrades		×				
	Unit 5 Burner Front	Wet Automatic Sprinkler	×	:			
	Unit 6 Burner Front	Wet Automatic Sprinkler		×	:		
	Unit 5 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler			××		
	Unit 6 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler			×		
	Unit 6 4160 Switchgear Cable Spreading Room Elevation 29.8 m (7.6 m X 37.8 m X 3 m) 860 cubic metres, 30,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action			×		
Irenton	Unit 6 MCC Cable Spreading Room Elevation 22.7 m (7.6 m X 37 8 m X 3 m) 860 cubic metres 30 000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWED with Pre-Action			×		
	Unit 5 Relay Room Elev 42 ft (50 ft X 30 ft X 12 ft) 18,000	Clean Gaseous (Novec 1230, Inergen), Victaulic				×	
	Unit 5 4160 v Switch Gear Room Elev. 73' 0" (100' X 20' X	Clean Gaseous (Novec 1230, Inergen), Victaulic				>	
	15') 30,000 cubic feet	Vortex or VEWFD with Pre-Action				<	
	Unit 5 4160 v Switch Gear Cable Area Elev. 57' 6" (100' X 20' v 15') on on article foot	Clean Gaseous (Novec 1230, Inergen), Victaulic				×	
	X 15) 30,000 cubic reet	VORTEX OF VEWED WITH PRE-ACTION	>				
	Unit i Burner Front Ubit 2 Burner Front	wet Automatic Sprinkler Wet Automatic Sprinkler	<				
	Unit 3 Burner Front	Wet Automatic Sprinkler	××				
	TUC 6 Turbine-Generator and Lube Oil Sprinkler, Transformer	Pre Action Water Sprinkler and Deluge	×				
Tufts Cove	Unit 2 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler				×	
	Unit 3 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler				×	
	Fire System Electrical Panel Upgrade					×	
	Unit 1 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler					×
	Cable Spreading/Relay Room	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action					×

Title:

TUC3 – Turbine High Pressure (HP) Impulse Blades Replacement

Start Date:	2012/07
Final Cost Date:	2012/12
Function:	Generation
Forecast Amount:	\$882,152

DESCRIPTION:

The Tufts Cove Unit #3 turbine contains a high-pressure (HP), intermediate-pressure (IP) and low-pressure (LP) cylinder which work together to rotate the Unit #3 generator and result in the production of electrical energy. The HP turbine section is subjected to continuous high-temperature and high-pressure service conditions which results in blade material degradation over time which require replacement to ensure the continued reliable operation of the turbine.

Summary of Related CI's +/- 2 years: 2012 CI 41251 TUC3 Turbine High Pressure Cylinder Fastener Replacement \$275,729

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

Recent engineering analysis of the HP turbine impulse blade root material determined that the accumulated creep strain in the root fixings are projected to be higher than recommended by the Original Equipment Manufacturer (OEM) and there is potential for cracks to form in the impulse blades in the near term. The OEM recommends the replacement of the HP turbine impulse blades to mitigate the risk of blade failure, which would potentially result in further damage to the turbine and an un-planned outage.

Why do this project now?

Replacing the HP blades now will address the blade integrity concerns due to creep and mitigate the risk of an unplanned failure. Delaying the project beyond the scheduled 2012 outage would increase the risk of a blade root failure; which could result in an unplanned unit outage of significant duration.

Why do this project this way?

Replacement of the HP blades to address the blade integrity concerns is the only option.

- TUC - Unit 3 Turbine HP Impulse Blades Replacement	
: 41228-S868	
CI Number	

•

- 319-TC Unit 3 Capital

2012 ACE Plan **Budget Version**

Cost Centre : 319

Capit	tal Item A	ccounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		15,240	0	15,240
095		095-Thermal Regular Labour AO			0	
095		095-Thermal & Hydro Contracts AO			0	
001	010	001 - THERMAL Regular Labour	010 - SGP - Turbo Gen.Instal.	43,400	0	43,400
012	010	012 - Materials	010 - SGP - Turbo Gen.Instal.		0	
013	010	013 - POWER PRODUCTION Contract	s 010 - SGP - Turbo Gen.Instal.		0	
			Total Cost:	882,152	0	882,152
			Original Cost:	226,000		

Locat FP#: Title:	tion: Tufts Cove 41228 TUC3 - Turbine High Pressure (HP) Impulse				~	Nova Scotia POWER An Emera Company	energy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
. .							
1	0	J01 Regular	/ Labour	00.00	40.000		_
1.1	Generation Services Engineering	hr	160	80.00	12,800	 	-
1.2	Electrical / iviecnancial i radesperson	nr	080	45.00	30,600	l	
1.3	<u> </u>	<u> </u>	<u> </u>	Sub-Total	43.400		39529
				040	,		
2	013 Por	wer Produc	tion Contrac	ts		1	
2.1	Labour and Services	lot	1				
2.2	Project manager	lot	1				
2.3	Site inspector	lot	1				
	L			ļl	ب ا		
1 '		───	───	↓	ب	<u> </u>	
			+	↓	,P	<u> </u>	-
	<u> </u>	+		┥────┦	/		-
		+	+	┼────┤	·		
				Sub-Total		b	39529
						4	
3	[012 Mate	erials		·		
3.1	HP Spindle Impulse Blading	lot	1			quote EH3881	
3.2	Contingency					<u> </u>	
3.3							
				Sub-Total			
						4	
4	094	4 Interest C	apitalized		15.010	l	
4.1	Interest		───	↓	15,240	<u> </u>	-
4.Z			+		با	l	
4.3	<u> </u>			Sub-Total	15 240		
				Oub rotai	10,2.0	<u> </u>	<u></u>
5	095 A	dministrat	ive Overhead	1	,	1	
5.1	AO	T	T	<u>г</u>	36,513		Т
5.2			1				1
5.3			1	1	i T		
				Sub-Total	36,513		
Projec	t Cost Estimate			Total	\$882,153		
6	Original Cost						
6.1					\$226,000		
Note 1	: Reference to "Completed similar projects (F	P#'s)" is to	be provided w	vhen the item estimation	ate is based on work	k of similar scope for a re	cently completed project

TUC3 - Turbine High Pressure (HP) Impluse Blades Summary of Alternatives & Assumptions

	Nova Scotia
-	POWER
-	An Empire Company

energy everywhere."

Budget Year :	2012	Date :	31-Oct-11
Division :	Power Production	CI Number:	41228
Department :	Tufts Cove	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Replace Blades	6.67%	1,540,601	1	385.99%	1.3 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the HP impulse blades be replaced

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Replace Blades

1

-30% Minus the Probability of failure in year 1

70% Probability that unit does not fail in year 1

х

35% Probability of unit failing in year 2 if no failure occurs in year 1

25% Actual probability of the unit failing in year 2

Avoided Cost Calculations

	Budget Year : Division : Department : Originator :	2012 Power Production Tufts Cove	Date : Cl Number: Project No.	31-Oct-11 41228
Replace Blades Capital Cost	\$-			
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	MWh x 1 \$ 3,000,000 x 30% x \$1,086,278.40	outages x 70% x 30% x 1 = \$ 900,000	MW x 1	680 h = \$186,278
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	MWh x 1 \$ 3,060,000 x 24.5% x \$ 901,827.36	outages x 70% x 24.5% x 1 = \$ 749,700	MW x 1	680 h = \$152,127

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Replace Blac	he nign Fressur les	e (חר / וווון שמושים שמוועוווו									
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012	•	1,086,278	(882,153)	35,286	846,867	204,125	(358,036)	(153,911)	1	(153,911)	(153,911)
2013	•	901,827	•	67,749	779,118	901,827	(271,470)	630,358	-	590,942	437,031
2014	•	683,327	•	62,329	716,788	683,327	(192,633)	490,694	۲	431,247	868,279
2015		470,471		57,343	659,445	470,471	(128,070)	342,401	1	282,104	1,150,382
2016		293,260	•	52,756	606,689	293,260	(74,661)	218,599	F	168,842	1,319,224
2017	•	164,519	•	48,535	558,154	164,519	(35,955)	128,564	~	93,091	1,412,315
2018	•	82,379	•	44,652	513,502	82,379	(11,695)	70,684	~	47,981	1,460,295
2019	•	36,412	•	41,080	472,422	36,412	1,447	37,859	-	24,092	1,484,387
2020	•	13,999	•	37,794	434,628	13,999	7,376	21,375	~	12,752	1,497,139
2021		•	•	34,770	399,858		10,779	10,779	~	6,028	1,503,167
2022	•	•	•	31,989	367,869		9,916	9,916	~	5,199	1,508,367
2023	•		•	29,430	338,440	•	9,123	9,123	0	4,484	1,512,851
2024		•	•	27,075	311,364		8,393	8,393	0	3,867	1,516,718
2025	•	•	•	24,909	286,455		7,722	7,722	0	3,336	1,520,054
2026	•	•	•	22,916	263,539		7,104	7,104	0	2,877	1,522,931
2027	•	•		21,083	242,456		6,536	6,536	0	2,481	1,525,412
2028	•	•		19,396	223,059		6,013	6,013	0	2,140	1,527,552
2029	•	•		17,845	205,215		5,532	5,532	0	1,846	1,529,397
2030	•	•		16,417	188,797		5,089	5,089	0	1,592	1,530,989
2031	•	•	•	15,104	173,694		4,682	4,682	0	1,373	1,532,362
2032		•	•	13,895	159,798		4,308	4,308	0	1,184	1,533,546
2033		•	•	12,784	147,014		3,963	3,963	0	1,021	1,534,567
2034	•	•	•	11,761	135,253	•	3,646	3,646	0	881	1,535,448
2035	•	•	•	10,820	124,433		3,354	3,354	0	760	1,536,208
2036	•		•	9,955	114,478		3,086	3,086	0	655	1,536,863
2037		•	•	9,158	105,320		2,839	2,839	0	565	1,537,428
2038	•	•	•	8,426	96,894		2,612	2,612	0	487	1,537,916
2039	•	•	•	7,752	89,143		2,403	2,403	0	420	1,538,336
2040		•		7,131	82,011		2,211	2,211	0	363	1,538,699
2041	•		•	6,561	75,451	•	2,034	2,034	0	313	1,539,011
2042	•	•	•	6,036	69,414	•	1,871	1,871	0	270	1,539,281
2043	•	•	•	5,553	63,861	•	1,721	1,721	0	233	1,539,513
2044	•	•	•	5,109	58,752	•	1,584	1,584	0	201	1,539,714
2045	•		•	4,700	54,052	•	1,457	1,457	0	173	1,539,887
2046	•	•	•	4,324	49,728	•	1,340	1,340	0	149	1,540,036
2047	•	•	•	3,978	45,750	•	1,233	1,233	0	129	1,540,165
2048	•	•	•	3,660	42,090	•	1,135	1,135	0	111	1,540,276
2049	•		•	3,367	38,723	-	1,044	1,044	0	96	1,540,372
2050	•		•	3,098	35,625		960	960	0	83	1,540,454
2051	•		•	2,850	32,775		883	883	0	71	1,540,526
2052			•	2,622	30,153		1,000	1,000	0	76	1,540,601
Total	•	3,732,473	(882,153)	852,000	10,239,078	2,850,320	(938,122)	1,912,198	15	1,540,601	58,513,788

Blades	
Impluse	
e (HP)	
Pressure	
High	
Turbine	ā
ខ្ញុ	-

Title:

TRE6 – Human / Machine Interface (HMI) Upgrades

Start Date:	2012/04
Final Cost Date:	2012/12
Function:	Generation
Forecast Amount:	\$867,805

DESCRIPTION:

This project includes the replacement of the plant's existing Human Machine Interface (HMI) for Trenton Unit #6. The HMI is one of the five functional areas of the Distributed Control and Management System (DCMS). The functional areas of the DCMS include:

- (1) Input / Output (I/O) systems. These systems communicate input signals from operating equipment in the plant and communicate signals from the Control Room to the operating equipment.
- (2) Controllers Interpret the input signals from field instruments and operator requests and determine the output signals.
- (3) Communication networks Communicate information between the I/O systems, controllers and HMI.
- (4) Power Systems- Provide power for all components and signals.
- (5) HMI The Operator's interface with the DCMS, which includes operator computers, controls software and communications hardware for monitoring, troubleshooting, and programming the DCMS.

The scope of this project includes replacement of the existing HMI with new equipment designed to current standards. This includes new operator computers, implementation of new controls software, upgrading the existing graphics and installation and commissioning of the new operator stations.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

The HMI is used to interface the plant's operating equipment to the control room and allow the Operator to view the process information, select operating set points and enact control. The existing equipment is obsolete and spare parts can no longer be obtained. Completing this project will mitigate the risk of HMI component failure and the loss of control over the plant's equipment.

Why do this project now?

The existing HMI components were procured in the late 1980's and are no longer supported by the Original Equipment Manufacturer (OEM). Spare parts for the HMI have been depleted and completing this project now will mitigate the risk of DCMS failure, potential unplanned outages and associated replacement energy costs

Why do this project this way?

The existing equipment is obsolete and no longer supported by the OEM. Replacement with equipment designed to current standards is the only option.

CI Number : ²⁸⁶⁷⁴

- TRE6 - Human Machine Interface (HMI) Upgrade

Parent CI Number :

.

- 345-Trenton unit 6 Capital

Project Number

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 345

Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
001		001 - THERMAL Regular Labour			124,560	0	124,560
002		002 - THERMAL Overtime Labour			91,530	0	91,530
011		011 - Travel Expense			5,000	0	5,000
012		012 - Materials				0	
013		013 - POWER PRODUCTION Contracts	(0			0	
041		041 - Meals & Entertainment			1,650	0	1,650
094		094 - Interest Capitalized			8,518	0	8,518
095		095-Thermal Overtime Labour AO			10,988	0	10,988
095		095-Thermal Regular Labour AO			29,907	0	29,907
095		095-Thermal & Hydro Contracts AO				0	
				Total Cost:	867,805	0	867,805
			0	Driginal Cost:	595,013		

uman Machine Interface (HMI) Upg	rade				An Emera Company	
Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Sim Projects (CI#'s) N
00	1 Poqular	Labour				
al Support Supervisor	hr	Labour		\$12 600		
t Supervisor	hr			21,000		
al & Instrumentation Labour	hr	1200	45.00	54,000		
r Labour	hr	360	45.00	16,200		
ency	%	20%	Out Tatal	20,760		20020
			Sub-Total	124,560		38826
002	2 Overtime	e Labour				
t Supervisor	hr	Laboa		12.375		1
al & Instrumentation Labour	hr	560	90.00	50,400		
r Labour	hr	150	90.00	13,500		
ency	%	20%		15,255		
			Sub-Total	91,530		38826
	012 Mate	riale			1	
aterials including cable and desks	UIZ Wate	1				38826
of hardware and software	ea	1			LBC-110719-1 Pa 11	00020
ency	%	10			g	
•			Sub-Total			
013 Powe	er Product	ion Contrac	ts			
ring services for HMI	unit	1			LBC-110719-1 Pg 11	
supervision and commissioning	hr	80			LBC-110719-1 Pg 11	
tor travel and living expenses	day	25				
	1=4					
Spares	IOL	1			-	
ancy	%					
	,,		Sub-Total			
						-
011	1 Travel E	xpenses		=		
28	day	25	200.00	5,000		
			Sub-Total	5,000		
						•
041 Me	als and Er	ntertainmen	t			
es	day	25	6 <mark>6</mark> .00	1,650		
				-	ļ	
	l		Sub-Total	- 1 650		
				1,000		1
094	Interest C	apitalized				
				8,518		
			Sub-Total	8,518		
005 Ad	ministrativ	ve Overhead	4		1	
Labour AO	ministrativ	ve overneat	а 	29 907		T
ts AO				20,001		1
e Labour AO				10,988	[1
			Sub-Total			
			Total	\$867,806		
Cost				\$595,000		
Cost				Sub-Total Total	Sub-Total Total \$867,806 \$595,000	Sub-Total \$867,806 Total \$595,000

TRE6 HMI Upgrade

Summary of Alternatives & Assumptions

	Nova Scotia
-	POWER
	An Emera Company

energy everywhere."

Budget Year :	2012	Date :	29-Oct-11
Division :	Power Production	CI Number:	28674
Department :	Trenton	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	HMI Upgrade	6.67%	3,484,105	1	70.60%	2.7 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a Positive NPV, it is recommended that the HMI Upgrade proceed as planned

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: HMI Upgrade

-5% Minus the Probability of failure in year 1

- 95% Probability that the HMI / DMCS does not fail in year 1
- х

1

6% Probability of HMI / DCMS failing in year 2 if no failure occurs in year 1

6% Actual probability of the HMI / DCMS failing in year 2

energy everywhere."

Avoided Cost Calculations

	Budget Year : Division : Department :	2012 Power Production Trenton	Date : CI Number: Project No.	29-Oct-11 28674
HMI Upgrade				
Capital Cost Avoided Replacement Energy costs (2012) =	\$ 867,805	1 outages x 90% x 1 = \$40,000,00	5% x MW x 2880	h = \$396,175.0

Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	\$ 800,000.00 x \$436,175.03	5% X 1 =	\$40,000.00		
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	MWh \$ 832,160.00 x \$ 499,175.17	x 1 outages x 6% x 1 =	< 90% x 5.7% x ≆ \$47,433.12	MW x 2880 h =	\$451,742.05

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012	•	436,175	(867,805)	34,712	833,093	(431,630)	(137,185)	(568,815)	-	(568,815)	(568,815)
2013	•	499,073	•	66,647	766,446	499,073	(140,926)	358,146	-	335,752	(233,063)
2014	•	559,313	•	61,316	705,130	559,313	(154,501)	404,812	1	355,770	122,707
2015	•	607,521	•	56,410	648,720	607,521	(170,844)	436,677	1	359,777	482,484
2016	•	642,611	•	51,898	596,822	642,611	(183,224)	459,387	-	354,821	837,305
2017	•	664,062	•	47,746	549,076	664,062	(191,058)	473,004	-	342,494	1,179,799
2018	•	671,924	•	43,926	505,150	671,924	(194,679)	477,245	-	323,957	1,503,756
2019	•	666,793	•	40,412	464,738	666,793	(194,178)	472,615	-	300,754	1,804,510
2020	•	649,746	•	37,179	427,559	649,746	(189,896)	459,850	-	274,333	2,078,843
2021	•	622,260	•	34,205	393,354	622,260	(182,297)	439,963	-	246,057	2,324,900
2022	•	586,102	•	31,468	361,886	586,102	(171,937)	414,166	-	217,146	2,542,046
2023	•	543,223	•	28,951	332,935	543,223	(159,424)	383,799	0	188,642	2,730,687
2024	•	495,633	•	26,635	306,300	495,633	(145,389)	350,243	0	161,385	2,892,072
2025	•	445,299	•	24,504	281,796	445,299	(130,447)	314,853	0	136,006	3,028,078
2026	•	394,053	•	22,544	259,253	394,053	(115,168)	278,885	0	112,936	3,141,014
2027	•	343,512	•	20,740	238,512	343,512	(100,059)	243,453	0	92,423	3,233,437
2028	•	295,029	•	19,081	219,431	295,029	(85,544)	209,485	0	74,555	3,307,992
2029	•	249,664	•	17,555	201,877	249,664	(71,954)	177,710	0	59,292	3,367,284
2030	•	208,178	•	16,150	185,727	208,178	(59,529)	148,650	0	46,495	3,413,778
2031	•	171,044	•	14,858	170,869	171,044	(48,418)	122,626	0	35,957	3,449,735
2032	•	138,474		13,669	157,199	138,474	(38,689)	99,785	0	27,429	3,477,165
2033	•	•		12,576	144,623	•	3,899	3,899	0	1,005	3,478,169
2034	•	•	•	11,570	133,053		3,587	3,587	0	866	3,479,036
2035	•	•	•	10,644	122,409		3,300	3,300	0	747	3,479,783
2036	•	•	•	9,793	112,616		3,036	3,036	0	645	3,480,428
2037	•	•	•	6006	103,607		2,793	2,793	0	556	3,480,983
2038	•	•	•	8,289	95,318	•	2,569	2,569	0	479	3,481,463
2039	•	•	•	7,625	87,693		2,364	2,364	0	414	3,481,876
2040	•	•	•	7,015	80,678	•	2,175	2,175	0	357	3,482,233
2041	•	•	•	6,454	74,223		2,001	2,001	0	308	3,482,541
2042	•	•	•	5,938	68,285	•	1,841	1,841	0	265	3,482,806
2043	•	•	•	5,463	62,823		1,693	1,693	0	229	3,483,035
2044	•	•	•	5,026	57,797	•	1,558	1,558	0	197	3,483,232
2045	•	•	•	4,624	53,173	•	1,433	1,433	0	170	3,483,402
2046	•	•	•	4,254	48,919	•	1,319	1,319	0	147	3,483,549
2047	•	•	•	3,914	45,006		1,213	1,213	0	127	3,483,676
2048	•	•	•	3,600	41,405	•	1,116	1,116	0	109	3,483,785
2049	•	•	•	3,312	38,093	•	1,027	1,027	0	94	3,483,879
2050	•	•	•	3,047	35,045		945	945	0	81	3,483,960
2051	•	•	•	2,804	32,242	•	869	869	0	70	3,484,030
2052			•	2,579	29,662		983	983	0	74	3,484,105
Total		9,889,690	(867,805)	838,143	10,072,546	9,021,885	(2,825,626)	6,196,259	15	3,484,105	113,761,686

Title:

TUC2 – Generator Excitation & AVR System Replacement

Start Date:	2012/05
Final Cost Date:	2012/12
Function:	Generation
Forecast Amount:	\$844,543

DESCRIPTION:

The excitation system for a synchronous generator provides the DC field current to the generator rotor. The DC field current is derived from rectifying an AC supply. The excitation system includes the thyristor rectifier bridges, Automatic Voltage Regulator (AVR), field circuit breaker, monitoring and control. The AVR automatically controls the generator voltage via field current regulation and is integral to the excitation system.

The existing excitation system will be completely replaced with modern digital static excitation system equipment, excluding the existing exciter transformer.

This project includes the specification and replacement of existing Auto Voltage Regulation devices on Unit #2 at the Tufts Cove Generating Station. The existing AVR devices are obsolete and are no longer supported by the Original Equipment Manufacturer (OEM).

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

The excitation system for Tufts Cove #2 generator is now obsolete. The OEM no longer supports this equipment and it is no longer possible to source spare parts or receive technical support service. A dependable excitation system is required for reliable operation of Unit #2.

Why do this project now?

The spare parts originally supplied with the system have now been depleted and replacement parts are no longer available. Replacing the excitation system now will mitigate the risk of an unplanned outage and associated replacement energy costs

Why do this project this way?

Replacement of the obsolete excitation system and AVR is the only option. The existing AVR equipment removed from Unit #2 will be salvaged where possible and used for spares to support potential repairs that may be required for Unit #1. Completing this project will reduce the risks associated with obsolescence on Unit #1 until the generator excitation and AVR system is replaced on that Unit.

CI Number : ³⁹⁹²³

2012 ACE Plan

Budget Version

Parent Cl Number :

Cost Centre : 311

- 311-Tufts Cove Admin./Common Capita

.

Patient Monthern

Capit	al Item /	Accounts					
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance	
094		094 - Interest Capitalized		44,747	0	44,747	
095		095-Thermal Regular Labour AO			0		
095		095-Thermal & Hydro Contracts AO			0		
095		095-Thermal Overtime Labour AO		1,561	0	1,561	
001	010	001 - THERMAL Regular Labour	010 - SGP - Turbo Gen.Instal.	220,575	0	220,575	
002	010	002 - THERMAL Overtime Labour	010 - SGP - Turbo Gen.Instal.	13,000	0	13,000	
011	010	011 - Travel Expense	010 - SGP - Turbo Gen.Instal.	35,000	0	35,000	
012	010	012 - Materials	010 - SGP - Turbo Gen.Instal.		0		
013	010	013 - POWER PRODUCTION Contra	tts 010 - SGP - Turbo Gen.Instal.		0		
041	010	041 - Meals & Entertainment	010 - SGP - Turbo Gen.Instal.	2,000	0	2,000	
			Total Cost:	844,543	0	844,543	
			Original Cost:	225,947			

Loca FP#: Title:	tion: Tufts Cove 39923 TUC2 - Generator Excitation and AVR Syste	m Replace	ment			ova Scotia POWER en n Emera Company	ergy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost support Reference	Completed Similar Projects (FP#'s) Note 1
		04 D	1				
1	U Regular Labour (electrical Mechanical)	01 Regular	Labour	65	¢113 /25		
1.2	Legal Services	hr	1143	00	10,500		
1.3	Project supervisor	hr			30,000		
1.4	Procurement Services	hr			4,550		
1.5	Engineering Services	hr			29,750		
1.6	CADD Specialist	hr	1	20,000	12,350		
1.7	Contingency	IOT	1	20,000	20,000		
1.0				Sub-Total	220,575		39926
2		012 Mate	erials			And C 0044 Overte and	1
21	Excitation / AVR System	lot	1			supplemental email	
2.2	Control Room HMII	lot	1	-			39926
2.3	Control Cables	lot	1				39926
2.4	DC Cables	lot	1				39926
2.5	Cable Tray	lot	1			A 110 0011 0 1	39926
2.6	AVR Spare Parts	lot	1			April 6, 2011 Quote	20026
2.8	Power Builder Software	lot	1				39926
2.9		101					00020
				Sub-Total			
3	013 Pov	ver Produc	tion Contrac	ts			
3.1	Engineering	hr	160	-		April 6, 2011 Quoto	39926
3.2	Commissioning	Int	200			April 6, 2011 Quole	
3.4	PSS Study	lot	1	•		April 6, 2011 Quote	
3.3	Training	lot	1			April 6, 2011 Quote	
				Sub-Total			
4	00	12 Overtim	a Labour			1	
41	Overtime Labour	br	200	65	13 000		1
4.2	o ronanio Educar		200		10,000		
4.3							
				Sub-Total	13,000		
5	041 M	oals and F	ntertainment			1	
5.1	Meals and Entertainment		1	2.000	2.000		1
5.2				,	,		
5.3							
				Sub-Total	2,000		
6	011 -	Travel and	d Expenses			1	
6.1	Travel and Expenses	lot	1	35,000	35,000		
6.2							
6.3							
				Sub-Total	35,000		
8	09/	I Interest C	anitalized			1	
81	Interest				44 747		1
8.2					,		
8.3							
<u> </u>				Sub-Total	44,747		
8	095 A	dministrati	ve Overhead		<u></u>		
8.1 8.2					61,121		l
8.3							
	1	·	<u> </u>	Sub-Total	61,121		
Projec	ct Cost Estimate			Total	\$844,543		
9	Original Cost				¢225 047		
9.1 Note 1	: Reference to "Completed similar projects (FI	P#'s)" is to P	w bebiyona a	hen the item estimation	ate is based on worl	k of similar scope for a rec	ently completed project
		-, 10101					,

TUC2 Replace Excitation and AVR system Summary of Alternatives & Assumptions

Nova Scotia
 POWER
An Emera Company

energy everywhere."

Budget Year :	2012	Date :	28-Oct-11
Division :	Power Production	CI Number:	39923
Department :	Tufts Cove	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Replace AVR system	6.67%	204,466	1	26.58%	3.2 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on positive NPV, it is recommended that the AVR system be replaced

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Replace AVR system

1

-50% Minus the Probability of failure in year 1

50% Probability that unit does not fail in year 1

х

50% Probability of unit failing in year 2 if no failure occurs in year 1

25% Actual probability of the unit failing in year 2

Avoided Cost Calculations

Replace AVR system				
	Originator :			
	Department :	Tufts Cove	Project No.	
	Division :	Power Production	CI Number:	39923
	Budget Year :	2012	Date :	28-Oct-11

Capital Cost	\$ 844,543.00
Avoided Replacement Energy costs (2012) =	MWh x 2 outages x 70% x 50% x MW x 672 h = \$165,532
Avoided Unplanned Repair Costs (2012)	\$ 506,725.80 x 50% x 2 = \$ 506,726
Total Annual Avoided costs	\$672,258.01
Avoided Replacement Energy costs (2013) =	MWh x 2 outages x 70% x 25% x MW x 672 h = \$82,766
Avoided Unplanned Repair Costs (2013)	\$ 515,171.23 x 25% x 2 = \$ 257,586
Total Annual Avoided costs	\$ 340,351.72

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Replace AVI	R system										
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012		672,258	(844,543)	33,782	810,761	(172,285)	(217,751)	(380,036)	1	(390,036)	(390,036)
2013		340,352	•	64,861	745,900	340,352	(89,912)	250,440	1	234,780	(155,256)
2014		204,819		59,672	686,228	204,819	(45,114)	159,705	-	140,357	(14,899)
2015		104,141		54,898	631,330	104,141	(15,265)	88,876	-	73,225	58,326
2016		52,954		50,506	580,824	52,954	(859)	52,095	-	40,237	98,563
2017	.	43,465	•	46,466	534,358	43,465	930	44,395	-	32,146	130,709
2018	.	13,256	•	42,749	491,609	13,256	9,143	22,399	-	15,204	145,913
2019	.	4,043	•	39,329	452,280	4,043	10,939	14,982	-	9,534	155,447
2020	.	1,233	•	36,182	416,098	1,233	10,834	12,067	-	7,199	162,646
2021	.	376	•	33,288	382,810	376	10,203	10,579	-	5,916	168,562
2022	.	130		30,625	352,185	130	9,453	9,583	-	5,024	173,586
2023	.	40		28,175	324,011	40	8,722	8,761	0	4,306	177,893
2024		12		25,921	298,090	12	8,032	8,044	0	3,706	181,599
2025	.	4		23,847	274,242	4	7,391	7,395	0	3,194	184,794
2026		-		21,939	252,303	1	6,801	6,802	0	2,755	187,548
2027		0		20,184	232,119	0	6,257	6,257	0	2,376	189,924
2028		0		18,570	213,549	0	5,757	5,757	0	2,049	191,973
2029		0		17,084	196,465	0	5,296	5,296	0	1,767	193,740
2030	.	0	•	15,717	180,748	0	4,872	4,872	0	1,524	195,263
2031		0		14,460	166,288	0	4,483	4,483	0	1,314	196,578
2032		•		13,303	152,985	•	4,124	4,124	0	1,134	197,711
2033		•	•	12,239	140,746	•	3,794	3,794	0	978	198,689
2034		•	•	11,260	129,487	•	3,491	3,491	0	843	199,532
2035		•	•	10,359	119,128	•	3,211	3,211	0	727	200,260
2036		•	•	9,530	109,598	•	2,954	2,954	0	627	200,887
2037		•		8,768	100,830	•	2,718	2,718	0	541	201,428
2038		•		8,066	92,763	•	2,501	2,501	0	467	201,895
2039		•	•	7,421	85,342	•	2,301	2,301	0	402	202,297
2040		•		6,827	78,515	•	2,116	2,116	0	347	202,644
2041	•	•	•	6,281	72,234	•	1,947	1,947	0	299	202,943
2042	•	•	•	5,779	66,455	•	1,791	1,791	0	258	203,202
2043	•			5,316	61,139		1,648	1,648	0	223	203,424
2044	•	•	•	4,891	56,248	•	1,516	1,516	0	192	203,616
2045	•	•		4,500	51,748		1,395	1,395	0	166	203,782
2046	•			4,140	47,608		1,283	1,283	0	143	203,925
2047	•	•	•	3,809	43,799	•	1,181	1,181	0	123	204,048
2048	•	•	•	3,504	40,295	•	1,086	1,086	0	106	204,154
2049		•		3,224	37,072		666	666	0	92	204,246
2050	•	•	•	2,966	34,106	•	919	919	0	79	204,325
2051	•	•	•	2,728	31,377	•	846	846	0	68	204,393
2052	•	•		2,510	28,867		957	957	0	72	204,466
Total		1,437,084	(844,543)	815,676	9,802,542	592,541	(217,009)	375,531	15	204,466	6,484,739

Title:

LIN3 – Generator Excitation & AVR System Replacement

Start Date:	2012/03
Final Cost Date:	2012/08
Function:	Generation
Forecast Amount:	\$819,469

DESCRIPTION:

The excitation system for a synchronous generator provides the DC field current to the generator rotor. The DC field current is derived from rectifying an AC supply. The excitation system includes the thyristor rectifier bridges, Automatic Voltage Regulator (AVR), field circuit breaker, monitoring and control. The AVR automatically controls the generator voltage via field current regulation and is integral to the excitation system.

The existing excitation system will be completely replaced with modern digital static excitation system equipment, excluding the existing exciter transformer.

This project includes the specification and replacement of existing Auto Voltage Regulation (AVR) devices on Unit 3 at the Lingan Generating Station. The existing AVR devices are obsolete and are no longer supported by the Original Equipment Manufacturer (OEM).

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

The excitation system for Lingan Unit #3 generator is now obsolete. The OEM no longer supports this equipment and it is no longer possible to source spare parts, or receive technical support service. A dependable excitation system is required for reliable operation of Unit #3.

Why do this project now?

The spare parts originally supplied with the system have now been depleted and replacement parts are no longer available. Replacing the excitation system will mitigate the risk of an unplanned outage and associated replacement energy costs

Why do this project this way?

Replacement of the obsolete excitation system and AVR is the only option. The existing AVR equipment removed from Unit #3 will be salvaged where possible and used for spares to support potential repairs that may be required for Units 1,2 and 4. Completing one of the four Units will reduce the risks associated with obsolescence on the other three Units.

	ion 2012 ACE Plan		Variance	8,895	30,985		129,050	0	0	19,955				819,469	
	Budget Versi		Amount	0	0	0	0	0	0	0	0	0	0	0	
			Forecast Amount	8,895	30,985		129,050	0	0	19,955				819,469	263,000
	305-Lingan 3&4 Prod.Unit		Activity				010 - SGP - Turbo Gen.Instal.	cts 010 - SGP - Turbo Gen.Instal.	010 - SGP - Turbo Gen.Instal.	Total Cost:	Original Cost:				
mber :	centre : 305 -	Accounts	Account	094 - Interest Capitalized	095-Thermal Regular Labour AO	095-Thermal & Hydro Contracts AO	001 - THERMAL Regular Labour	002 - THERMAL Overtime Labour	004 - THERMAL Term Labour	011 - Travel Expense	012 - Materials	013 - POWER PRODUCTION Contra	028 - Consulting		
nt CI Nui	Cost C	tal Item /	Actv				010	010	010	010	010	010	010		
Pare		Capi	Acct	094	095	095	001	002	004	011	012	013	028		

Project Number

- LIN3 - Generator Excitation & AVR System Replacement

CI Number : 37611

Page 420 of 1189

Location: FP#:37611 Title:	Lingan LIN3 - Generator Excitation & AVR System Replacement					ova Scolia POWER ene n Emera Company ene	rgy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (Cl#'s) Note 1
1	001 Begula	ar Labour				-	
	Plant & Generation Services Engineering - Technical and Project						
1.1	Support	hr		_	8,000		
1.2	Electrical & Instrumentation Trades Supervision	hr	80	45.00	3,600		
1.3	Electrical and Instrumentation Trades	hr	2400	42.50	102,000		
1.5	Utility Trades	hr	120	30.00	3,600		
				Sub-Total	129,050		
						•	
2	012 Mat	terials	4	-		Drep cool 4146 4040	1
2.1	Power Builder SW - E circuit Design software	ea	1	-		Proposal 1116-1046	
2.3	Tools and Rigging - Misc	ea	1	-			
2.4	Cable Tray - new wire runs	ea	1				
2.5	DC Cables	ea	1	-			
2.6	AC Cable and misc materials	ea	1	_			
		\$		Sub-Total			
				oub rota			
3	013 Power Produ	ction Con	tracts			1	
3.1	services - (PSS study, training , site commission)	ea	1			Proposal 1116-1048	
3.2	Contingency for Cope of work	%	-				
3.3	NSPI Project Coordinator - Site work (five weeks)	hr	-			Deference Cent 0, 2014	
3.4	Electrical install detail design	hr				Rates	
3.5	Technical Assitance install support	hr				Reference Dec 20, 2010 Rates	
				Sub-Total			
4	028 Con	sultina				1	
4.1	As builts Records and document control general	hr					
4.2	Ŭ.					I	
4.3							
				Sub-Total			
5	011 Travel and	d 041 Mea	le			1	
51	Technical Assitance travel expenses and meals - five 5 weeks	ea	1	10 255	10 255		r
5.2	NSPI Engineering - travel expenses and meals - three trips	ea	1	1,650	1,650		
5.3	Site Manager travel expenses and meals - five weeks	ea	1	8,050	8,050		
				Sub-Total	19,955		
c	004 Interest	Conitaline	-			1	
6.1	094 Interest	Capitalize	1	8 895	8 895		r
6.2				0,035	0,035		
6.3							
				Sub-Total	8,895		
_						-	
7	095 Administra	tive Overh	ead				.
7.1	Thermal Regular Jabour AO		1				ł
7.3						.	
				Sub-Total	39,869		
Project Cost	Estimate			Total	\$819,469		
8	Original Cost						
8.1 Note 4: Definition	range to "Completed similar projects (CI#a)" is to be previously	the item :	atimata in har	od on work of site?	\$263,000		l
NULE 1: RETE	rence to completed similar projects (CI#S) is to be provided when	ule lielli e	sumate is Das	ea on work or simila	a scope for a recent	ay completed project	

LIN3 Generator Excitation and AVR Replacement Summary of Alternatives & Assumptions

	Nova Scotia	
-	POWER	
	An Empra Company	

energy everywhere."

Budget Year :	2012	Date :	31-Oct-11
Division :	Power Production	CI Number:	37611
Department :	Lingan	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Replace Excitation & AVR System	6.67%	733,382	1	25.96%	4.9 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Replacement of the obsolete excitation system and AVR is the only option. Based on a positive NPV, it is recommended that the excitation system and AVR be Replaced

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Replace Excitation & AVR System

-5% Minus the Probability of failure in year 1

95% Probability that equipment does not fail in year 1

x

1

6% Probability of equipment failing in year 2 if no failure occurs in year 1

6% Probability of the equipment failing in year 2

Avoided Cost Calculations

Budget Year :	2012	Date :	31-Oct-11
Division :	Power Production	CI Number:	37611
Department :	Lingan	Project No.	
Originator :			

Replace Excitation & AVR System	
Severe failure requiring replacement Capital Cost	\$ 819,469.00
Avoided Replacement Energy costs (2012) =	MWh x 1 outages x 80% x 5.0% x MW x 2016 h = \$78,236.93
Avoided Unplanned Repair Costs (2012)	\$ 819,469.00 x 5% x 1 = \$40,973.45
Avoided Replacement Energy costs (2013) =	MWh x 1 outages x 80% x 5.7% x MW x 2016 h = \$89,190.10
Avoided Unplanned Repair Costs (2013)	\$ 835,858.38 x 5.7% x 1 = \$47,643.93

Replace AVR continued				
Failure requiring Repair				
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs (2012)	MWh x \$ 36,000.00 x 2 \$258,605.26	x 1 outages x 80% x 25% x 1 = \$ 9,000.00	25% x MW x	672 h = \$ 130,394.88
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs (2013)	MWh x \$ 36,400.00 x 22. \$262,379.42	x 1 outages x 80% x .5% x 1 = \$ 8,190.00	22.5% x MW x	672 h = \$ 117,355.39

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Replace Exc	citation & AVR Sy:	stem									
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012	•	258,605	(819,469)	32,779	786,690	(560,864)	(77,430)	(638,294)	1	(638,294)	(638,294)
2013	•	262,379		62,935	723,755	262,379	(65,186)	197,194	1	184,863	(453,430)
2014	•	272,515	•	57,900	665,855	272,515	(66,645)	205,869	-	180,929	(272,502)
2015		257,268	•	53,268	612,586	257,268	(63,240)	194,028	-	159,859	(112,643)
2016	•	226,389		49,007	563,579	226,389	(55,086)	171,303	1	132,311	19,668
2017	•	206,297	•	45,086	518,493	206,297	(49,975)	156,322	-	113,190	132,858
2018	•	193,761	•	41,479	477,014	193,761	(47,207)	146,554	-	99,482	232,340
2019		185,025	•	38,161	438,852	185,025	(45,528)	139,497	-	88,771	321,111
2020		177,114	•	35,108	403,744	177,114	(44,022)	133,092	-	79,399	400,509
2021	•	168,262	•	32,300	371,445	168,262	(42,148)	126,114	-	70,531	471,040
2022	•	157,893	•	29,716	341,729	157,893	(39,735)	118,158	1	61,950	532,990
2023		145,958	•	27,338	314,391	145,958	(36,772)	109,186	0	53,666	586,656
2024	•	140,672		25,151	289,240	140,672	(35,811)	104,860	0	48,317	634,974
2025	•	130,727	•	23,139	266,100	130,727	(33,352)	97,375	0	42,063	677,037
2026	•	133,340	•	21,288	244,812	133,340	(34,736)	98,604	0	39,930	716,967
2027			•	19,585	225,227		6,071	6,071	0	2,305	719,272
2028	•			18,018	207,209		5,586	5,586	0	1,988	721,260
2029	•	•		16,577	190,632	•	5,139	5,139	0	1,715	722,974
2030	•		•	15,251	175,382		4,728	4,728	0	1,479	724,453
2031			•	14,031	161,351	•	4,349	4,349	0	1,275	725,728
2032	•	•		12,908	148,443	•	4,002	4,002	0	1,100	726,828
2033	•			11,875	136,568		3,681	3,681	0	649	727,777
2034	•	•	•	10,925	125,642	•	3,387	3,387	0	818	728,595
2035	•	•		10,051	115,591	•	3,116	3,116	0	206	729,301
2036		•	•	9,247	106,344		2,867	2,867	0	609	729,909
2037			•	8,507	97,836		2,637	2,637	0	525	730,434
2038	•	•	•	7,827	600'06	•	2,426	2,426	0	453	730,887
2039			•	7,201	82,809	•	2,232	2,232	0	390	731,278
2040	•			6,625	76,184	•	2,054	2,054	0	337	731,614
2041				6,095	70,089	•	1,889	1,889	0	290	731,905
2042	•	•	•	5,607	64,482	•	1,738	1,738	0	251	732,155
2043	•	•	•	5,159	59,323	•	1,599	1,599	0	216	732,371
2044	•	•	•	4,746	54,578	•	1,471	1,471	0	186	732,558
2045				4,366	50,211	•	1,354	1,354	0	161	732,719
2046	•	•	•	4,017	46,194	•	1,245	1,245	0	139	732,857
2047	•	•		3,696	42,499	•	1,146	1,146	0	120	732,977
2048	•			3,400	39,099	•	1,054	1,054	0	103	733,080
2049				3,128	35,971	•	970	970	0	89	733,169
2050	•	•	•	2,878	33,093	•	892	892	0	77	733,245
2051	•	•	•	2,647	30,446		821	821	0	66	733,312
2052	•	•	•	2,436	28,010	•	928	928	0	70	733,382
Total	•	2,916,204	(819,469)	791,459	9,511,510	2,096,735	(669,492)	1,427,244	15	733,382	22,223,322

LIN3 Generator Excitation and AVR Replacement

Title: TRE Siding

TRE Siding Replacement (Phase 2)

Start Date:	2012/05
Final Cost Date:	2012/10
Function:	Generation
Forecast Amount:	\$608,915

DESCRIPTION:

The exterior siding on the building housing the boilers and turbines for Units 1 through 5 at the Trenton Generating Station ranges in age from 40 to 60 years. The siding needs to be replaced due to normal age-related deterioration. This is a continuation of the work completed in 2011 under CI 39933 – TRE Siding Replacement.

The scope of this project includes replacement of siding in the following areas:

- (1) South wall of Units 3-4 boiler house
- (2) North wall of Units 3-4 turbine hall
- (3) North wall of Unit 5 turbine hall This will include siding replacement and repair of damaged louvers in the area of the unit 5 transformer compound.

The current plan is to bring a project forward for approval in 2013 to complete the remaining areas.

Summary of Related CI's +/- 2 years: 2011 CI 39933 TRE Siding Replacement \$297,536 2013 CI TBD TRE Siding Replacement (Phase 3) \$350,000

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Buildings

Why do this project?

Replacing the siding will address deterioration issues with the existing siding that has resulted in ingress of water into the building structure. An added benefit of completing this project will be the replacement of the existing asbestos-containing siding.

Why do this project now?

Replacing the siding now and addressing issues with water leakage into the building structure will mitigate the risk of more extensive water damage and costly repairs.

Why do this project this way?

Due to the age and condition of the existing siding, replacement is the most practical option. The replacement will be completed in the most economically feasible manner, which includes replacing the existing siding with sheet metal siding and completing wall sections in their entirety.

.

- 341-Trenton Admin./Common Capital

2012 ACE Plan **Budget Version**

Capital Item Accounts

Cost Centre : 341

uctv Account Activity 094 - Interest Capitalized	Activity		Forecast Amount 7,288	Amount	Variance 7,288
095-Thermal & Hydro Contracts AO 095-Thermal Regular Labour AO	ontracts AO tbour AO		3,794	0 0	3,794
3 001 - THERMAL Regular Labour 003 - S(3 013 - POWFR PRODUCTION Contracts 003 - S(Ir Labour 003 - So CTION Contracts 003 - So	3P - Bldg.,Struct.Grnd. 3P - Bldg.,Struct.Grnd.	12,000	0 0	12,000
5 001 - THERMAL Regular Labour 085 Des	ir Labour 085 Des	lign	2,000	0	2,000
7 001 - THERMAL Regular Labour 087 Field	ır Labour 087 Field	d Super.& Ops.	1,800	0	1,800
7 011 - Travel Expense 087 Field	087 Field	d Super.& Ops.	200	0	200
7 013 - POWER PRODUCTION Contracts 087 Field	CTION Contracts 087 Field	d Super.& Ops.		0	
7 021 - Telephones 087 Fiel	087 Fiel	ld Super.& Ops.	150	0	150
7 041 - Meals & Entertainment 087 Fiel	ment 087 Fiel	d Super.& Ops.	150	0	150
		Total Cost:	608,916	0	608,916
		Original Cost:	000'66		

Loca FP#: Title:	tion: Trenton 41441 TRE - Siding Replacement (Phase 2)				-	Nova Scotia POWER An Emera Company	nergy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1	· · · · · · · · · · · · · · · · · · ·	001 Poquiar	Labour				
1.1	Regular Labour - Utility	hr	480	25.00	12.000		
1.2	Project Engineering	lot	1	2,000.00	2,000		
1.3	Project Supervision	lot	1	1,800.00	1,800		
1.4			-		-		
1.5					-		-
1.0				Sub-Total	15,800		39933
2	013 Pc	wer Produc	tion Contrac	cts			
2.1	External Supervisor	lot	1			April 20, 2000 guete p.g2	
2.2	Siding Replacement - Section 16	lot	1			April 30, 2009 quote pg2	
2.4	Siding Replacement - Section 19	lot	1			April 30, 2009 quote pg2	
2.5	Contingency	%					39933
				Sub-Total			
3	-	011 Travel E	xpenses				1
3.1	Trevel	day	1	200	200		
3.3							-
				Sub-Total	200		
	·	Miec				1	
4.1	Telephones	Lot	1	150	150		
4.2	Meals and Entertainment	lot	1	150	150		
4.3					-		
4.4				Out Tatal	-		
				Sub-Total	300		
5	0	94 Interest C	apitalized				
5.1	Interested Capitalized		İ		7,288		
					-		
				Out Tatal	-		
				Sub-Total	7,288		
6	095	Administrati	ve Overhead	d		l I	
6.1	Thermal Regular Labour AO				3,794		
6.2	Thermal and hydro Contracts AO						
L				Sub Total			
Projec	t Cost Estimate			Sub-10tal	\$608 017		
rojec				iviai	4000,917		
7 7.1	Original Cost				\$99.000		1
Note 1	: Reference to "Completed similar projects	(FP#'s)" is to	be provided	when the item esti	mate is based on wo	ork of similar scope for a recent	ly completed project
	· · · ·		-			·	- · · ·

Title:

TRE6 - Air Heater Refurbishment

Start Date:	2012/06
Final Cost Date:	2012/11
Function:	Generation
Forecast Amount:	\$553,438

DESCRIPTION:

The air heaters on Unit #6 are tri-sector units which transfer heat from the flue gas exiting the boiler to both the primary air (that transports pulverized fuel from the mills to the boiler) and secondary combustion air to the boiler.

The Original Equipment Manufacturer (OEM) completed an inspection of the Unit #6 air heaters during the 2010 shutdown and made a number of recommendations to improve the efficiency of the air heaters and mitigate the risk of unplanned failures.

Of the ten recommendations made, the following are planned for completion during the 2012 schedule outage:

- Replace the hot end and cold end bypass seals, T-bars, rotor angles, and bypass seal holding angles on air heaters 6A & 6B.
- Replace the pin rack assemblies along with the pinion gear/taper lock bushing and carbon seal/spring on air heaters 6A & 6B.

Replacing the deteriorated bypass seals will improve air heater efficiency. Replacing the pin rack assemblies will mitigate the risk of failure and an unplanned Unit outage.

The following OEM recommendations will be completed during the 2014 planned outage for Unit #6:

- Replace complete set of hot end, intermediate and cold end baskets to APH's 6-A & 6-B.
- Replace the cold end support grating and support blocks when the cold end baskets are being replaced to APH's 6-A & 6-B.

Summary of Related CI's +/- 2 years: 2010 CI 38582 TRE6 Air Heater Refurbishment \$501,532 2014 CI TBD TRE6 Air Heater Refurbishment \$TBD

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

This refurbishment will re-establish the hot & cold end bypass seals of 6A & 6B air heaters to Original Equipment Manufacturer (OEM) specifications. Short- circuiting of air will be reduced to acceptable levels, resulting in improved air heater efficiency. Also, the pin racks will be re-established to OEM specifications, resulting in improved Unit reliability.

Why do this project now?

Deferring the work planned for 2012 until 2014 would increase the risk of pin rack failure, which could

Parent CI Number :

Cost Centre : 345

.

- 345-Trenton unit 6 Capital

Budget Version 2012 ACE Plan

Capital Item Accounts

Amount	0 6,545	0	0	0 7,995	0 171,600	0 66,600	0	0	0 4,400	0		0 2,000	900 0 0	000 0 0 0 0	300 a 00 a 00 a 00 a 00 a 00 a 0 a 0 a 0	300 300 300 300 300 300 300 300 300 300	0 2,000 0 900 0 300 0 300 0 553,438	0 553,438
Forecast Amount	6,545			7,995	171,600	66,600			4,400			2,000	2,000 900	2,000 900	2,000 900 300	2,000 900 300 300	2,000 900 300 300 553,438	2,000 900 300 553,438
																	Total Cost:	Total Cost:
Activity					013 - SGP - Boiler	013 - SGP - Boiler	013 - SGP - Boiler	ts 013 - SGP - Boiler	085 Design	085 Design	087 Field Suner & Ons		087 Field Super.& Ops.	087 Field Super.& Ops. ts 087 Field Super.& Ops.	087 Field Super.& Ops. 18 087 Field Super.& Ops. 087 Field Super.& Ops.	087 Field Super.& Ops. 18 087 Field Super.& Ops. 087 Field Super.& Ops. 087 Field Super.& Ops.	087 Field Super.& Ops. 087 Field Super.& Ops. 087 Field Super.& Ops. 087 Field Super.& Ops.	087 Field Super & Ops. 18 087 Field Super & Ops. 087 Field Super & Ops. 087 Field Super & Ops.
Account	094 - Interest Capitalized	095-Thermal Regular Labour AO	095-Thermal & Hydro Contracts AO	095-Thermal Overtime Labour AO	001 - THERMAL Regular Labour	002 - THERMAL Overtime Labour	012 - Materials	013 - POWER PRODUCTION Contract	001 - THERMAL Regular Labour	028 - Consulting	001 - THERMAL Regular Labour		011 - Travel Expense	011 - Travel Expense 013 - POWER PRODUCTION Contract	011 - Travel Expense 013 - POWER PRODUCTION Contrac 021 - Telephones	011 - Travel Expense 013 - POWER PRODUCTION Contrac 021 - Telephones 041 - Meals & Entertainment	011 - Travel Expense 013 - POWER PRODUCTION Contrac 021 - Telephones 041 - Meals & Entertainment	011 - Travel Expense 013 - POWER PRODUCTION Contrac 021 - Telephones 041 - Meals & Entertainment
Actv					013	013	013	013	085	085	780	100	087	087 087	087 087 087 087	087 087 087 087 087	087 087 087 087 087	087 087 087 087
Acct	094	095	095	095	001	002	012	013	001	028	001		011	011 013	011 013 021	011 013 021 041	011 013 021 041	011 013 021 041

Location: FP#:41507	Trenton						nerav everywhere"
Title:	TRE6 - Air Heater Refurbishment				Ar	Emera Company	norgy over ymnore.
Item	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (CI#'s) Note 1
1	001 Regular L	abour					
11	Detailed Engineering (Generation Services)	hr			4,400		
1.2	Engineering Support and Supervision	hr			2.000		
1.2	Mechanical trades	br	2240	45.00	100,800		
1.3	Confined Proce Watch	111	2240	45.00	100,000		
1.4	Contined Space Watch	hr	480	30.00	14,400		
1.6	Utility - Staging and site cleanup	hr	800	30.00	24,000		
				Sub-Total	178,000		38582
2	002 Quartima	ahaur				1	
21	Mechanical trades	Labour	960	45.00	43 200		
2.2	Confined Space Watch	hr	240	30.00	7,200		
2.3	Emergency Response Team (ERT) coverage	hr	360	45.00	16,200		
				Sub-Total	66,600		38582
3	012 Materi	als				1	
3.1	Bypass seals	ea	1			August 2, 2011 quote	
3.2	Pink rack assemblies	Lot	1			August 2, 2011 quote	
3.3	Contingency Misc. materials (casing repairs, seal work)	Lot	1				
3.4	Nisc. materiais (casing repairs, sear work)	LUI		Sub-Total			38582
4	013 Power Production	on Contrac	ts				i
4.1 4.2	High Pressure Water Wash	LOt					
	notanation outportion			Sub-Total			38582
_							-
5	028 Consult	ting	4				
5.1		LOI					
5.3							
				Sub-Total			
6	011 Travel / 021 Telephon	es and 041	Meals			1	
6.1	Travel	Lot	1	900	900		
6.2	Telephones	Lot	1	300	300		
6.3	Meals	Lot	1	300	300		
				Sub-Total	1,500		
7	094 Interest Ca	pitalized					
7.1					6,545		
7.2							
7.5				Sub-Total	6.545		
					· · · ·		
8	095 Administrative	e Overhead					
8.1	Thermal & Hydro Contracts AO		1	12 720	12 720		1
8.3	Thermal Overtime Labour AO	1	1	7995	7,995		
	•		•	Sub-Total			
Project Cost	t Estimate			Total	\$553,438		
•	Original Cost				\$452.000		
9.1					φ402,000		
Note 1: Refe	rence to "Completed similar projects (CI#s)" is to be provided when the ite	em estimate	is based on v	vork of similar scop	be for a recently com	pleted project.	-
ALSTOM AIR PREHEATER, INC.

Technical Service Report for Nova Scotia Power Trenton Unit #6 Trenton, Nova Scotia HOW-1124 (2) size 25 VI Howden Air Preheaters Visit Date: April 7–30, 2010 Technical Representative:

The purpose of this visit was to provide technical assistance with the inspection and repairs to Air Preheaters 6-A & 6-B on Boiler #6. Both Air Preheaters 6-A & 6-B were high pressured water washed before the start of the job. I had my safety and lock out tag out procedures orientation before I met with and and with Nova Scotia Power to discuss the scope of this work. After my inspection I provided the plant with a prioritized punch list of work that should be done this outage. I worked with approximation, Project Manager with Matheson Pressure Vessels that fabricated all the seals and plating materials that were needed for the repairs to APH's 6-A & 6-B.

Inspection Results & Work Performed This Outage:

Heat Transfer Element:

APH's 6-A & 6-B have the DN7[™] heat transfer surface in the hot end and intermediate. The hot end on 6-A & 6-B APH's has fracturing and thinning of the elements with some pluggage in the outer "D" baskets. See **Photo 1.** The intermediate baskets were not inspected this outage. **Recommend replacing the hot end and intermediate baskets within the next 4 years.**

Nova Scotia Power, Trenton Station HOW 1124 April 30, 2010 Page 2 of 12

APH's 6-A & 6-B have the NF6 heat transfer surface in the cold end. There are signs in both APH's 6-A & 6-B of fracturing and thinning of the elements with pockets of spiking of up to 1" deep. See **Photo 2 & 3. Recommend replacing the cold end baskets in the next 4 years.**

Photo 2

Photo 3

Fracturing and thinning with some pockets of spiking of up to 1" deep in the cold end baskets to 6-A & 6-B

Some of the erosion and spiking displayed in the cold end heat transfer surfaces is a product of excessive moisture in the soot blowing medium in conjunction with an erratic travel on the soot blower swing arm. **Recommend that the moisture in the soot blower medium be minimized.**

Rotor Structure:

APH's 6-A & 6-B; the hot end rotor structure is in serviceable condition with no hot end rotor diaphragm-to-rotor post, diaphragm-to-stay plate, or diaphragm-to-rotor shell cracks observed at this time. The stiffeners all seem to be in good serviceable condition.

APH's 6-A & 6-B; the cold end rotor structure is in good serviceable condition with no cold end rotor diaphragm-to-rotor post, diaphragm-to-stay plate, or diaphragm-to-rotor shell cracks observed at this time. There is some erosion observed at this time.

APH's 6-A & 6-B; the cold end basket support grating and blocks has seen a good amount of erosion and repairs, especially outboard. **Recommend when the cold end baskets are replaced that the support grating and blocks be replaced.**

Nova Scotia Power, Trenton Station HOW 1124 April 30, 2010 Page 3 of 12

The hot end gas inlet duct corner; gas-to-primary air had severe erosion holes that were repaired with plating material and seal welded in place to APH's 6-A & 6-B. See **Photo 4 & 5**.

Photo 5

Rotor Seals:

The hot end sector plate sealing surfaces, there was severe erosion on the outboard edge of the flue gas-to-primary sector plate to APH's 6-A & 6-B. The hot end sector plate sealing surfaces to the primary air-to-secondary air and secondary air-to-flue gas were in serviceable condition. See Photo 6 & 7. Repairs were made by gouging/cutting out the damage area and installing plating material across the outboard end of the sector plates and seal welded it in place. The majority of the erosion displayed on the outboard edge of the hot end sector plate sealing surface is due to the hot end axial seal plate-to-sector plate bypass seal being in unsatisfactory condition.

The hot end radial seals were in serviceable condition to APH's 6-A & 6-B. Replacement of the broken/eroded outer radial sealing tabs were made. The hot end radial seals were found to be at the correct seal setting specifications to APH's 6-A & 6-B.

Nova Scotia Power, Trenton Station HOW 1124 April 30, 2010 Page 4 of 12

The cold end sector plate sealing surfaces, there was severe erosion on the outboard edge of the gas to primary sector plate to APH's 6-A & 6-B. The cold end sector plate sealing surfaces to the primary air-to-secondary air and secondary air-to- flue gas were in serviceable condition. See **Photo 8 & 9**. **Repairs were made by gouging/cutting out the damage area and installing plating material across the outboard end of the sector plates and seal welded it in place.** The majority of the erosion displayed on the outboard edge of the cold end sector plate sealing surface is due to the cold end axial seal plate-to-sector plate bypass seal being in unsatisfactory condition. I was able to perform a run out on the cold end sector plate of APH's 6-A & 6-B. See **Page 8 & 9**.

The cold end radial seals were in serviceable condition, but needed to be reset to the seal setting specification for better performance and reliability of the air preheaters.

Photo 8

Photo 9

Severe erosion of the cold end flue gas-to-primary air sector plate outboard ends to 6-A & 6-B

The axial seal plates to APH's 6-A & 6-B are in serviceable condition. The axial seals were replaced this outage and were set to the seal setting specifications. I was able to perform a run out on the axial seal plate of APH's 6-A & 6-B. See **Page 10 & 11.** The axial seal plate static seals were replaced due to erosion gas-to-primary air on APH's 6-A & 6-B.

The hot end and cold end post seals are in serviceable condition to APH's 6-A & 6-B.

The hot end and cold end static spool are in serviceable condition to APH's 6-A & 6-B. Erosion holes were repaired to the hot end static spools to APH's 6-A & 6-B.

The hot end and cold end sector plate static seals are in good serviceable condition to APH's 6-A & 6-B, except for the sector plate static seals and studs in the hot end primary air outlet

Nova Scotia Power, Trenton Station HOW 1124 April 30, 2010 Page 5 of 12

duct; gas-to-primary air and primary air-to-secondary air duct to APH's 6-A & 6-B. The static seals and studs were replaced this outage.

The hot end bypass seals were replaced to APH's 6-A & 6-B. **Recommend replacing the T-bar, rotor angle, and bypass seal holding angle due to a good amount of erosion and repairs to APH's 6-A & 6-B.**

The cold end bypass seals were replaced to APH's 6-A & 6-B.

Recommend replacing the T-bar, rotor angle, and bypass seal holding angle due to a good amount of erosion and repairs to APH's 6-A & 6-B.

Soot Blower:

I could not check the operation of the swing arm cleaning device in the cold end gas outlet duct to APH's 6-A & 6-B during my inspection. The sequence of operation should be checked when the unit is back online. The lance and nozzle seem to be in serviceable condition. The linkage arm busing is worn. The random spiking observed indicates some "lost motion", dwelling, or erratic travel of the swing arm cleaning device. This may be caused by wear to the linkage arm bushing. **Recommend replacing the linkage arm bushing and adjusting the swing arm cleaning device for optimum coverage of the heat transfer surface.**

Moisture in the steam may have adverse affects on the air preheater performance and will reduce heat transfer surface life.

Rotor Drive:

An external inspection was made to the rotor drive gearbox to APH's 6-A & 6-B. The oil was clean and seems to be at the correct level. The rotor started easily using the auxiliary air drive and coasted smoothly to a stop. We did not operate the rotor using the main electric drive motor. **Recommend performing regular oil sampling/analysis on the rotor gearbox to APH's 6-A & 6-B**.

The pin rack assemblies on APH's 6-A & 6-B are in fair to poor condition. Wear to the pins are moderate to severe 3/32" wear from contact and about double that from erosion on the four (4) adjacent pins to the axial seals. The pinion gear has approximately 1/16" wear to the teeth. The pinion gear root clearances and the clearances from the pin rack rails remain within specifications. There were no hot end and cold end pin rack assembly support blocks cracks found at this time. See **Photo 10, 11 & 12. Recommend replacing the pin rack assemblies along with the pinion gear/taper lock bushing and carbon seal/spring next outage to 6-A & 6-B.**

Nova Scotia Power, Trenton Station HOW 1124 April 30, 2010 Page 6 of 12

Photo10

Wear to the pin rack pins of 3/32" or more to 6-A & 6-B

Wear to the pinion gear of approximately of 1/16" to 6-A & 6-B

Carbon seal & spring needs to be replaced to 6-A & 6-B Nova Scotia Power, Trenton Station HOW 1124 April 30, 2010 Page 7 of 12

Rotor Bearings:

An internal inspection of APH's 6-A & 6-B rotor guide bearing was performed. All the internal components seem to be in serviceable condition. The oil level was low on APH 6-B by 6" inches and APH 6-A by 2" inches. I had the plant perform an oil analysis and the results did not indicate a problem. Ensure that the guide bearing oil circulating system is working properly and the coolers and the cooling water lines are clear and repair any leakage. The oil and oil filters were being replaced this outage. **Recommend replacing the cuno oil filters with a spin on type oil filter conversion if possible to APH's 6-A & 6-B.**

An external inspection of APH's 6-A & 6-B rotor support bearing was performed. The oil levels seem to be at the correct level to both. The oil was replaced this outage. I had the plant perform an oil analysis and the results did not indicate a problem. Internal inspection of this bearing is not practical without complete disassembly. **Recommend performing regular oil sampling/analysis on the rotor guide bearing and support bearing to APH's 6-A 6-B**.

Nova Scotia Power, Trenton Station HOW 1124 April 30, 2010 Page 9 of 12

INSPECTION RECORD SECTOR PLATE PLANE - COLD END

Nova Scotia Power, Trenton Station HOW 1124 April 30, 2010 Page 10 of 12

INSPECTION RECORD Axial Seal Plate Alignment VI, Tri-Sector

All readings are taken from a set pointer that is fastened to one axial seal (top and bottom) that is rotated 360° SEAL CLEARANCE SPECS.: Hot End = _0.271"_; Cold End = _0.143"_ Axial seal plate total variation = <u>0.047</u> Hot End Axial seal plate total variation = _0.090"_ Cold End

Maximum allowable variation = 0.060" Hot end and Cold End

Nova Scotia Power, Trenton Station HOW 1124 April 30, 2010 Page 11 of 12

INSPECTION RECORD Axial Seal Plate Alignment VI, Tri-Sector

Maximum allowable variation = _0.060"_ Hot end and Cold End

Nova Scotia Power, Trenton Station HOW 1124 April 30, 2010 Page 12 of 12

Future Recommendations:

- 1) Replace complete set of hot end, intermediate and cold end baskets to APH's 6-A & 6-B in the next 4 years.
- 2) Replace the cold end support grating and support blocks when the cold end baskets are being replaced to APH's 6-A & 6-B in the next 4 years.
- 3) Replace the hot end and cold end bypass seals, T-bars, rotor angles, and bypass seal holding angles to APH's 6-A & 6-B in the next 4 years.
- 4) Replace the linkage arm bushing and adjust the swing arm soot blower to provide optimum coverage to APH's 6-A & 6-B next outage.
- 5) Moisture in the soot blower medium needs to be minimized to APH's 6-A & 6-B.
- 6) Replace the pin rack assemblies along with the pinion gear/taper lock bushing and carbon seal/spring to APH's 6-A & 6-B next outage.
- 7) Replace the guide bearing cuno oil filters and replace with a spin on type oil filter conversion if possible to APH's 6-A & 6-B.
- 8) Ensure that the guide bearing oil circulating system is working properly and the coolers and the cooling water lines are clear and repair any leakage.
- 9) Recommend performing regular oil sampling/analysis on the rotor guide bearing, support bearing and main rotor drive gearbox to APH's 6-A & 6-B.
- 10)Continue to maintain the air preheaters as per the O&M Manual.

Thank you again for this opportunity and if you need any further assistance please do not hesitate to contact me.

Respectfully, Frank R. Parise Technical Advisor Alstom, Air Preheater Company

TRE Air Heater Refurbishment Summary of Alternatives & Assumptions

	Nova Scotia
	POWER
-	An Emera Company

 Budget Year :
 2012
 Date :
 31-Oct-11

 Division :
 Power Production
 CI Number:
 41507

 Department :
 Trenton
 Project No. :

 Originator :
 Image: Comparison of the second s

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Air Heater Refurbishment	6.67%	3,247,900	1	533.93%	1.2 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the air heater be refurbished.

energy everywhere."

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure occured in year 1)

Example: Air Heater Refurbishment

1

-10% Minus the Probability of failure in year 1

90% Probability that the air heater does not fail in year 1

х

12% Probability of air heater failing in year 2 if no failure occurs in year 1

11% Probability of the air heater failing in year 2

Avoided Cost Calculations

	Budget Year : Division : Department : Originator :	2012 Power Production Trenton	Date : 31-Oct-11 CI Number: 41507 Project No. :
Air Heater Returbishment Capital Cost Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	\$ 553,438.00 MWh x 1 \$ 803,438.00 x 10% x \$681,345.66	outages x 90% x 10% x 1 = \$ 80,343.80	MW x 2184 h = \$601,001.86
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	MWh x 1 \$ 813,438.00 x 10.8% x \$ 736,933.31	outages x 90% x 10.8% x 1 = \$ 87,851.30	MW x 2184 h = \$649,082.00

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Air Heater Kt	erurbishment				001			1110			
Year	Total Revenue	Operating Costs	Capital	CCA	000	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012	•	681,346	(553,438)	22,138	531,300	127,908	(224,569)	(96,661)	1	(96,661)	(96,661)
2013	•	736,933	•	42,504	488,796	736,933	(225,937)	510,996	L	479,044	382,383
2014	•	771,066	•	39,104	449,693	771,066	(226,986)	544,080	-	478,165	860,548
2015	•	772,388	•	35,975	413,717	772,388	(228,288)	544,100	ŀ	448,282	1,308,831
2016	•	743,944	•	33,097	380,620	743,944	(220,428)	523,516	L I	404,353	1,713,183
2017	•	690,882	•	30,450	350,170	690,882	(204,734)	486,148	-	352,012	2,065,195
2018	•	619,724	•	28,014	322,157	619,724	(183,430)	436,294	-	296,159	2,361,354
2019	•	537,542	•	25,773	296,384	537,542	(158,649)	378,894	-	241,113	2,602,467
2020	•	451,168	•	23,711	272,673	451,168	(132,512)	318,656	-	190,101	2,792,568
2021	•	366,542	-	21,814	250,860	366,542	(106,866)	259,677	1	145,229	2,937,797
2022	•	288,276		20,069	230,791	288,276	(83,144)	205,132	1	107,550	3,045,347
2023	•	219,454	•	18,463	212,328	219,454	(62,307)	157,147	0	77,240	3,122,586
2024	•	161,662	-	16,986	195,341	161,662	(44,849)	116,812	0	53,825	3,176,411
2025	•	115,191	•	15,627	179,714	115,191	(30,865)	84,327	0	36,426	3,212,837
2026	•	79,350	•	14,377	165,337	79,350	(20,141)	59,208	0	23,977	3,236,814
2027	•	•	•	13,227	152,110	•	4,100	4,100	0	1,557	3,238,371
2028	•	•		12,169	139,941		3,772	3,772	0	1,343	3,239,713
2029	•	•	•	11,195	128,746	•	3,471	3,471	0	1,158	3,240,871
2030	•	•	-	10,300	118,446	-	3,193	3,193	0	666	3,241,870
2031	•	•	•	9,476	108,970		2,937	2,937	0	861	3,242,731
2032	•	•	•	8,718	100,253	-	2,702	2,702	0	743	3,243,474
2033	•	•	-	8,020	92,233	-	2,486	2,486	0	641	3,244,115
2034	•		-	7,379	84,854	-	2,287	2,287	0	553	3,244,667
2035	•		-	6,788	78,066	-	2,104	2,104	0	477	3,245,144
2036	•	•	•	6,245	71,820		1,936	1,936	0	411	3,245,555
2037	•	•	•	5,746	66,075		1,781	1,781	0	355	3,245,909
2038	•	•	•	5,286	60,789	•	1,639	1,639	0	306	3,246,215
2039	•	•		4,863	55,926		1,508	1,508	0	264	3,246,479
2040	•	•	•	4,474	51,452		1,387	1,387	0	227	3,246,706
2041			•	4,116	47,336	•	1,276	1,276	0	196	3,246,903
2042	•	•	•	3,787	43,549	•	1,174	1,174	0	169	3,247,072
2043	•		•	3,484	40,065	•	1,080	1,080	0	146	3,247,218
2044	•	•	•	3,205	36,860	•	994	994	0	126	3,247,344
2045	•	•	•	2,949	33,911	-	914	914	0	109	3,247,452
2046	•	•	•	2,713	31,198	•	841	841	0	94	3,247,546
2047	•	•		2,496	28,702	-	774	774	0	81	3,247,626
2048	•	•	•	2,296	26,406	•	712	712	0	70	3,247,696
2049	•	•	•	2,112	24,293	•	655	655	0	60	3,247,756
2050	•	•		1,943	22,350	-	602	602	0	52	3,247,808
2051	•	•	•	1,788	20,562	•	554	554	0	45	3,247,853
2052		•	•	1,645	18,917	•	627	627	0	47	3,247,900
Total		7,235,467	(553,438)	534,521	6,423,710	6,682,029	(2,108,198)	4,573,831	15	3,247,900	117,200,316

TRE Air Heater Refurbishment

CI Number: 41303

Title:

TRE6 - Waterwall Panel Replacements

2012/06
2012/11
Generation
\$548,225

DESCRIPTION:

This project is the continuation of the waterwall panel replacement program for Trenton Unit #6 based on tube survey and wear measurements in the boiler.

Timely replacement of waterwall panels avoids unplanned repair and replacement energy costs. The replacement of waterwall panels is an integral component of the boiler tube failure reduction program. It serves to maintain target heat rates and support reliable boiler operation.

This project includes replacement of three sections of wall panels on the west side of the Unit #6 boiler at the Trenton Generating Station. Non-destructive examination (NDE) completed during the 2010 planned shutdown revealed that areas of the boiler on the west waterwalls in the vicinity of the sootblowers were approaching minimum wall thickness. Replacement of these panels will minimize forced outages due to boiler tube failures in these areas of the waterwalls.

Summary of Related CI's +/- 2 years: 2010 CI 34504 TRE6 Waterwall Panel Replacements \$425,086 2012 CI 41544 TRE6 O2 Sensor Replacement \$72,171

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

Non Destructive Examination (NDE) performed on the waterwall panels indicated the areas of the boiler on the west waterwalls are approaching a minimal wall thickness and must be replaced. The extent of the thinning precludes padding as an effective method of repair. Replacing tubes that have experienced normal wear from erosion/corrosion will ensure reliable operation of the Unit is maintained.

Why do this project now?

Boiler tube failures have historically been a major contributor to the unavailability of thermal units. Replacement of selected waterwall panels now will maintain target heat rates and mitigate the risk of unplanned Unit outages due to waterwall tube leaks.

Why do this project this way?

The waterwall panel replacement program is required to support reliable Unit performance. Replacement is the only viable option.

CI Number : 41303

- TRE6 - Waterwall Panel Replacements

Parent CI Number :

.

- 345-Trenton unit 6 Capital

Project Number

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 345

Amount	0 11,150	0 720	0	0		0 3,433	0 3,433 0 7,500	0 3,433 0 7,500 0 6,000	0 3,433 0 7,500 0 6,000	0 3,433 0 7,500 0 6,000 0	0 3,433 0 7,500 0 6,000 0 0	0 3,433 0 7,500 0 6,000 0 2,800	0 3,433 0 7,500 0 6,000 0 2,800 4,000	0 3,433 0 7,500 0 6,000 0 2,800 0 4,000 500	0 3,433 0 0 6,000 0 0 2,800 0 4,000 500	0 3,433 0 0 7,500 0 0 6,000 0 2,800 0 4,000 0 200	0 3,433 0 7,500 0 6,000 0 2,800 0 2,800 0 4,000 0 500 0 200 548,225
Forecast Amount	11,150	720			3.433	00.00	7,500	7,500 6,000	7,500 6,000	7,500 6,000	7,500 6,000	7,500 6,000 2,800	7,500 6,000 2,800 4,000	7,500 6,000 2,800 4,000	7,500 6,000 2,800 4,000 200	7,500 6,000 2,800 4,000 200 200	7,500 6,000 2,800 4,000 500 200 200 200
																	Total Cost:
Activity							013 - SGP - Boiler	013 - SGP - Boiler 013 - SGP - Boiler	013 - SGP - Boiler 013 - SGP - Boiler 013 - SGP - Boiler	013 - SGP - Boiler 013 - SGP - Boiler 013 - SGP - Boiler 013 - SGP - Boiler	013 - SGP - Boiler 013 - SGP - Boiler 013 - SGP - Boiler 013 - SGP - Boiler cts 013 - SGP - Boiler	013 - SGP - Boiler 013 - SGP - Boiler 013 - SGP - Boiler 013 - SGP - Boiler cts 013 - SGP - Boiler 085 Design	013 - SGP - Boiler 013 - SGP - Boiler 013 - SGP - Boiler 013 - SGP - Boiler cts 013 - SGP - Boiler 085 Design 087 Field Super.& Ops.	 013 - SGP - Boiler 035 Design 087 Field Super.& Ops. 087 Field Super.& Ops. 	 013 - SGP - Boiler 085 Design 087 Field Super.& Ops. 087 Field Super.& Ops. 	 013 - SGP - Boiler 085 Design 087 Field Super.& Ops. 087 Field Super.& Ops. 087 Field Super.& Ops. 	 013 - SGP - Boiler 035 Design 087 Field Super.& Ops. 087 Field Super.& Ops. 087 Field Super.& Ops.
Account	094 - Interest Capitalized	095-Thermal Overtime Labour AO	095-Thermal Term Labour AO	095-Thermal & Hydro Contracts AO	095-Thermal Regular Labour AO		001 - THERMAL Regular Labour	001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour	001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 004 - THERMAL Term Labour	001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 004 - THERMAL Term Labour 012 - Materials	001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 004 - THERMAL Term Labour 012 - Materials 013 - POWER PRODUCTION Contrac	001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 004 - THERMAL Term Labour 012 - Materials 013 - POWER PRODUCTION Contrac 001 - THERMAL Regular Labour	001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 004 - THERMAL Term Labour 012 - Materials 013 - POWER PRODUCTION Contrac 001 - THERMAL Regular Labour 001 - THERMAL Regular Labour	 001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 004 - THERMAL Term Labour 012 - Materials 013 - POWER PRODUCTION Contrac 001 - THERMAL Regular Labour 001 - THERMAL Regular Labour 011 - Travel Expense 	 001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 004 - THERMAL Term Labour 012 - Materials 013 - POWER PRODUCTION Contrac 013 - POWER PRODUCTION Contrac 013 - PHERMAL Regular Labour 001 - THERMAL Regular Labour 011 - Travel Expense 021 - Telephones 	 001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 004 - THERMAL Term Labour 012 - Materials 013 - POWER PRODUCTION Contrac 013 - POWER PRODUCTION Contrac 011 - THERMAL Regular Labour 001 - THERMAL Regular Labour 011 - Travel Expense 021 - Telephones 021 - Meals & Entertainment 	001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 004 - THERMAL Term Labour 012 - Materials 013 - POWER PRODUCTION Contrac 013 - THERMAL Regular Labour 001 - THERMAL Regular Labour 011 - Travel Expense 021 - Telephones 021 - Telephones 021 - Meals & Entertainment
Actv							013	013 013	013 013 013	013 013 013 013	013 013 013 013 013	013 013 013 013 013 085	013 013 013 013 013 085 085	013 013 013 013 013 085 087	013 013 013 013 013 085 087 087	013 013 013 013 013 087 087 087 087	013 013 013 013 013 085 087 087 087
Acct	094	095	095	095	095		001	001 002	001 002 004	001 002 012	001 002 012 013	001 002 012 013 001	001 002 004 013 013 001	001 002 012 013 001 001	001 002 012 013 001 001 011 021	001 002 004 012 013 001 001 011 021	001 002 012 013 001 001 021 041

Loca	tion: Trenton					Nova Scotia			
Cl#: Title:	41303 TRE6 - Waterwall Panel Replacements					An Emera Company	energy everywhere."		
Item	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost support Reference	Completed Similar Projects (CI#'s) Note 1		
1	00 Litility Regular	1 Regular	Labour 300	25.00	\$7.500		C124504		
1.2	Utility - Term prep work	hr	500	23.00	37.500		CI34504		
1.3	Project engineering	hr							
1.4	Project Supervision	hr							
1.5					-				
1.0				I I Sub-Total	21,800				
2	Table Martell	012 Mater	ials						
2.1	I UDE Material Miscellaneous Materials	lot	1	-			CI34504		
2.2	Wiscellarieous Waterials	101			-				
2.4					-				
2.5					-				
2.6					-				
27				Sub-Total			1		
2.1									
3		013 Contra	acts						
3.1	Tube Removal	lot	1				CI34504		
3.2	Tube Installation	lot	1				CI34504		
3.3	Mobilization/ Demobilization	lot	1				CI34504		
3.4	Remove/install insulation	lot	1				CI34504		
3.6	Equipment rental	lot	1				CI34505		
				Sub-Total					
4	002	2 Overtime	Labour	F0 00	0.000				
4.1	Utility - Regular O I	nr	120	50.00	6,000		CI34504		
4.3									
4.4									
				Sub-Total	6,000				
5	011	Troval Ex							
51	Travel		1	500	500				
5.2		101		000	000				
5.3									
				Sub-Total	500				
6	011 Mo	ale and En	tortainmor	.+					
6.1	Meals and entertainment		1	200	200				
6.2									
6.3					-				
				Sub-Total	200				
7		021 Telenh	ones						
7.1	Telephones	lot	1	200	200		1		
7.2					-				
7.3					-				
				Sub-Total	200				
8	094	Interest Ca	nitalized						
8.1	Interested Capitalized		phanzea		11.150				
8.2	•								
8.3									
<u> </u>				Sub-Total	11,150				
9	005 4 4	ministrativ	e Overhee	d					
9.1	Thermal Regular Labour AO			-	3.433		1		
9.2	Thermal and hydro Contracts AO								
9.3	Thermal Term Labour								
9.4	Thermal Overtime Labour			Cub Tatal	720				
Cost F	stimate			Total	\$519 20F				
COSLE	Juniau			i Jiai	φ040,220				
10	Original Cost						+		
10.1	· · · · ·				\$411,000				
Note 1	Reference to "Completed similar projects (Cl	#'s)" is to b	e provided v	when the item estim	nate is based on wor	k of similar scope for a r	ecently completed project		

TRE6 Waterwall Panel Replacement

Summary of Alternatives & Assumptions

	Nova Scotia
	POWER
-	An Emera Company

energy everywhere."

Budget Year :	2012	Date :	29-Oct-11
Division :	Power Production	CI Number:	41303
Department :	Trenton	Project No. :	
Originator :		7	

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Waterwall Panel Replacement	6.67%	101,671	1	41.11%	2.1 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the waterwalls be replaced

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Waterwall Panel Replacement

-75% Minus the Probability of failure in year 1

25% Probability that boiler tubes / Unit does not fail in year 1

х

79% Probability of unit failing in year 2 if no failure occurs in year 1

20% Probability of the unit failing in year 2

Avoided Cost Calculations

Budget Year :	2012	Date :	29-Oct-11
Division :	Power Production	CI #:	41303
Department :	Trenton		
Originator :			

Waterwall Panel Replacement	
Capital Cost	\$ 548,225
Avoided Replacement Energy costs (2012) =	MWh x 1 outages x 90% x 75% x MW x 72 h = \$148,560
Avoided Unplanned Repair Costs (2012)	\$ 644,225 x 75% x 1 = \$ 483,169
Total Annual Avoided costs	\$631,734
Avoided Replacement Energy costs (2013) =	MWh x 1 outages x 90% x 19.7% x MW x 72 h = \$38,994
Avoided Unplanned Repair Costs (2013)	\$ 670,032 x 20% x 1 = \$ 131,913
Total Annual Avoided costs	\$ 170,911

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Waterwall P:	anel Replacement										
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012	•	631,734	(548,225)	21,929	526,296	83,509	(207,768)	(124,259)	1	(124,259)	(124,259)
2013	•	170,911	•	42,104	484,192	170,911	(42,108)	128,804	1	120,750	(3,509)
2014	•	39,488	•	38,735	445,457	39,488	(310)	39,178	-	34,431	30,922
2015	•	7,433	•	35,637	409,820	7,433	8,743	16,176	-	13,328	44,250
2016	•	1,065		32,786	377,035	1,065	9,768	10,833	1	8,368	52,617
2017	•	102	•	30,163	346,872	102	9,319	9,421	-	6,822	59,439
2018	•	5	•	27,750	319,122	5	8,601	8,606	-	5,842	65,281
2019	•	•	•	25,530	293,592	•	7,914	7,914	-	5,036	70,317
2020	•	•	•	23,487	270,105	•	7,281	7,281	-	4,344	74,661
2021	•	•		21,608	248,497	•	6;699	6,699	1	3,746	78,407
2022				19,880	228,617		6,163	6,163	1	3,231	81,638
2023	•	•		18,289	210,328	•	5,670	5,670	0	2,787	84,425
2024				16,826	193,501		5,216	5,216	0	2,403	86,828
2025	•	•	•	15,480	178,021	•	4,799	4,799	0	2,073	88,901
2026	•		•	14,242	163,780	•	4,415	4,415	0	1,788	90,689
2027	•	•	•	13,102	150,677	•	4,062	4,062	0	1,542	92,231
2028	•	•	•	12,054	138,623	•	3,737	3,737	0	1,330	93,561
2029	•	•	•	11,090	127,533	•	3,438	3,438	0	1,147	94,708
2030	•	•	•	10,203	117,330	•	3,163	3,163	0	686	95,697
2031	•	•	•	9,386	107,944	•	2,910	2,910	0	853	96,550
2032	•	•		8,636	99,309	•	2,677	2,677	0	736	97,286
2033		•		7,945	91,364		2,463	2,463	0	635	97,921
2034				7,309	84,055		2,266	2,266	0	547	98,468
2035				6,724	77,330		2,085	2,085	0	472	98,940
2036	•	•		6,186	71,144	•	1,918	1,918	0	407	99,348
2037				5,692	65,452		1,764	1,764	0	351	99,699
2038	•	•	•	5,236	60,216	•	1,623	1,623	0	303	100,002
2039	•	•		4,817	55,399		1,493	1,493	0	261	100,263
2040	•	•	•	4,432	50,967	•	1,374	1,374	0	225	100,488
2041	•	•	•	4,077	46,890		1,264	1,264	0	194	100,683
2042	•		•	3,751	43,138	•	1,163	1,163	0	168	100,850
2043	•			3,451	39,687		1,070	1,070	0	145	100,995
2044	•			3,175	36,512	•	984	984	0	125	101,119
2045	•			2,921	33,591	•	906	906	0	108	101,227
2046	•			2,687	30,904		833	833	0	93	101,320
2047	•		•	2,472	28,432	•	766	766	0	80	101,400
2048	•	•	•	2,275	26,157		705	705	0	69	101,469
2049	•		•	2,093	24,065	•	649	649	0	59	101,528
2050	•		•	1,925	22,139	•	597	597	0	51	101,579
2051	•	•	•	1,771	20,368	•	549	549	0	44	101,624
2052				1,629	18,739		621	621	0	47	101,671
Total	•	850,739	(548,225)	529,486	6,363,202	302,514	(120,520)	181,994	15	101,671	3,361,235

CI Number: 41544

Title:TRE6 – O2 Sensor Replacement

Start Date:	2012/05
Final Cost Date:	2012/10
Function:	Generation
Forecast Amount:	\$72,171

DESCRIPTION:

The boiler on Unit #6 has three O2 sensors that monitor and adjust oxygen levels in the boiler to ensure optimum combustion and minimal production of particulate and emitted gasses.

Summary of Related CI's +/- 2 years: 2012 CI 41303 – TRE6 Waterwall Panel Replacements

JUSTIFICATION:

Justification Criteria: Environment

Sub-Criteria: Equipment Replacement

Why do this project?

Replacing the O2 sensors will ensure optimum combustion continues to be achieved and mitigate the risk of an unplanned failure. The existing O2 sensors and associated hardware are now obsolete and must be replaced.

Why do this project now?

As the O2 sensors and associated hardware are now obsolete and no longer supported by the Original Equipment Manufacturer (OEM), they must be replaced to mitigate the risk of unplanned failure.

Why do this project this way?

Replacing all of the obsolete sensors on Unit #6 at one time is the most practical and cost effective option.

CI Number: 41549

Title:

TRE5 - Main Steam Attemperator Replacement

Start Date:	2012/06
Final Cost Date:	2012/10
Function:	Generation
Forecast Amount:	\$535,227
DESCRIPTION:	

The Unit #5 boiler is equipped with two main steam attemperators which assist in controlling the temperature of the main steam passing from the boiler to the turbine. The attemperators spray water in the steam piping between the primary and secondary superheaters to control the main steam temperature. The existing design for these attemperators has been prone to failures resulting in reduced temperature control and blockage of downstream boiler tubes due to broken attemperator components. The blockage of downstream boiler tubes caused by overheating.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

The attemperators on Unit # 5 have been in service since the boiler went into operation in 1969 and have reached the end of their useful life. Replacing the steam attemperators will result in improved temperature control and Unit efficiency and reliability. Replacing the attemperators will also mitigate the risk of boiler tube failures that result from overheating due to being blocked with broken attemperator components.

Why do this project now?

Replacing the existing attemperators now reduces the risk of prolonged unplanned outages on Unit #5 due to blocked down-stream boiler tubes and improves main steam temperature control.

Why do this project this way?

The Original Equipment Manufacturer (OEM) has recommended that that the attemperators be completely disassembled and the nozzles, liners, and main body inspected for repairs and replaced as necessary. Replacement of the complete attemperator assemblies is the most practical option, as operating experience indicates that the existing vintage of attemperators has been prone to failure.

Limiting the scope to removal of the nozzle assemblies, inspections and replacement of the venturi and liner would expose the Unit to the risk of an extended outage if inspection results concluded that complete new attemperators were required and not readily available for installation. The delivery period for new steam attemperators is approximately four months.

CI Number : 41549

- TRE5- Main Steam Attemperator Replacement

Project Number

2012 ACE Plan

Budget Version

- 340-Trenton Unit 5 Capital

.

Capital Item Accounts

Cost Centre : 340

Parent CI Number :

Actv		Account	Activity		Forecast Amount	Amount	Variance
094 - Inte	094 - Inte	erest Capitalized	,		11,036	0	11,036
095-The	095-The	ermal Overtime Labour AO			1,891	0	1,891
095-The	095-The	ermal & Hydro Contracts AO				0	
095-Th	095-Th	lermal Regular Labour AO			6,663	0	6,663
13 001 - T	001 - T	'HERMAL Regular Labour	013 - SGP - Boiler		21,750	0	21,750
13 002 - 7	002 - 7	THERMAL Overtime Labour	013 - SGP - Boiler		15,750	0	15,750
13 012-1	012 - I	Materials	013 - SGP - Boiler			0	
13 013-1	013 - I	OWER PRODUCTION Contracts	s 013 - SGP - Boiler			0	
35 001	001	THERMAL Regular Labour	085 Design		2,000	0	2,000
37 001	100	THERMAL Regular Labour	087 Field Super.& Ops.		4,000	0	4,000
37 011-	011 -	Travel Expense	087 Field Super.& Ops.		500	0	500
37 013-1	013 -	POWER PRODUCTION Contracts	s 087 Field Super.& Ops.			0	
37 021 - ⁻	021	Telephones	087 Field Super.& Ops.		150	0	150
37 041 - 1	041 - 1	Veals & Entertainment	087 Field Super.& Ops.		250	0	250
				Total Cost:	535,227	0	535,227
				Original Cost:	367,000		

Locat FP#: Title:	t ion: Trenton 41549 TRE 5 - Main Steam Attemperator Replacem	ient			~	Nova Scotia POWER An Emera Company	energy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
		abour 00	4 Overtime	Labour			T
1.1	Utility - Manwatch	hr	500	30.00	\$15.000	 	
1.2	Utility - material handling	hr	300	30.00	9,000		<u> </u>
1.3	Mechanic	hr	150	45.00	6,750		
1.4	Electrical & Instrumentation	hr	150	45.00	6,750	<u> </u>	
1.6	NSPI Engineening NSPI Supervisor	lot	1 1	4,000.00	4,000	4	+
		~ .		Sub-Total	43,500		38742
2	Attemporator accomplian	012 Mater	rials			1014 20, 2011 Ouoto	-i
2.1	Attemperator assemblies					July 29, 2011 Quote	+
2.3	Contingency (attemperator assembly)		in the second			1	+
2.4					-	İ	
2.5		\square	<u> </u>	Г <u> </u>	-		<u> </u>
2.6	1				-		
2.7				Sub-Total			
2							
3	3 013 Power Production Contracts						
3.1	Scaffolod -rental	lot	1				
3.2	Vac Truck - rental					I	00740
3.3 3.4	Contract Labour - Scattoid	lot	1			July 29, 2011 Quote	38742
3.5	AIC	hr				July 23, 2011 Quote	+
3.6	MacDoanlds - remove/replace insulation	hr					†
3.7	Project Supervisor external	lot	1				
3.8	Contingency (attemperator install)			Sub Total		I	_
4		028 Consi	ulting	000 . 000		۰ــــــــــــــــــــــــــــــــــــ	
	'						
	ļ′		'	لــــــا	l	↓	4
	·	───	'	∤ ────┦	ł	 	
<u> </u>	· · · · · · · · · · · · · · · · · · ·	1	<u> </u>	Sub-Total	<u>ı</u>	<u> </u>	+
				·		<u>-</u>	
5	011	1 Travel Ex	penses				-
5.1	Travel	lot	1	500	500	 	-
	·	╂────	'	łł	t	ł	
	·	1	<u> </u>	Sub-Total	500	ł	+
				·		<u> </u>	
6	041 Me	als and Er	itertainmen	ıt		_	-
6.1	Meals and Entertainment	lot	1	400	400	 	4
	·	╂────	'	łł	+ <u> </u>	╂─────	-
	·	1	<u> </u>	Sub-Total	400	ł	+
7	094	Interest Ca	apitalized			1	
7.1	Interested Capitalized		1	11,036	11,036	 	4
	·	──	'	ĮĮ	l	 	
<u> </u>	<u>.</u>	<u> </u>	<u> </u>	Sub-Total	11,036		-
8	095 Ad	Iministrativ	ve Overhea	d		1	
8.1	Thermal Regular Labour AO		1	6,663	6,663	<u>t</u>	
8.2	Thermal and hydro Contracts AO		1			<u> </u>	
8.3	Thermal Overtime AO	L	1	1,891 J	1,891	_	-
Projec	+ Cost Estimate			Total	\$535.228		+
1 10,00	t GOSt Estimate			Total			+
9	Original Cost						1
9.1					\$367,000	i	
Note 1:	: Reference to "Completed similar projects (FF	'#'s)" is to b	be provided	when the item esti	mate is based on wo	ork of similar scope for a	recently completed project

Plant Service Bulletin

Spray Attemperators

Purpose

The purpose of this bulletin is to advise customers and field personnel about superheater attemperator problems and provide recommendations for corrective action.

Background

The first B&W spray attemperator went into service in the mid 1950s. Since that time, design improvements have been made to extend attemperator life. These include adding a thermal sleeve and a material change. Figure 1 shows an early design attemperator.

Figure 1 Spray attemperator.

Problem

A limited number of attemperator failures have occurred. These failures are mainly attributed to extensive temperature cycling and low spray water temperatures. Some of the problems reported are as follows:

- 1. Cracks have been found in the early design spray nozzles.
- 2. Cracks have been found in or near dissimilar material welds on early design attemperators.
- 3. Spray nozzles have broken off and become lodged either in the Venturi or further downstream.
- 4. Cracks have been found in the thermal liners, and pieces have broken off and been found in down-stream piping.

Figure 2 and Figure 3 show different views of a cracked spray nozzle. Figure 4 shows a cracked weld between dissimilar materials.

Warning

Tube pluggage may occur and cause localized overheating of the tubes if small parts break off and are carried downstream. Larger parts of the spray head can break loose and become lodged in the Venturi. This blocks steam flow, resulting in increased pressure drop and uncontrolled steam temperatures.

Figure 2 Nozzle crack.

Figure 3 Nozzle crack.

Figure 4 Dissimilar weld cracks.

Figure 5 Spray nozzle assembly.

Figure 6 Cross section of attemperator assembly.

Recommendations

All attemperators should be inspected after 10 years of operation. The following areas should be included in the inspection:

- 1. Inspect spray nozzle assembly (Figure 5)
 - a. The diaphragm
 - b. Welds on nozzle extensions (welds #1 and #2)
 - c. Backplate
 - d. Inside and outside of spray header
- 2. Inspect the attemperator liner (Figure 6)
 - a. Check liner welds circumferential and longitudinal
 - b. Liner retainer block welds

All areas should be inspected for cracks, cracked or broken welds, and cracked or broken nozzles, liners and piping. Depending on observations made during the initial inspection, a schedule for subsequent inspections can be determined at that time. These inspections can be performed with fiber optics, or by removal of the attemperator. The results of the inspection will determine the extent of the repairs required. Complete replacement of the attemperator, in lieu of the repairs, may be a more economical alternative. The replacement attemperator should incorporate B&W's latest design, which includes material change to low alloy steels, eliminating the need for dissimilar welds.

Support

If any questions arise or assistance is required, contact B&W Field Service Engineering.

For more information...

In the U.S., call 1-800-BABCOCK (222-2625) or fax (216) 860-1886 (Barberton, Ohio). Outside the U.S., call (519) 621-2130 or fax (519) 621-2142 (Cambridge, Ontario, Canada). In Mexico, call (5) 208-1906 or fax (5) 533-5550. Or contact your nearest B&W sales or service office worldwide.

Akron, (Wadsworth), Ohio	Cincinnati, Ohio	Mexico City, Mexico
Ankara, Turkey	Dallas, Texas	Montreal, Quebec, Canada
Atlanta, Georgia	Denver (Lakewood), Colorado	New York, New York
Beijing, P.R.O. China	Edmonton, Alberta, Canada	Portland, Oregon (Vancouver, WA)
Birmingham, Alabama	Halifax (Dartmouth), Nova Scotia, Canada	Pune, India
Boston (Westborough), Massachusetts	Houston, Texas	Saint John, New Brunswick, Canada
Cambridge, Ontario, Canada	Jakarta, Indonesia	St. Petersburg, Florida
Charlotte, North Carolina	Kansas City, Missouri	San Francisco (Vacaville), California
Cherry Hill, New Jersey	Los Angeles (Los Alamitos), California	Vancouver (Richmond), British Columbia,
Chicago (Lisle), Illinois	Melville, Saskatchewan, Canada	Canada

The information contained herein is provided for general information purposes only, and is not intended or to be construed as a warranty, an offer, or any representation of contractual or other legal responsibility. Note: Deutsche Babcock AG and Babcock Energy Limited (U.K.), formerly licensees, are no longer affiliated with The Babcock & Wilcox Company.

BW babcock & wilcox power generation group

Spray Attemperators for Industrial Boilers

Figure 1 Dissimilar material welds can experience cracking in or near the weld.

Purpose

This plant service bulletin (PSB) advises owners and operators of known superheater attemperator problems and provides recommendations for corrective action.

Background

The first direct-contact spray attemperator on B&W boilers went into service in the mid-1950s. Most of the attemperators were designed and built by B&W, although some were supplied by other manufacturers.

PSB-15 was issued in 1985 to notify customers of problems experienced with B&W spray attemperators. However, attemperators built by other manufacturers also have experienced problems on many industrialsized boilers. This bulletin expands on the information supplied in PSB-15.

Problem

Depending on the operating characteristics of a particular boiler and the extent of load swings it is subjected to, the spray attemperator assembly can experience extensive thermal cycling. Factors contributing to thermal cycling include:

- Temperature differentials between steam and water
- Intermittent (on/off) attemperator operation
- Low-load boiler operation

Of the few attemperator failures reported, the cause was mainly attributed to thermal cycling between steam and spray water temperatures. Problems associated with these failures have included:

- Cracks in or near dissimilar material welds (Figure 1)
- Cracks in the older spray nozzle design (Figures 2 and 3)
- Cracks in the attemperator steam line when a liner is not used

Plant Service Bulletin

- Cracks in the thermal liners which have caused pieces to break off and be carried into the downstream piping
- Spray nozzles that have broken off and become lodged in the venturi or further in the downstream piping

Figure 2 Crack in an older spray nozzle design.

Figure 3 Nozzle cracks can occur from extensive thermal cycling between steam and spray water temperatures.

Warning

If small parts of the attemperator system break off and are carried downstream, tube plugging may occur and cause localized tube overheating. Larger parts of the spray head also can break loose (Figure 4) and get lodged in the venturi. If this occurs, steam flow is blocked, causing increased pressure drop and uncontrolled steam temperatures. Steam leakage also can result from cracks that have developed in the attemperator body and propagated through the wall.

Design improvements for life extension

To extend attemperator life, B&W has made the following design improvements:

1. A thermal liner was added to the spray attemperator (Figure 5), which protects the high-temperature piping from thermal shock.

2. The spray attemperator material was changed to lowalloy steels, eliminating the need for dissimilar metal welds which can crack (reference Figure 1). 3. One-piece cast spray nozzle heads were designed to eliminate the need for a welded backplate.

 Purchasing specifications and quality control procedures were made much more stringent.

Inspection recommendations

All attemperators with liners should be visually inspected after 10 years of operation. Those without a liner, however, should be inspected after five years of service (Figure 6). Future inspections for all attemperators should be on five-year intervals unless damage is found.

The visual inspection should thoroughly examine the following areas for damage:

- Spray Nozzle Assembly (Figure 7) – including the diaphragm, welds on the nozzle extensions (weld #1 and #2), backplate, and the inside and outside of the spray head
- Attemperator Liner, if one exists (Figure 8) – including the liner welds (circumferential

Figure 4 Failed attemperator spray head.

Figure 5 B&W spray attemperator design with a thermal liner.

does not have a liner.

and longitudinal) and the liner retainer block welds

Attemperator Body -

including cracks and erosion, especially when there is not a liner (reference Figure 6)

All areas should be inspected for cracked or broken welds and cracked or broken nozzles, liners and piping. Depending on observations made during the initial inspection, a schedule for subsequent inspections can be determined. The preferred

~300F (149C)

inspection method is to remove the spray nozzle and inspect the venturi and thermal liner using a fiber optic scope or microchip camera. These inspections also can be performed with a fiber optic scope through a radiograph plug or thermowell opening.

The results of the inspection will determine the extent of the repairs. However, if extensive repairs are required, a complete attemperator replacement may be more economical. If a replacement is needed, the attemperator should incorporate B&W's latest design enhancements, which include changing materials to low-alloy steels and adding a thermal liner.

Support

Contact Field Service Engineering through your local B&W district service office to coordinate your inspection and repair efforts, and to answer any questions.

Figure 7 *B&W spray nozzle assembly.*

Figure 8 *Cross section of a typical B&W attemperator assembly.*

For more information, or a complete listing of our sales and service offices worldwide, call 1-800-BABCOCK (222-2625) in North America. Outside North America, call (330) 753-4511 or fax (330) 860-1886 (Barberton, Ohio, USA). Or access our Web site at http://www.babcock.com.

Powering the World Through Teamwork and Innovation[®]

The information contained herein is provided for general information purposes only and is not intended or to be construed as a warranty, an offer, or any representation of contractual or other legal responsibility. Powering the World Through Teamwork and Innovation is a service mark of The Babcock and Wilcox Company.

TRE5 Main Steam Attemperator Replacement Summary of Alternatives & Assumptions

	Nova Scotia
	POWER
-	An Emora Company

energy everywhere."

Budget Year :	2012	Date :	19-Oct-11
Division :	Power Production	CI Number:	41549
Department :	Trenton	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Replace Attemperator	6.67%	211,727	1	25.50%	3.8 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on positive NPV, it is recommended that this project be completed in 2012

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Replace Attemperator

-25% Minus the Probability of failure in year 1

75% Probability that attemperators do not fail in year 1

х

1

28% Probability of attemperators failing in year 2 if no failure occurs in year 1

21% Actual probability of the attemperators failing in year 2

Avoided Cost Calculations

	Budget Year : Division : Department : Originator :	2012 Power Production Trenton	Date : CI Number: Project No.	19-Oct-11 41549
Replace Attemperator				
Capital Cost Avoided Replacement Energy costs (2012) =	\$ 535,227.00	1 outages x 90% x 2	5% x 🚺 MW x 1344	h = \$96,736.9 ⁴
Avoided Unplanned Repair Costs (2012)	\$ 685,227.00 x 25	5% x 1 = \$ 171,307		

Total Annual Avoided costs	\$268,043.71
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	MWh x 1 outages x 90% x 21% x MW x 1344 h = \$81,259.05 \$ 695,931.54 x 21% x 1 = \$ 146,146 \$ 227,404.67

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Keplace Atte		Ouending Cente	Conited	4 U U	J	CEDT	Aunticeble Terree	0F A T	Discount Factor		
	I OIGI VEVEINE			807 700	220			01A1 /014 400/			
2012	•	268,044	()22,22()	21,409	513,818	(267,183)	(84,280)	(351,463)	-	(351,463)	(351,463)
2013	•	227,405		41,105	472,712	227,405	(60,787)	166,618	1	156,200	(195,263)
2014	•	184,397	•	37,817	434,895	184,397	(45,515)	138,882	1	122,057	(73,206)
2015	•	141,958	•	34,792	400,104	141,958	(33,222)	108,736	1	89,588	16,381
2016	•	103,725		32,008	368,096	103,725	(22,296)	81,430	1	62,895	79,276
2017	•	71,872	•	29,448	338,648	71,872	(13,152)	58,721	1	42,519	121,795
2018	•	47,165	•	27,092	311,556	47,165	(6,223)	40,942	1	27,792	149,586
2019	•	29,262	•	24,924	286,632	29,262	(1,345)	27,917	1	17,765	167,352
2020	•	17,126	•	22,931	263,701	17,126	1,799	18,926	-	11,291	178,642
2021	•	9,432	•	21,096	242,605	9,432	3,616	13,048	-	7,297	185,940
2022	•	4,873	•	19,408	223,197	4,873	4,506	9,379	1	4,917	190,857
2023		2,353		17,856	205,341	2,353	4,806	7,159	0	3,519	194,376
2024	•	1,058	•	16,427	188,914	1,058	4,765	5,822	0	2,683	197,058
2025	•	440	•	15,113	173,800	440	4,549	4,989	0	2,155	199,213
2026	•	169	•	13,904	159,896	169	4,258	4,427	0	1,793	201,006
2027		•		12,792	147,105	•	3,965	3,965	0	1,505	202,512
2028	•	•	•	11,768	135,336	•	3,648	3,648	0	1,298	203,810
2029	•	•		10,827	124,509	•	3,356	3,356	0	1,120	204,930
2030		•		9,961	114,549	•	3,088	3,088	0	996	205,896
2031		•		9,164	105,385	•	2,841	2,841	0	833	206,729
2032	•	•	•	8,431	96,954	•	2,614	2,614	0	718	207,447
2033	•		-	7,756	89,198		2,404	2,404	0	620	208,067
2034	•	•	•	7,136	82,062	•	2,212	2,212	0	534	208,601
2035		•		6,565	75,497	•	2,035	2,035	0	461	209,062
2036	•	•	•	6,040	69,457	•	1,872	1,872	0	398	209,459
2037	•	•		5,557	63,901	•	1,723	1,723	0	343	209,802
2038		•		5,112	58,789	•	1,585	1,585	0	296	210,098
2039	•		•	4,703	54,085	•	1,458	1,458	0	255	210,353
2040	•	•	•	4,327	49,759	•	1,341	1,341	0	220	210,573
2041	•	•	•	3,981	45,778	•	1,234	1,234	0	190	210,763
2042	•	•	-	3,662	42,116	•	1,135	1,135	0	164	210,926
2043	•	•	•	3,369	38,746	•	1,044	1,044	0	141	211,067
2044	•	•	•	3,100	35,647	•	961	961	0	122	211,189
2045	•	•	•	2,852	32,795	•	884	884	0	105	211,294
2046	•	•	•	2,624	30,171	•	813	813	0	91	211,385
2047	•	•	•	2,414	27,758	•	748	748	0	78	211,463
2048	•	•	•	2,221	25,537	•	688	688	0	67	211,530
2049	•	•	•	2,043	23,494	•	633	633	0	58	211,588
2050	•	•	•	1,880	21,615	•	583	583	0	50	211,638
2051	•	•		1,729	19,885	•	536	536	0	43	211,681
2052	•	•	•	1,591	18,295	•	606	606	0	46	211,727
Total	•	1,109,280	(535,227)	516,932	6,212,336	574,053	(194,510)	379,543	15	211,727	6,705,140

Title:	LIN – Pulverizer Refurbishment
Start Date:	2012/02
Final Cost Date:	2012/12
Function: Forecast Amount:	Generation \$461,279

DESCRIPTION:

The purpose of this project is to replace pulverizer components that have reached the end of their useful life. Based on experienced wear characteristics, there is risk that component failures will occur if a replacement plan is not performed. This capital item includes the replacement of welded steel rollers and tables with ceramic wear components, worn gear & shaft, vertical shaft and other non-repairable mill components. The scope of this project is to refurbish two pulverizers with new ceramic tables and rollers. Components to be replaced or refurbished will be determined based on the condition assessment when teardown is undertaken as part of the planned outage for each pulverizer. The two pulverizers that will be refurbished under this project are 1A and 1 D . This work will complete the ceramic retrofit program for the Lingan pulverizers. Going forward, regular refurbishments of the Lingan pulverizers will still be required to extend asset life and ensure the reliability of this equipment is maintained.

Summary of Related CI's +/- 2 years: 2011 CI 39903 LIN 2011 Mill Refurbishment \$760,079

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Maintenance

Why do this project?

A failed pulverizer could limit peak generation of a unit depending on the fuel blend in service. This makes it imperative that the pulverizers are available and able to operate for extended lengths between scheduled outages. The replacement of components and the upgrading of the ceramics help to achieve this initiative.

Why do this project now?

An evaluation of the pulverizers has identified several areas of concern that need to be addressed in order for the pulverizers to meet availability targets. Replacement parts are now needed due to age and wear on many of the components. Refurbishment of pulverizer components is no longer sustainable and some of the components are worn beyond Original Equipment Manufacturer (OEM) tolerances.

Why do this project this way?

A phased approach to upgrading the pulverizers allows for scheduled outages of selected pulverizers, reducing the risk of extended unplanned outages. An unplanned outage could require in excess of 16 weeks based on material lead time and labor.

	CI Nu	mber : 40655	- LIN - Pulverizer Refurbishment		Project Number	
Pare	nt Cl Nun	nber :				
	Cost C	entre : 301	- 301-Lingan Admin./Common Capital		Budget Version	2012 ACE Plan
Capit	tal Item A	ccounts				
			£	Forecast		
Acct	Actv	Account	Activity	Amount	Amount	Variance
094		094 - Interest Capitalized			0	
095		095-Thermal Regular Labour AO		27,957	0	27,957
001	018	001 - THERMAL Regular Labour	018 - SGP - Fuel Hndig.Coal	116,440	0	116,440
012	018	012 - Materials	018 - SGP - Fuel Hndlg.Coal		0	

461,279

00 0

> 461,279 131,200

> > Original Cost: Total Cost:

Page 548 of 1189

Title: LIN - Pulverizer Refurbishment An Energia Company Item Description Unit Quantity Unit Estimate Total Estimate Cost Support Reference Completed Simil (Cliff's) N 1 001 Regular Labour 1 001 Regular Labour 1 Cost Support Reference Completed Simil (Cliff's) N 1.2 Mech Trades Supervision hr 4 4 4 4 39.50 113,760 39902 1.4 Mechanical Trades hr 2880 39.50 113,760 39902 1.4 Inclination Project Support Reference Sub-Total 116,440 Inclination Project Support Reference 39902 2.1 Materials - OEM and re-engineered fabrication pieces fot 1 39902 Inclination Project Support Reference 39902 Inclination Project Reference 39902 Inclination Project Reference Inclination Project Reference Sub-Total Inclination Project Reference Inclination Pr	Location: FP#:40655	Lingan						energy everywhere."
Item Description Unit Quantity Unit Estimate Total Estimate Cost Support Reference Completed Simil (Cl#'s) No. 1 001 Regular Labour Int St.000 Int Int St.000 Int 1.1 Plant Engineering - Technical and Project Support Int 40 42.00 1,680 Int 1.2 Mechanical Trades Int 2880 39.50 113.760 39900 1.4 Mechanical Trades Int 2880 39.50 113.760 39900 1.4 Mechanical Trades Int Zest Int Int Zest Int 1.5 Int Int Int Zest Int Int Int Zest 2.1 Materials - OEM and re-engineered fabrication pieces Int Int Int Int Int 2.2 Int Int Int Int Int Int Int Int 2.2 Int Int Int Int Int Int Int Int 2.2 Int Int Int Int Int Int Int Int 2.3 Int Int Int Int Int Int <th>Title:</th> <th>LIN - Pulverizer Refurbishment</th> <th></th> <th></th> <th></th> <th></th> <th>An Emera Company</th> <th></th>	Title:	LIN - Pulverizer Refurbishment					An Emera Company	
1 001 Regular Labour 11 1.1 Plant Engineering - Technical and Project Support hr \$1,00 12 Mech Trades Supervision hr 40 42.00 1,680 12 1.4 Mechanical Trades hr 2880 39.50 113,760 39900 1.4 Mechanical Trades hr 2880 39.50 113,760 39900 1.4 Image: Supervision hr 2880 39.50 113,760 39900 1.4 Image: Supervision Image: Supervision <td< td=""><td>ltem</td><td>Description</td><td>Unit</td><td>Quantity</td><td>Unit Estimate</td><td>Total Estimate</td><td>Cost Support Reference</td><td>Completed Similar Projects (Cl#'s) Note 1</td></td<>	ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (Cl#'s) Note 1
1 Dot Reguar Labour intervent \$1,000 1.1 Plant Engineering - Technical and Project Support hr intervent \$1,000 1.2 Mech Trades Supervision hr 40 42,00 1,680 1.4 Mechanical Trades hr 2860 39,50 113,760 39900 1.4 Intervent Sub-Total Intervent Intervent Intervent Intervent 39900 2.1 Materials - OEM and re-engineered fabrication pieces lot 1 Intervent 39900 2.2 Intervent Intervent Sub-Total Intervent 39900 3 094 Interest Capitalized Intervent Intervent Intervent 3 094 Intervent Capitalized Intervent Intervent Intervent 4 095 Administrative Overhead Intervent Intervent Intervent Intervent 4 095 Administrative Overhead Intervent Intervent Intervent Intervent 9 Intervent Intervent Intervent Intervent Intervent 1 Interve		004 D						
1.1 Plant Engineering - Technical and Project Support hr \$1,00 1.2 Mech Trades Supervision hr 40 42.00 1,680 1.4 Mechanical Trades hr 2880 39.50 113,760 39900 1.4 Mechanical Trades hr 2880 39.50 113,760 39900 1.4 Image: Supervision hr 2880 39.50 113,760 39900 1.4 Image: Supervision Image: Supervision Image: Supervision Image: Supervision Image: Supervision 39900 1.4 Image: Supervision 1.4 Image: Supervision Image: Supervision Image: Supervision Image: Supervision Image: Supervision 2.1 Image: Supervision Image: Supervision Image: Supervision Image: Supervision Image: Supervision 2.1 Image: Supervision Image: Supervision Image: Supervision Image: Supervision Image: Supervision 2.1 Image: Supervision Image: Supervision Image: Supervision Image: Supervision Image: Supervision 2.3 Image: Supervision Image:	1	001 Regi	ular Labour					
1.2 Mech Trades Supervision hr 40 42.00 1,680 1.4 Mechanical Trades hr 2880 39.50 113,760 39900 1.4 Image: Supervision Image: Supervision Image: Supervision 39900 1.4 Image: Supervision Image: Supervision Image: Supervision 39900 1.4 Image: Supervision Image: Supervision Image: Supervision Image: Supervision 1.5 Image: Supervision Image: Supervision Image: Supervision Image: Supervision 2 Image: Supervision Image: Supervision Image: Supervision Image: Supervision 2.1 Image: Supervision Image: Supervision Image: Supervision Image: Supervision 2.2 Image: Supervision Image: Supervision Image: Supervision Image: Supervision 2.3 Image: Supervision Image: Supervision Image: Supervision Image: Supervision 3 Image: Supervision Image: Supervision Image: Supervision Image: Supervision 4 Op5 Administrative Overhead Image: Supervision Image: Supervision Image: Supervision 4 Op5 Administrative Overhead Image: Supervision Image: Supervision Image: Supervision <tr< td=""><td>1.1</td><td>Plant Engineering - Technical and Project Support</td><td>hr</td><td></td><td></td><td>\$1,000</td><td></td><td></td></tr<>	1.1	Plant Engineering - Technical and Project Support	hr			\$1,000		
1.4 Mechanical Trades hr 2880 39.50 113,760 3990; 1.4 I </td <td>1.2</td> <td>Mech Trades Supervision</td> <td>hr</td> <td>40</td> <td>42.00</td> <td>1,680</td> <td></td> <td></td>	1.2	Mech Trades Supervision	hr	40	42.00	1,680		
1.4 1.5 Sub-Total 116,440 2 2.1 Materials - OEM and re-engineered fabrication pieces 2.2 2.3 3 3 3.1 4 4 Yopiect Total Cost Estimate	1.4	Mechanical Trades	hr	2880	39.50	113,760		39903
1.5 Sub-Total 116,440 2 012 Materials 2 2.1 Materials - OEM and re-engineered fabrication pieces lot 1 2.3 1 1 39900 2.3 2.9 1 1 3 094 Interest Capitalized 1 1 3.1 ea 1 1 4 095 Administrative Overhead 1 27,957 4.1 Thermal Regualr labour AO ea 1 2.1 1 1 1	1.4							
Sub-Total 116,440 2 012 Materials 2.1 Materials - OEM and re-engineered fabrication pieces lot 1 2.2 Image: Sub-Total Sub-Total 39900 3 094 Interest Capitalized 3 3.1 ea 1 Image: Sub-Total 4 095 Administrative Overhead 27,957 27,957 4.1 Thermal Reguair labour AO ea 1 27,957 27,957 Project Total Cost Estimate Sub-Total 27,957 27,957 1	1.5							
2 012 Materials 33990: 2.2 0 0 3990: 2.3 0 0 0 3990: 2.3 0 0 0 0 3990: 2.3 0 0 0 0 0 0 0 2.3 0					Sub-Total	116,440		
Z U12 Materials OI2 Materials Z Materials OEM and re-engineered fabrication pieces lot 1 39900 39900 39900 39900 39900 2000 30900 3090							I	
2.2 10 1 0330. 2.2 1 1 1 2.3 1 1 1 3 094 Interest Capitalized 1 1 3 094 Interest Capitalized 1 1 3 094 Interest Capitalized 1 1 4 095 Administrative Overhead 1 1 4.1 Thermal Reguair labour AO ea 1 27,957 4.1 1 1 1 1 5ub-Total 1 1 1 9 1 1 1 1 1 1 1	2	U12 M Materials - OEM and re-opgingered fabrication pieces	laterials	1				20003
2.3	2.1	Materials - OLM and re-engineered fabrication pieces	IUL					39903
2.9 Sub-Total 3 094 Interest Capitalized 3.1 ea	2.3							
Sub-Total Sub-Total Sub-Total Sub-Total 4 095 Administrative Overhead 4 O95 Administrative Overhead 4 O95 Administrative Overhead 4 O95 Administrative Overhead 4 O95 Administrative Overhead Sub-Total 27,957 Sub-Total 27,957 Sub-Total 27,957 Sub-Total 27,957 Sub-Total 27,957 Sub-Total 27,957 Origin Cost Estimate Total \$461,279	2.9				Cub Tatal			
3 094 Interest Capitalized 3.1 ea 1	L				Sub-Total			
3.1 ea 1	3	094 Interes	st Capitalize	d			_	
Image: second	3.1		ea	1				
Sub-Total Sub-Total 4 095 Administrative Overhead 4.1 Thermal Reguair labour AO ea 1 27,957 4 Sub-Total 27,957 1 7 Sub-Total 27,957 1 9 Sub-Total 27,957 1 9 Total \$461,279 1								
4 095 Administrative Overhead 4.1 Thermal Regular labour AO ea 1 27,957 - - - - - - - - - - - - - - - Project Total Cost Estimate - Total \$461,279			1		Sub-Total			
4 095 Administrative Overhead 4.1 Thermal Regular labour AO ea 1 27,957 27,957 - - - - - - - - - - - - - - Project Total Cost Estimate Total \$461,279 - - -								
4.1 Ihermal Reguair labour AO ea 1 27,957 27,957 Image: Sub-Total Image: Sub-Total<	4	095 Administ	rative Overh	ead				
Sub-Total 27,957 Project Total Cost Estimate Total \$461,279	4.1	Thermal Reguair labour AO	ea	1	27,957	27,957		
Sub-Total 27,957 Project Total Cost Estimate Total \$461,279				1		-		
Project Total Cost Estimate Total \$461,279				•	Sub-Total	27,957		
	Project Tota	I Cost Estimate			Total	\$461,279		
5.1 \$131,200	5 5.1					\$131,200		
Note 1: Reference to "Completed similar projects (CH#'s)" is to be provided when the item estimate is based on work of similar scope for a recently completed project	Note 1: Refe	rence to "Completed similar projects (CI#'s)" is to be provided whe	n the item es	timate is base	d on work of similar	r scope for a recently	completed project	

Materials Estin	mate Sheet	Nova Scotia		
Station:	LINGAN GENERATING STATION	An Emera Company	energy e	verywhere."
CI Number:	40655			
Project:	LIN - Pulverizer Refurbishment			
Item	Description	Unit Cost (\$)	Qty	Total Cost (\$)
	OEM materials for Refurbishment			
1	Worm gear PN 66-101-A			
2	Worm Gear Hub PN 66-308			
3	Shaft , Worm PN 66-289-A			
4	Grinding Roll, Ceramic Design 66-930-XW, XWIN 663			
5	Bull Ring Assembly for 663 RPS , 66-931-XW			
6	Keyless shaft and bowl hub $$ 66-985 , assembly 663 RS			
7	Whizzer Disc and Clip Assembly EX-5731			
8	Fan Blade Clip for Exhauster EX-2352-CAN			
9	Whizzer Blade – Rev 03 on Drwg A-EX-3729-N-CER			
10	Exhauster Fan Blades SKC 65405-AA			
11	Ceramic Lined Hub protector EX 5840 per quote 49976 SQ			
12	Spider Arm Protector EX 5657			
14	Shatt End Cap PN 66-184-A			
15	Journal head Skirt PN 66-179			
16	Journal pressure Spring Cup PN 70-228			
17	Journal Head PN 66-178			
18	I runnion Busning Retainer PN 66-185			
	Non-OEM materials for Refurbishment			
19	Roof Liners 90-49-2120			
20	Inner Cone 09-25-1200			
21	Reject Scraper 09-08-4860			
22	Wall Liners 09-49-9060			
23	Bowl Ext Ring 09-76-6170			
24	Vane Wheel 09-80-2230			
29	Riffle boxes			
	Total Materials Estimate			

LIN Pulverizer Refurbishment **Summary of Alternatives & Assumptions**

energy everywhere."

Budget Year :	2012	Date :	24-Oct-11
Division :	Power Production	CI Number:	40655
Department :	Lingan	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Pulverizer Refurbishment	6.67%	263,775	1	#NUM!	0.0 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the mills be refurbished

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Pulverizer Refurbishment

-75% Minus the Probability of failure in year 1

25% Probability that pulverizer does not fail in year 1

1

80% Probability of pulverizer failing in year 2 if no failure occurs in year 1

20% Probability of the unit failing in year 2

x 336 h =

80% x 20% x

\$27,077.94

Avoided Cost Calculations

Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs

	Budget Year : Division : Department : Originator :	2012 Power Production Lingan	Date : 24-Oct-11 CI Number: 40655 Project No.
Pulverizer Refurbishment Capital Cost Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	\$ 461,279.00 MWh x 4 \$ 213,319.75 x 75% x \$741,501.51	outages x 80% x 75% x 4 = \$ 639,959	x 336 h = \$101,542.26

MWh x 4 outages x 80% x 20% x 4 = \$ 170,656

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

\$ 213,319.75 \$ 197,733.74

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012		741,502	(461,279)	18,451	442,828	280,223	(246,202)	34,020	1	34,020	34,020
2013		197,734	•	35,426	407,402	197,734	(52,956)	144,778	1	135,725	169,745
2014	•	42,133		32,592	374,809	42,133	(3,022)	39,111	1	34,373	204,118
2015	•	6,710	•	29,985	344,825	6,710	7,215	13,925	1	11,473	215,591
2016	•	673	•	27,586	317,239	673	8,288	8,961	1	6,921	222,512
2017	•	29	•	25,379	291,860	29	7,847	7,914	1	5,730	228,243
2018		•	•	23,349	268,511	•	7,238	7,238	-	4,913	233,156
2019	•	•		21,481	247,030	•	6,659	6,659	-	4,238	237,394
2020	•	•		19,762	227,268	•	6,126	6,126	-	3,655	241,048
2021	•	•	•	18,181	209,086	•	5,636	5,636	-	3,152	244,200
2022	•	•	•	16,727	192,359	•	5,185	5,185	1	2,719	246,919
2023	•	•	•	15,389	176,971	•	4,771	4,771	0	2,345	249,264
2024	•	•	•	14,158	162,813	•	4,389	4,389	0	2,022	251,286
2025	•	•	•	13,025	149,788	•	4,038	4,038	0	1,744	253,030
2026	•	•	•	11,983	137,805	•	3,715	3,715	0	1,504	254,535
2027	•	•	•	11,024	126,780	•	3,418	3,418	0	1,297	255,832
2028	•	•	•	10,142	116,638	•	3,144	3,144	0	1,119	256,951
2029	•	•	•	9,331	107,307	•	2,893	2,893	0	965	257,916
2030		•	•	8,585	98,722	•	2,661	2,661	0	832	258,749
2031	•	•	•	7,898	90,825	•	2,448	2,448	0	718	259,466
2032	•	•	•	7,266	83,559	•	2,252	2,252	0	619	260,086
2033	•	•	•	6,685	76,874	•	2,072	2,072	0	534	260,620
2034	•	•		6,150	70,724	•	1,906	1,906	0	461	261,080
2035	•	•	•	5,658	65,066	•	1,754	1,754	0	397	261,477
2036	•	•	•	5,205	59,861	•	1,614	1,614	0	343	261,820
2037	•	•	•	4,789	55,072	•	1,485	1,485	0	295	262,116
2038	•	•	•	4,406	50,666	•	1,366	1,366	0	255	262,370
2039	•	•	•	4,053	46,613	•	1,257	1,257	0	220	262,590
2040	•	•	•	3,729	42,884	•	1,156	1,156	0	190	262,780
2041	•	•		3,431	39,453	•	1,064	1,064	0	164	262,943
2042	•	•	•	3,156	36,297	•	978	978	0	141	263,084
2043	•	•		2,904	33,393	•	006	006	0	122	263,206
2044		•	•	2,671	30,722	•	828	828	0	105	263,311
2045		•	•	2,458	28,264	•	762	762	0	90	263,401
2046		•	•	2,261	26,003	•	701	701	0	78	263,479
2047	•	•	•	2,080	23,923	•	645	645	0	67	263,547
2048		•		1,914	22,009	•	593	593	0	58	263,605
2049		•	•	1,761	20,248	•	546	546	0	50	263,655
2050		•	•	1,620	18,628	•	502	502	0	43	263,698
2051	•	•	•	1,490	17,138	•	462	462	0	37	263,735
2052		•		1,371	15,767	•	523	523	0	39	263,775
Total		988,820	(461,279)	445,512	5,354,028	527,541	(193,145)	334,396	15	263,775	10,090,352

Title:

LIN3 - Cooling Water (CW) Pump Refurbishment

Start Date:	2012/07
Final Cost Date:	2012/11
Function:	Generation
Forecast Amount:	\$447,687

DESCRIPTION:

The Lingan circulating water (CW) system supplies cooling water to the steam condenser. Cooling water is drawn from a shoreline intake through a pair of traveling screens by two vertical single stage pumps. The water is then pumped through the CW piping and into the steam condenser inlet. These pumps also supply cooling water to the turbine lube-oil coolers, general service cooling water coolers hydrogen coolers and vacuum pump heat exchangers.

This project is for refurbishment of the 3B Cooling Water (CW) pump at the Lingan Generating Station. This refurbishment includes re-surfacing and coating of worn, corroded and damaged surfaces and components, a new sleeveless, chromed stainless pump shaft, new marine bearings, and verification of all mating fits and alignments.

The refurbishment project includes the installation of an additional bearing on the pump shaft. This bearing will help to maintain alignment and will reduce the movement of the pump shaft if misalignment occurs, protecting related bearings and running surfaces. The pump refurbished in 2010 with the additional bearing modification has demonstrated successful operation since being returned to service.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Maintenance

Why do this project?

Each operating unit is equipped with two 50% duty CW pumps, which supply cooling water to each Unit's condenser and various smaller heat exchangers serving the Unit. Adequate condenser cooling is necessary to ensure sufficient condenser vacuum, which is a major contributor to Unit efficiency. During the cooler months, one CW pump per operating unit is capable of providing adequate condenser cooling. During warmer months, both pumps must operate at the same time to maintain condenser vacuum. If one of a Unit's two CW pumps is unavailable during the warmer months, the Unit's heat rate and/or ability to generate full load will be restricted. The loss of both pumps would lead to an unplanned unit outage. The availability of these pumps is critical to ensure reliable unit operation. The CW pumps range in age from 18 to 23 years. Over the years, these pumps have developed normal operating wear and component erosion and corrosion due to solid particle and salt water exposure which has been managed through periodic maintenance overhauls.

Why do this project now?

The station's CW pumps are currently exhibiting wear profiles that indicate rebuilds must be completed. Routine maintenance has extended the life of the pumps but has not addressed the age-related refurbishment work to be completed under this project. Completing this project now will mitigate the risk of an unplanned pump failure unit de-rating or forced outage.

Why do this project this way?

Refurbishing CW pumps with new component and design features is more cost effective than procuring a replacement pump.

CI Number : ⁴¹¹²¹

ŗ	
Jumbe	
ū	
Parent	

Cost Centre : 301

.

- 301-Lingan Admin./Common Capital

Budget Version 2012 ACE Plan

Capit	tal Item A	ccounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		1,816	0	1,816
095		095-Thermal & Hydro Contracts AO			0	
095		095-Thermal Regular Labour AO		18,871	0	18,871
001	014	001 - THERMAL Regular Labour	014 - SGP - Circ.Water Sys.	78,596	0	78,596
012	014	012 - Materials	014 - SGP - Circ.Water Sys.	12,500	0	12,500
013	014	013 - POWER PRODUCTION Contra	ts 014 - SGP - Circ.Water Sys.		0	
			Total Cost:	447,687	0	447,687
			Original Cost:	391,000		

Location	Lingan				-	Nova Scotia	
FP#:41121	Lingan				-	POWER en	ergy everywhere."
Title:	Cooling Water (CW) Pump Refurbishment					An Emera Company	-
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (CI#'s) Note 1
1	001 Regular La	abour	-				
1.1	Plant / GS Engineering - Technical and Project Support	hr			\$2,000		
1.2	Mech Trades Supervision - 10hrs / week , 8 weeks	hr	80	45.00	3,600		
1.3	For disassembly & pump extraction - Mech Trades - 3 Mech. / shift - 2 shifts / day , 4 weeks + 10% contigency - extract	hr	924	39.50	36,498		
1.4	For reassembly - Mech Trades - 3 Mech. / shifts - 2 shifts / day , 4 weeks + 10% contigency - install	hr	924	39.50	36,498		
				Sub-Total	78,596	Note 2	39623
2	010 Мелет	le.				7	
21	U12 Materia	lot	1	5 000	5 000		1
2.2	Consumables, Misc	Lot	1	7,500	7,500		
					-		
				Sub-Total	12,500		
3	013 Power Production Contracts]	
3.1	CW Pump rebuild subcontract	ea	1			Note 3	
3.2	Machine and Mech contracts - local	ea	1				
3.3	Transportation and Loading	ea	1				-
3.4	Contingency for unforseen pump repair scope - 10% and price escalation	ea	1			Note 4	39623
				Sub-Total			
4	094 Interest Cap	italized				1	
4.1					1,816		
				Sub-Total	1 816		
				Oub Total	1,010		
5	095 Administrative	Overhead]	
5.1	Therm & Hydro Contracts AO				10.071		
5.2	Thermal Reguair labour AO				18,871		
				Sub-Total			
ect Cost Est	imate			Total	447,687		
6 6.1	Original Cost				\$391,000		
Note 1: Refe	rence to "Completed similar projects (Cl#s)" is to be provided when the item	estimate i	is based on wo	ork of similar scope	for a recently comp	leted project	
Note 2: Und	er project 39623 actual labour cost was \$66K. Given the scope of this proje	ct compare	ed to 39623, e	stimated labour cos	t is higher.		
Note 3: Refe	erence quote Q10004914 for a recent project very similar in scope. A portion	n of the co	ntingency und	er item 3.4 of this es	stimate is for price e	escalation from April 2010.	
Note 4: Con	tintency is based similar past projects, particularly 39623.						

LIN CW Pump Refurbishment Summary of Alternatives & Assumptions

Nova Scotia
POWFD
An Emera Company

energy everywhere."

Budget Year :	2012	Date :	29-Oct-11
Division :	Power Production	CI Number:	41121
Department :	Lingan	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Refurbish Pump	6.67%	248,991	1	38.19%	3.0 years
в	Replace Pump	6.67%	70,246	2	11.46%	5.9 years
С	Test 3	6.67%	0	3	#NUM!	0.0 years
D	Test 4	6.67%	0	3	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the CW pump be refurbished

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Refurbish Pump

1

-25% Minus the Probability of failure in year 1

75% Probability that pump does not fail in year 1

х

30% Probability of pump failing in year 2 if no failure occurs in year 1

23% Probability of the pump failing in year 2

Avoided Cost Calculations

Budget Year :	2012	Date :	31-Oct-11
Division :	Power Production	CI Number:	41121
Department :	Lingan	Project No.	
Originator :			

Refurbish Pump	
Capital Cost	\$ 447,687
Avoided Replacement Energy costs (2012) =	MWh x 1 outages x 80% x 25% x MW x 504 h = \$97,73
Avoided Unplanned Repair Costs (2012)	\$ 619,687.00 x 25% x 1 = \$154,922
Total Annual Avoided costs	\$252,656.17
Avoided Replacement Energy costs (2013) =	MWh x 1 outages x 80% x 22.5% x MW x 504 h = \$87,96
Avoided Unplanned Repair Costs (2013)	\$ 630,640.74 x 22.5% x 1 = \$141,894
Total Annual Avoided costs	\$ 229,855.15

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Keturbish Pi Vaar	ump Total Revenue	Onerating Costs	Canital	CCA		CERT	Annlicahle Taxes	CEAT	Discount Factor	PV of CF	CNPV
2012	-	252 656 252 656	(447 687)	17 907	429 780	(195.031)	(80.169)	(275 200)	1.000	(275 200)	(275 200)
2013	•	229.855	-	34.382	395,397	229.855	(63.729)	166.126		155.739	(119.461)
2014	•	191.205		31.632	363.765	191.205	(49.530)	141.674		124.511	5.049
2015	.	144,682	•	29,101	334,664	144,682	(35,830)	108,852	1	89,683	94,732
2016	•	99,481		26,773	307,891	99,481	(22,593)	76,888	-	59,387	154,119
2017	•	74,314	•	24,631	283,260	74,314	(15,402)	58,913	-	42,658	196,777
2018	•	37,852	•	22,661	260,599	37,852	(4,709)	33,143	1	22,497	219,274
2019	•		-	20,848	239,751	•	6,463	6,463	1	4,113	223,387
2020	•	•	•	19,180	220,571	•	5,946	5,946	1	3,547	226,934
2021				17,646	202,925	•	5,470	5,470	1	3,059	229,993
2022	•	•	•	16,234	186,691	•	5,033	5,033	1	2,639	232,632
2023	•			14,935	171,756	•	4,630	4,630	0	2,276	234,908
2024	•			13,740	158,015	•	4,260	4,260	0	1,963	236,870
2025	•	•		12,641	145,374	•	3,919	3,919	0	1,693	238,563
2026	•	•	•	11,630	133,744	•	3,605	3,605	0	1,460	240,023
2027	•	•	•	10,700	123,045	•	3,317	3,317	0	1,259	241,282
2028	•	•		9,844	113,201	•	3,052	3,052	0	1,086	242,368
2029	•	•		9,056	104,145	•	2,807	2,807	0	937	243,305
2030	•		-	8,332	95,813	•	2,583	2,583	0	808	244,113
2031	•	•	•	7,665	88,148	•	2,376	2,376	0	697	244,809
2032	•	•	•	7,052	81,097	•	2,186	2,186	0	601	245,410
2033	•		-	6,488	74,609	•	2,011	2,011	0	518	245,929
2034	•			5,969	68,640	•	1,850	1,850	0	447	246,376
2035	•			5,491	63,149	•	1,702	1,702	0	386	246,761
2036	•	•	•	5,052	58,097		1,566	1,566	0	333	247,094
2037	•	•		4,648	53,449	•	1,441	1,441	0	287	247,380
2038	•	•		4,276	49,173	•	1,326	1,326	0	247	247,628
2039	•	•		3,934	45,239	•	1,219	1,219	0	213	247,841
2040	•	•		3,619	41,620	•	1,122	1,122	0	184	248,025
2041	•	•	•	3,330	38,291	•	1,032	1,032	0	159	248,184
2042	•	•	•	3,063	35,227	•	950	950	0	137	248,321
2043			•	2,818	32,409	•	874	874	0	118	248,439
2044		•	•	2,593	29,816		804	804	0	102	248,541
2045	•	•	•	2,385	27,431	•	739	739	0	88	248,628
2046	•	•	•	2,194	25,237	•	680	680	0	76	248,704
2047	•	•	•	2,019	23,218	•	626	626	0	65	248,769
2048	•	•	•	1,857	21,360		576	576	0	56	248,826
2049	•	•	•	1,709	19,651	•	530	530	0	49	248,874
2050	•	•	•	1,572	18,079	•	487	487	0	42	248,916
2051	•	•		1,446	16,633	•	448	448	0	36	248,952
2052			•	1,331	15,302	•	507	507	0	38	248,991
Total		1,030,045	(447,687)	432,385	5,196,267	582,358	(195,825)	386,533	15	248,991	8,561,066

LIN CW Pump Refurbishment

Replace Pur	du		-				-				
Year	Total Revenue	Operating Costs	Capital	CCA	220	CFBI	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012	•	252,656	(650,000)	26,000	624,000	(397,344)	(77,578)	(474,922)	1	(474,922)	(474,922)
2013	•	227,391	•	49,920	574,080	227,391	(57,969)	169,422	1	158,828	(316,094)
2014	•	187,139		45,926	528,154	187,139	(43,867)	143,272	-	125,915	(190,179)
2015	•	140,106		42,252	485,901	140,106	(30,335)	109,771	-	90,440	(99,738)
2016	•	95,321	•	38,872	447,029	95,321	(17,576)	77,745	1	60,049	(39,690)
2017	•	70,463	•	35,762	411,267	70,463	(10,757)	59,706	-	43,232	3,542
2018	•	35,517	•	32,901	378,366	35,517	(811)	34,706	-	23,559	27,101
2019	•	•	•	30,269	348,096	•	9,383	9,383	-	5,971	33,072
2020	•	•	•	27,848	320,249	•	8,633	8,633	-	5,150	38,222
2021	•	•	•	25,620	294,629	•	7,942	7,942	-	4,442	42,664
2022	•	•		23,570	271,058	-	7,307	7,307	1	3,831	46,495
2023	•	•	•	21,685	249,374	-	6,722	6,722	0	3,304	49,799
2024	•	•		19,950	229,424	-	6,184	6,184	0	2,850	52,649
2025	•	•	•	18,354	211,070	-	5,690	5,690	0	2,458	55,106
2026	•	•	•	16,886	194,184	•	5,235	5,235	0	2,120	57,226
2027	•	•	•	15,535	178,650	•	4,816	4,816	0	1,828	59,054
2028	•	•	•	14,292	164,358	•	4,431	4,431	0	1,577	60,631
2029	•	•	•	13,149	151,209	•	4,076	4,076	0	1,360	61,991
2030	•	•	•	12,097	139,112	•	3,750	3,750	0	1,173	63,164
2031	•	•	•	11,129	127,983	•	3,450	3,450	0	1,012	64,176
2032	•	•	•	10,239	117,745	•	3,174	3,174	0	872	65,048
2033	•	•		9,420	108,325	-	2,920	2,920	0	752	65,801
2034	•	•	•	8,666	99,659	-	2,686	2,686	0	649	66,450
2035	•	•	•	7,973	91,686	-	2,472	2,472	0	560	600'29
2036	•	•	•	7,335	84,351	-	2,274	2,274	0	483	67,492
2037	•	•		6,748	77,603	•	2,092	2,092	0	416	606'29
2038	•	•	•	6,208	71,395	•	1,925	1,925	0	359	68,268
2039	•	•	•	5,712	65,683	•	1,771	1,771	0	310	68,577
2040	•	•	•	5,255	60,429	•	1,629	1,629	0	267	68,845
2041	•	•	•	4,834	55,594	•	1,499	1,499	0	230	69,075
2042	•	•	•	4,448	51,147	-	1,379	1,379	0	199	69,274
2043	•	•		4,092	47,055	•	1,268	1,268	0	171	69,445
2044	•	•	•	3,764	43,291		1,167	1,167	0	148	69,593
2045	•	•	•	3,463	39,827	-	1,074	1,074	0	127	69,720
2046	•	•	•	3,186	36,641	-	988	988	0	110	69,830
2047	•	•	•	2,931	33,710	-	606	606	0	95	69,925
2048	•	•	•	2,697	31,013	-	836	836	0	82	70,007
2049	•	•	•	2,481	28,532	-	769	769	0	71	70,077
2050	•	•	•	2,283	26,250	-	708	708	0	61	70,138
2051	•	•		2,100	24,150	-	651	651	0	52	70,191
2052	•	•		1,932	22,218		736	736	0	56	70,246
Total	•	1,008,593	(650,000)	627,782	7,544,497	358,593	(128,349)	230,244	15	70,246	1,037,193

Title:

POT Plant Siding Replacement

Start Date:	2012/04
Final Cost Date:	2012/11
Function:	Generation
Forecast Amount:	\$392,601

DESCRIPTION:

As part of life cycle management at the Point Tupper Generating Station, the condition of buildings, pipe bridges, walkways, and other structural components is regularly assessed. Several areas of the plant siding have been identified as requiring replacement.

This project includes replacement of deteriorated exterior plant siding, fasteners, and structural components in various locations of the plant. The majority of the siding to be replaced is original to the plant (installed in 1973) and has reached the end of its useful life. The remaining siding to be replaced is approximately 10 to 20 years old.

Summary of Related CI's +/- 2 years: 2013, 2014 CI #TBD POT Siding Replacement \$TBD

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Buildings

Why do this project?

Replacing the siding will mitigate the risk of further deterioration of the siding and prevent separation from the building structure. Replacing the siding will also ensure the building envelope is adequately sealed, prevent premature damage to the building's interior structural components and ensure equipment inside the plant is protected.

Why do this project now?

The siding to be replaced under this project has reached the end of its useful life and must be replaced. Minor repairs have been completed in recent years, but the degree of deterioration of both the siding and some of the support structure no longer allows for repairs to be completed.

Why do this project this way?

Replacing the siding is economically feasible and the most practical solution to preserving the building structure.

CI Number : 40256 - POT - Plant Siding Replacement

Parent CI Number :

.

- 351-Pt.Tupper Admin./Capital

Project Number

_		
b		
ĸ		
2		
2		
-		

2012 ACE Plan	
Budget Version	

Capital Item Accounts

Cost Centre : 351

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		5,158	0	5,158
095		095-Thermal Term Labour AO			0	
095		095-Thermal & Hydro Contracts AO			0	
095		095-Thermal Regular Labour AO		504	0	504
095		095-Thermal Overtime Labour AO		151	0	151
001	003	001 - THERMAL Regular Labour	003 - SGP - Bldg., Struct. Grnd.	2,100	0	2,100
002	003	002 - THERMAL Overtime Labour	003 - SGP - Bldg., Struct. Grnd.	1,260	0	1,260
004	003	004 - THERMAL Term Labour	003 - DP - Bldg., Struct. Grnd.	1,200	0	1,200
011	003	011 - Travel Expense	003 - SGP - Bldg., Struct. Grnd.	1,000	0	1,000
012	003	012 - Materials	003 - SGP - Bldg., Struct. Grnd.		0	
013	003	013 - POWER PRODUCTION Contra	cts 003 - SGP - Bldg., Struct. Grnd.		0	
041	003	041 - Meals & Entertainment	003 - SGP - Bldg., Struct. Grnd.	1,000	0	1,000
			Total Cost:	392,601	0	392,601
			Original Cost:	81,176		

Loca FP#: Title:	ttion: Point Tupper 40256 POT - Plant Siding Replacement					Nova Scotia POWER An Emera Company	energy everywhere."
Item	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (Cl#'s) Note 1
1	·	Labor			/		
11	001 Regular Labour				\$2 100	ł	
1.1	004 Term Labour	hr	-		1 200	1	
1.3	002 Overtime Labour	hr			1,260	1	
				Sub-Total	4,560		33242, 39933
2		010 Moto	- ala				
2	Siding and other materials	012 Mater				J	
∠.ı 2.2						l	
2.2				Sub-Total	·		33242, 39933
							<u>k</u>
3	013 Pov	ver Product	ion Contra	cts			
3.1	Installation contract	ea	1		,	 	
l			'	'	├ ──── <i>┦</i>	I	
				Sub-Total		i	33242. 39933
				000 . 010.		L	
4	0*	11 Travel E	xpenses			1	
4.1	Travel	lot	1	1,000	1,000	I	
l				'			
		<u> </u>	'	0 / T-tol	1 000	 	
				Sub-I otai	1,000	L	<u></u>
5	041 M	leals and Er	ntertainmer	nt	,	1	
5.1	Meals / Expenses	lot	1	1000	1,000	1	
-		1		<u> </u>		i	<u> </u>
				Sub-Total	1,000		
6	09/	4 Interest C	opitalized		,	1	
61	Interest			1	5,158	ł	
0.1		+	'	·		l	
		+	+	1	├ ─── ノ	1	
				Sub-Total	5,158		
7	095 Ac	dministrativ	ve Overhear	<u>d</u>		l	
7.1	Overhead	+	'	·'	10,884	l	
l		+	'	·	├─── •	l	
				Sub-Total	10,884	l	
				Total	\$392,602		<u> </u>
Projec	ct Cost Estimate					·	
Projec	ct Cost Estimate					·	
Projec 8	Ct Cost Estimate						

POT Plant Siding Replacement Summary of Alternatives & Assumptions

	Nova Scotia
	POWER
-	An Emera Company

energy everywhere."

Budget Year :	2012	Date :	29-Oct-11
Division :	Power Production	CI Number:	40256
Department :	Point Tupper	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Replace Siding	6.67%	365,189	1	14.14%	12.3 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the plant siding be replaced

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Replace Siding

1

-30% Minus the Probability of failure in year 1

70% Probability that the siding does not fail in year 1

х

31% Probability of siding failing in year 2 if no failure occurs in year 1

22% Probability of the siding failing in year 2

Avoided Cost Calculations

	Budget Year : Division : Department : Originator :	2012 Power Production Point Tupper	Date : Cl Number: Project No.	29-Oct-11 40256
Replace Siding				
Capital Cost	\$ 392,601			

Avoided Replacement Energy costs (2012) =	MWh x 3 outages x 90% x 30% x MW x 12 h = \$3,886
Avoided Unplanned Repair Costs (2012)	\$ 32,400.00 x 30% x 3 = \$29,160.00
Total Annual Avoided costs	\$33,046.75
Avoided Replacement Energy costs (2013) =	MWh x 3 outages x 90% x 31% x MW x 12 h = \$4,016
Avoided Unplanned Repair Costs (2013)	\$ 33,696.96 x 31% x 3 = \$31,338.17
Total Annual Avoided costs	\$ 35,354.48

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Replace Sidi	ng										
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012		33,047	(392,601)	15,704	376,897	(359,555)	(6,207)	(365,762)	-	(365,762)	(365,762)
2013	•	35,354	•	30,152	346,746	35,354	(1,866)	33,488	1	31,394	(334,368)
2014	•	35,054	•	27,740	319,006	35,054	(2,322)	32,731	1	28,766	(305,602)
2015	•	37,567	•	25,520	293,485	37,567	(3,734)	33,833	1	27,875	(277,728)
2016	•	40,224	•	23,479	270,007	40,224	(5,238)	34,986	1	27,023	(250,705)
2017	•	56,831	•	21,601	248,406	56,831	(10,922)	45,910	1	33,243	(217,462)
2018	•	62,478	•	19,872	228,534	62,478	(13,208)	49,270	-	33,445	(184,017)
2019	•	66,713	•	18,283	210,251	66,713	(15,013)	51,700	-	32,900	(151,118)
2020	•	71,185	•	16,820	193,431	71,185	(16,853)	54,332	-	32,413	(118,705)
2021	•	75,905	•	15,474	177,956	75,905	(18,733)	57,172	-	31,974	(86,731)
2022	•	100,076	•	14,237	163,720	100,076	(26,610)	73,466	-	38,518	(48,213)
2023	•	106,599	•	13,098	150,622	106,599	(28,986)	77,614	0	38,148	(10,065)
2024	•	113,482	•	12,050	138,573	113,482	(31,444)	82,038	0	37,801	27,737
2025	•	120,742	•	11,086	127,487	120,742	(33,994)	86,749	0	37,473	65,209
2026	•	128,399	•	10,199	117,288	128,399	(36,642)	91,757	0	37,158	102,367
2027	•	162,743	•	9,383	107,905	162,743	(47,541)	115,201	0	43,734	146,101
2028	•	175,587	•	8,632	99,272	175,587	(51,756)	123,831	0	44,071	190,172
2029	•	186,421	•	7,942	91,331	186,421	(55,329)	131,093	0	43,738	233,910
2030	•	197,838	•	7,306	84,024	197,838	(59,065)	138,773	0	43,405	277,316
2031	•	209,866	•	6,722	77,302	209,866	(62,975)	146,891	0	43,072	320,388
2032	•	216,874	•	6,184	71,118	216,874	(65,314)	151,560	0	41,662	362,050
2033	•	•	•	5,689	65,429		1,764	1,764	0	455	362,504
2034	•	•	•	5,234	60,194	-	1,623	1,623	0	392	362,896
2035	•	•	•	4,816	55,379		1,493	1,493	0	338	363,234
2036	•	•		4,430	50,948		1,373	1,373	0	292	363,526
2037	•	•		4,076	46,873		1,264	1,264	0	251	363,777
2038	•	•	•	3,750	43,123		1,162	1,162	0	217	363,994
2039	•	•	•	3,450	39,673		1,069	1,069	0	187	364,181
2040	•	•	•	3,174	36,499		984	984	0	161	364,343
2041	•	•	•	2,920	33,579		905	905	0	139	364,482
2042	•	•	•	2,686	30,893		833	833	0	120	364,602
2043	•	•	•	2,471	28,421		766	766	0	104	364,705
2044	•	•	•	2,274	26,148		705	705	0	89	364,795
2045	•	•	•	2,092	24,056	•	648	648	0	11	364,872
2046		•	-	1,924	22,131		597	597	0	99	364,938
2047	•	•		1,771	20,361		549	549	0	57	364,995
2048	•	•	•	1,629	18,732		505	505	0	49	365,045
2049	•	•	•	1,499	17,233	-	465	465	0	43	365,087
2050			•	1,379	15,855	•	427	427	0	37	365,124
2051		•	•	1,268	14,586	•	393	393	0	32	365,156
2052		•	•	1,167	13,419	•	445	445	0	34	365,189
Total		2,232,986	(392,601)	379,182	4,556,893	1,840,385	(575,783)	1,264,602	15	365,189	6,662,218

Title:

TRE6 - Condenser Waterbox and CW Piping Refurbishment

Start Date:	2012/06
Final Cost Date:	2012/11
Function:	Generation
Forecast Amount:	\$392,172

DESCRIPTION:

The Unit #6 condenser and cooling water (CW) piping were installed in 1991 and are original equipment to the plant. The function of this condenser is to provide the greatest vacuum possible to the turbine exhaust in order to achieve the most generating capacity possible from the steam and increase efficiency of the Unit. Once the steam from the turbine enters the condenser, it flows around the outside of the condenser tubes and condenses when cooled by river water which flows through the inside of the condenser tubes. The cooling water enters the plant through two large CW pumps, and then flows through large-diameter pipes into the waterboxes of the condenser. After cooling water passes through the tubes in the waterbox of the condenser, it is piped back to the river.

This project includes re-lining of the four condenser waterboxes and the refurbishment of the CW discharge piping. Refurbishment of the CW piping will include replacement of some sections of pipe as well as extending the life of some existing sections through applying a protective coating to the inside of the piping.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

The CW piping and the waterboxes are made of carbon steel, and have experienced normal wear and corrosion over time due to coming in contact with brackish East River water. These components are lined with a coating in order to protect the steel from premature corrosion. The interior surfaces of the waterboxes are lined with neoprene and the CW piping is lined with an epoxy coating. Due to normal wear overt time, these linings have deteriorated, and evidence of degradation in the CW piping and waterboxes is now evident.

The condition of the pipes is such that multiple leaks have been recently experienced, resulting in short unplanned outages to completed temporary repairs. In the case of the condenser waterbox, the neoprene lining has started to separate from the interior surfaces of the waterbox, resulting in large pieces of lining covering the condenser tubesheets. This impedes the flow of cooling water through the condenser, which results in de-rating of the Unit and lower efficiency.

Completing this project will extend the life of the existing waterboxes and CW piping and mitigate the risk of un-planned outages and associated replacement energy costs.

Why do this project now?

The sections of CW piping to be replaced are at the end of their useful life and must be replaced. Relining of the CW piping and condenser waterbox now will prevent further deterioration and extend their useful life. The 2012 outage is of sufficient duration to complete this work, and the next scheduled outage of sufficient duration to complete this work is not until 2014. As the piping has recently experienced leaks and the neoprene coating has started to separate from the interior surfaces of the waterboxes, this work must be completed now to mitigate the risk of further deterioration and un-planned unit outages.

Why do this project this way?

Removal of the remaining neoprene lining and replacing it with an epoxy coating will protect the waterboxes from further degradation. Replacement and repair of the CW piping combined with upgrading the internal and external coatings will ensure the reliability of the system. Refurbishing the waterboxes and CW piping is the most cost-effective option.

- TRE6 - Condenser Waterbox and Cooling Water (CW) Piping Refurbishment

Project Number

Parent Cl Number :

Cl Number : 41511

Cost Centre : 345

- 345-Trenton unit 6 Capital

.

Budget Version 2012 ACE Plan

Capital Item Accounts

	Variance	7,622			6,051	720	25,200	6,000	7,200			3,000	500	8,400	250	250	392,172	
	Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Forecost	r orecast Amount	7,622			6,051	720	25,200	6,000	7,200			3,000	500	8,400	250	250	392,172	252,000
	Activity						014 - SGP - Circ.Water Sys.	014 - SGP - Circ.Water Sys.	014 - SGP - Circ.Water Sys.	014 - SGP - Circ.Water Sys.	cts 014 - SGP - Circ.Water Sys.	085 Design	087 Field Super.& Ops.	cts 087 Field Super.& Ops.	087 Field Super.& Ops.	087 Field Super.& Ops.	Total Cost:	Original Cost:
	Account	094 - Interest Capitalized	095-Thermal Term Labour AO	095-Thermal & Hydro Contracts AO	095-Thermal Regular Labour AO	095-Thermal Overtime Labour AO	001 - THERMAL Regular Labour	002 - THERMAL Overtime Labour	004 - THERMAL Term Labour	012 - Materials	013 - POWER PRODUCTION Contract	028 - Consulting	011 - Travel Expense	013 - POWER PRODUCTION Contract	021 - Telephones	041 - Meals & Entertainment		
	Actv						014	014	014	014	014	085	087	087	087	087		
	Acct	094	095	095	095	095	001	002	004	012	013	028	011	013	021	041		

Loca FP#: Title:	tion: Trenton 41511 TRE6 - Condenser Waterbox and Cooling Water (CW)	Piping Refurb	ishment			va Scotia POWER en Emera Company	ergy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1	00	1 Regular	Labour				
1.1	Regular Labour	hr	480	40.00	\$19,200		34062
1.2	Regular labour - Manwatch	hr	240	25.00	6,000		34062
1.3	Term Labour	hr		Sub-Total			34062
				Sub-Total			
2	013 Pow	er Producti	ion Contra	cts			
2.1	Chillers/Fans	lot	1	-			
2.2	Removing Existing Coating and apply new coating	lot	1			Sept 21, 2011 quote	
2.4	Recoat Pipes	lot	1				34062
2.5	Pipe returbishment Contingency for re- and pipe refurbishment	lot	1				34062
2.5	scope	%	10%				34062
2.6	Waste Removal	lot	1				
2.7	External Supervisor	hr			8,400		
2.8							
		1	1	Sub-Total			
3	Poplacomont Gaskots	012 Mater					1
3.2		101	1				
		1	1	Sub-Total			
						Ì	
4	Detailed Engineering	028 Consu	lting		2 000		1
4.1		111			3,000		
4.3							
				Sub-Total	3,000		
5	01	1 Travol Ex	noneoe			Ì	
5.1	Travel		1	500	500		1
5.2			-				
5.3				Out Tatal	500		
				Sub-1otal	500		
6		Miscellane	ous				
6.1	Telephones	lot	1	250	250		
6.2	Meals and entertainment	lot	1	250	250		
6.3				Sub-Total	500		
				Cub Fold	000		
7	00	2 Overtime	Labour				
7.1	Overtime labour - Manwatch	hr	120	50.00	6,000		
7.2							
1.0				Sub-Total	6,000		
						I	
8	094	Interest Ca	pitalized		7 000		
8.1	Interest				7,622		
8.3							1
				Sub-Total	7,622		
		maining to a t'	o Oursetse				
8 1	095 Ad	ministrativ	e Overnead	u I	24 240		1
8.2					24,249		1
8.3							
D				Sub-Total	24,249		<u> </u>
Projec	t Cost Estimate			i otal	\$392,171		
9	Original Cost						
9.1					\$252,000		
Note 1	: Reference to "Completed similar projects (FI	P#'s)" is to b	pe provided	when the item estir	nate is based on wo	ork of similar scope for a r	ecently completed project

TRE6 Condesner Waterbox & CW Piping Refurbishment Summary of Alternatives & Assumptions

	Nova Scotia
	POWER
-	An Emera Company

energy everywhere."

Budget Year :	2012	Date :	20-Oct-11
Division :	Power Production	CI Number:	41511
Department :	Trenton	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Refurbish Waterboxes and CW Piping	6.67%	29,507	1	14.65%	6.2 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the Condenser Waterbox piping be relined and CW piping refurbished

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Refurbish Waterboxes and CW Piping

-75% Minus the Probability of failure in year 1

25% Probability that the condenser or CW piping does not fail in year 1

80% Probability of condenser or CW piping failing in year 2 if no failure occurs in year 1

20% Actual probability of the condenser or CW piping failing in year 2

Avoided Cost Calculations

Division :	Power Production	CI Number:	41511
DIVISION .	T Ower T Toduction	Ci Number.	41311
Department :	Trenton	Project No.	
Originator :			

Refurbish Waterboxes and CW Piping	
Capital Cost	\$ 392,172.00
Avoided Replacement Energy costs (2012) =	MWh x 1 outages x 90% x 75% x MW x 48 h = \$99,044
Avoided Unplanned Repair Costs (2012)	\$ 407,172.00 x 75% x 1 = \$ 305,379
Total Annual Avoided costs	\$404,422.76
Avoided Replacement Energy costs (2013) =	WWh x 1 outages x 90% x 20% x ■ MW x 48 h = \$26,412
Avoided Unplanned Repair Costs (2013)	\$ 415,315.44 x 20% x 1 = \$ 83,063
Total Annual Avoided costs	\$ 109,474.76

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

TRE6 Conde Refurbish W	esner Waterbox & laterboxes and CV	. CW Piping Refurbish N Piping	ment								
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012		404,423	(392,172)	15,687	376,485	12,251	(132,481)	(120,230)	1	(120,230)	(120,230)
2013		109,475	•	30,119	346,366	109,475	(25,966)	83,509	L .	78,287	(41,943)
2014	•	23,729		27,709	318,657	23,729	1,179	24,908	-	21,890	(20,053)
2015		3,844		25,493	293,164	3,844	6,711	10,555	-	8,696	(11,357)
2016		414	•	23,453	269,711	414	7,096	7,510	1	5,800	(5,556)
2017		22	•	21,577	248,134	22	6,682	6,704	L .	4,854	(702)
2018	•	•		19,851	228,284	•	6,154	6,154	-	4,177	3,475
2019	•	•	•	18,263	210,021	•	5,661	5,661	-	3,603	7,078
2020	•	•	•	16,802	193,219	-	5,209	5,209	-	3,107	10,185
2021	•	•	•	15,458	177,762	•	4,792	4,792	-	2,680	12,865
2022	•	•	•	14,221	163,541	•	4,408	4,408	-	2,311	15,176
2023	•	•	•	13,083	150,458	•	4,056	4,056	0	1,993	17,170
2024	•			12,037	138,421	•	3,731	3,731	0	1,719	18,889
2025	•			11,074	127,347	•	3,433	3,433	0	1,483	20,372
2026	•	•	•	10,188	117,159	•	3,158	3,158	0	1,279	21,651
2027	•	•	•	9,373	107,787	•	2,906	2,906	0	1,103	22,754
2028	•			8,623	99,164	•	2,673	2,673	0	951	23,705
2029	•			7,933	91,231	•	2,459	2,459	0	821	24,526
2030	•			7,298	83,932	•	2,263	2,263	0	708	25,234
2031				6,715	77,218	•	2,082	2,082	0	610	25,844
2032		•	•	6,177	71,040		1,915	1,915	0	526	26,370
2033	•			5,683	65,357	•	1,762	1,762	0	454	26,824
2034		•		5,229	60,128	•	1,621	1,621	0	392	27,216
2035	•	•	•	4,810	55,318		1,491	1,491	0	338	27,554
2036	•		•	4,425	50,893	-	1,372	1,372	0	291	27,845
2037	•	•	•	4,071	46,821	-	1,262	1,262	0	251	28,096
2038	•	•	•	3,746	43,076	-	1,161	1,161	0	217	28,313
2039	•	•	•	3,446	39,630		1,068	1,068	0	187	28,500
2040	•		•	3,170	36,459	-	983	983	0	161	28,661
2041	•		•	2,917	33,542	-	904	904	0	139	28,800
2042	•	•	•	2,683	30,859		832	832	0	120	28,920
2043	•	•	•	2,469	28,390	•	765	765	0	103	29,023
2044	•	•	•	2,271	26,119	-	704	704	0	88	29,112
2045	•		•	2,090	24,030	-	648	648	0	22	29,189
2046	•	•	•	1,922	22,107	-	296	596	0	99	29,256
2047	•	•	•	1,769	20,339	•	548	548	0	22	29,313
2048		•	•	1,627	18,712	•	504	504	0	49	29,362
2049	•	•	•	1,497	17,215	-	464	464	0	43	29,405
2050	•	•	•	1,377	15,837		427	427	0	37	29,441
2051	•	•	•	1,267	14,570	-	393	393	0	32	29,473
2052	•		•	1,166	13,405	-	444	444	0	34	29,507
Total	•	541,906	(392,172)	378,767	4,551,909	149,734	(63,930)	85,804	15	29,507	649,264

Piping Refurbishment	
≳	ċ
~	ł
Waterbox 8	
Condesner	Line Ministration
ø	

Title:

TRE6 - Steam Turbine Control Valve Refurbishment

Start Date:	2012/06
Final Cost Date:	2012/10
Function:	Generation
Forecast Amount:	\$359,507

DESCRIPTION:

During the 2010 outage, the steam turbine control valves on Trenton Unit #6 were disassembled and inspected. As a result, the Original Equipment Manufacturer (OEM) recommended that an overhaul of the control valves be completed in 2012; including replacement of three of the four valve stems and replacement of all sleeve bearings.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

Completing this project in accordance with OEM recommendations is necessary to ensure the control valves operate as designed and ensure the Unit is capable of operating under variable load requirements. Replacing the sleeve bearings will ensure that full valve stroke is maintained at full load and, therefore, ensure full Unit load is achieved when required.

Why do this project now?

Completing this work now will mitigate the risk of an unplanned outage to repair the control valves if they stick due to the condition of the stems.

Why do this project this way?

Replacing the valve stems that are out of or near OEM tolerances is the only option and will maintain reliable operation of the control valves.
- TRE6 - Turbine Control Valve Refurbishment

Project Number

Number

Parent CI Number :

Cost Centre : 345 - 345 - 345

.

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		3,059	0	3,059
095		095-Thermal Regular Labour AO		14,819	0	14,819
095		095-Thermal & Hydro Contracts AO			0	
001 0	10	001 - THERMAL Regular Labour	010 - SGP - Turbo Gen.Instal.	37,720	0	37,720
012 0	10	012 - Materials	010 - SGP - Turbo Gen.Instal.	60,200	0	60,200
013 0	10	013 - POWER PRODUCTION Contract	ts 010 - SGP - Turbo Gen.Instal.		0	
001 0	385	001 - THERMAL Regular Labour	085 Design	20,000	0	20,000
028 0	385	028 - Consulting	085 Design		0	
001 0	187	001 - THERMAL Regular Labour	087 Field Super.& Ops.	4,000	0	4,000
011 0	187	011 - Travel Expense	087 Field Super.& Ops.	500	0	500
013 0	187	013 - POWER PRODUCTION Contract	ts 087 Field Super.& Ops.		0	
021 0	187	021 - Telephones	087 Field Super.& Ops.	150	0	150
041 0	187	041 - Meals & Entertainment	087 Field Super.& Ops.	250	0	250
			Total Cost:	359,507	0	359,507
			Original Cost:	269,000		

Location: Trenton							
P#:	41503				Ar	Emera Company	argy everywhere.
l Itie.						Cost Support	Completed Similar Projects (FP#'s) Note
Item	Description	Unit	Quantity	Unit Estimate	Total Estimate	Reference	1
1		11 Regular	abour				
1.1	Mechanic	hr	448	60	\$26.880		
1.2	Crane Driver	hr	224	35	7,840		
1.3	Utility	hr	100	30	3,000		
1.4	Generation Services Detailed Engineering	hr	هجم		20,000		
1.5	Project supervision	lot	1	4,000	4,000		F
1.0	L		<u> </u>	Sub-Total	61,720	i	ł
				000 . 010			1
2		012 Mater	ials			I	
2.1	Valve Stems	unit			13,500	NSPI Inventory Item	
2.2	Valve Bushings	unit			16,000	NSPI Inventory Item	
2.3	Sleeve Bearings	unit	-		2,400	J	
2.4	Needle Bearings				7 000	NCDI Inventory Item	ł
2.0	Internal Bypass valve	101			1,000	NSPI Inventory nom	+
2.6	Misc Spare parts and stores withdrawals	lot			20,000	NSPI Inventory Item	_
2.7	l			Sub-Total	60,200	i	l
							·
3	013 Powe	er Producti	on Contrac	ts		<u> </u>	
3.1	Fundy Grinding	lot	1			April 30, 2010 Invoice	[
3.2	Insulation removal and reinstallation	lot	1			I	↓
3.3 24		101	1			l	ł
3.5	Lunch Trailer	lot	1			l	+
3.6			<u> </u>			i	ł
				Sub-Total		ſ	
1							
4	<u>′</u>	028 Consu	lting			<u> </u>	
4.1	Technical Service Rep	lot	1		, and the second	<u> </u>	↓
4.2		<u> </u>	───	łł	⊢−−−− 	i	ł
4.3 4.4	<u> </u>	+			·	1	ł
·	·			Sub-Total			i
							·
5	011	Travel Ex	penses			<u> </u>	
5.1	Travel	lot	1	500	500	<u> </u>	↓
5.2 5.3	l	──	──	łł	i I	r	ł
0.0	1	L	1	Sub-Total	500	r	ł
6 041 Meals and Entertainment							
6.1	Meals and entertainment	lot	1	400	400		
6.2	L	───		ļ!	└────┦	J	↓
6.3	1	L		Sub-Total	400	ı	ł
<u> </u>				Oub-rota			1
7 Misc							
7.1		T		<u> </u>		i	
7.2				[!			
7.3	1		<u> </u>	<u> </u>	L	J	Ļ
, 				Sub-Total	I	<u>. </u>	<u> </u>
R I	094	Interest Cr	haritalized			I	
R1	Interested Capitalized	Interest ou	pitanzes	1	3.059	·	TT
8.2		ł	+	łł	-,	r	ł
8.3							t
_				Sub-Total	3,059		
	005.4		A		,	1	
8	U95 Ad	ministrativ	e Overhead	<u>1</u>	14.910	j	т
8.1 8.2		──	───	łł	14.619	l	ł
0.2 8.3		<u> </u>			- 1	l	
	1	L	1	Sub-Total			ł
Projec	t Cost Estimate			Total	\$359,508	i	l
							「
9	Original Cost						
9.1	1		<u> </u>		\$269,000	. <u> </u>	<u> </u>
Note 1	: Reference to "Completed similar projects (FP	'#'s)" is to b	e provided v	when the item estin	nate is based on wor	k of similar scope for a re	cently completed project

TRE Turbine Control Valve Refurbishment Summary of Alternatives & Assumptions

	Nova Scotia
-	POWER
-	An Emera Company

energy everywhere."

Budget Year :	2012	Date :	20-Oct-11
Division :	Power Production	CI Number:	41503
Department :	Trenton	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Refurbish Control Valves	6.67%	148,706	1	38.14%	2.5 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the control valves be refurbished.

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Refurbish Control Valves

-25% Minus the Probability of failure in year 1

75% Probability control valve does not fail in year 1

х

1

50% Probability of a control valve failing in year 2 if no failure occurs in year 1

38% Probability of a control valve failing in year 2

Avoided Cost Calculations

	Budget Year : Division : Department : Originator :	2012 Power Production Trenton	Date : Cl Number: Project No.	20-Oct-11 41503
Refurbish Control Valves	1			
Capital Cost	\$ 359,507.00			
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	MWh x \$ 434,307.00 x 25% \$174,605.92	1 outages x 90% x 25% x 1 = \$ 108,577	x MW x	96 h = \$66,029
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	MWh x \$ 442,993.14 x 38% \$ 265,166.19	1 outages x 90% x 38% x 1 = \$ 166,122	x MW x	96 h = \$99,044

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

TRE Turbine Refurbish C	 Control Valve Ki ontrol Valves 	eturbisnment									
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012	•	174,606	(359,507)	14,380	345,127	(184,901)	(54,761)	(239,663)	-	(239,663)	(239,663)
2013	•	265,166	•	27,610	317,517	265,166	(77,366)	187,800	-	176,057	(63,606)
2014	•	202,852		25,401	292,115	202,852	(55,060)	147,792	-	129,887	66,281
2015	•	68,970		23,369	268,746	68,970	(14,136)	54,834	1	45,177	111,459
2016				21,500	247,246	-	6,622	6,622	1	5,115	116,574
2017	•	•	•	19,780	227,467	•	6,132	6,132	1	4,440	121,013
2018	•		•	18,197	209,269	•	5,641	5,641	-	3,829	124,843
2019	•		•	16,742	192,528	•	5,190	5,190	-	3,303	128,145
2020	•			15,402	177,126	•	4,775	4,775	-	2,848	130,994
2021	•	•	•	14,170	162,956	•	4,393	4,393	-	2,457	133,450
2022	•			13,036	149,919	•	4,041	4,041	-	2,119	135,569
2023	•		•	11,994	137,926	•	3,718	3,718	0	1,827	137,397
2024	•		•	11,034	126,891	•	3,421	3,421	0	1,576	138,973
2025	•			10,151	116,740	•	3,147	3,147	0	1,359	140,332
2026	•			9,339	107,401	•	2,895	2,895	0	1,172	141,505
2027	•	•	•	8,592	98,809	•	2,664	2,664	0	1,011	142,516
2028	•	•	•	7,905	90,904	-	2,450	2,450	0	872	143,388
2029	•	•	•	7,272	83,632	•	2,254	2,254	0	752	144,140
2030	•	•		6,691	76,941	•	2,074	2,074	0	649	144,789
2031	•	,	•	6,155	70,786	•	1,908	1,908	0	560	145,348
2032	•		•	5,663	65,123	•	1,755	1,755	0	483	145,831
2033	•		•	5,210	59,913	•	1,615	1,615	0	416	146,247
2034	•	•	•	4,793	55,120	•	1,486	1,486	0	359	146,606
2035	•		•	4,410	50,711	•	1,367	1,367	0	310	146,916
2036	•		•	4,057	46,654	•	1,258	1,258	0	267	147,183
2037	•		•	3,732	42,921	•	1,157	1,157	0	230	147,413
2038	•			3,434	39,488	•	1,064	1,064	0	199	147,612
2039	•	•	•	3,159	36,329	•	626	616	0	171	147,783
2040	•		•	2,906	33,422	•	901	901	0	148	147,931
2041	•	,	•	2,674	30,749	-	829	829	0	127	148,058
2042	•	•	•	2,460	28,289	•	763	763	0	110	148,168
2043	•	•	•	2,263	26,026	•	702	702	0	96	148,263
2044	•		•	2,082	23,944	•	645	645	0	82	148,344
2045	•	1	•	1,915	22,028	-	594	594	0	71	148,415
2046	•	•	•	1,762	20,266	•	546	546	0	61	148,476
2047	•	•	•	1,621	18,645	•	503	503	0	52	148,528
2048	•	•	•	1,492	17,153	-	462	462	0	45	148,573
2049	•	•	•	1,372	15,781	-	425	425	0	39	148,612
2050	•		•	1,262	14,518	-	391	391	0	34	148,646
2051	•	•	•	1,161	13,357		360	360	0	29	148,675
2052	•	•	•	1,069	12,288	-	407	407	0	31	148,706
Total	•	711,594	(359,507)	347,219	4,172,769	352,087	(121,789)	230,298	15	148,706	5,148,433

Refurbishment	
Valve	100
Control	No lotto
Turbine	o daida
ш	4

Title:

TRE6 - Turbine/Generator Fire Protection

Start Date:	2012/05
Final Cost Date:	2012/11
Function:	Generation
Forecast Amount:	\$347,079

DESCRIPTION:

This project includes the addition of a fixed fire protection system for the Unit #6 steam turbine and generator at the Trenton Generating Station. At the time of original construction, the fire protection infrastructure was adequate, but a recent risk analysis identified that existing fire protection around the turbine generator no longer meets current industry standards. Construction will be similar to work undertaken in the Lingan Generating Station.

Summary of Related CI's +/- 2 years: 2010 CI 40483 TRE U&U Burner Front Fire Protection \$55,252 2011 CI 40444 TRE6 Burner Front Fire Protection \$56,915 2012 CI 41524 TRE6 Motor Control Centre (MCC) \$173,605 2012 CI 41527 TRE6 4kV Switchgear Room Fire Protection \$151,152

JUSTIFICATION:

Justification Criteria: Health & Safety

Why do this project?

In the recent assessment of fire protection systems at all NSPI thermal plants, the highest risk items are associated with the turbine generator area of the plants. This risk is best mitigated by applying a fixed fire protection system around the equipment in this area as well as drainage for hydraulic oils and lubricants. A system of similar design was successfully installed at LIN Unit #4 in 2009 and LIN Unit #1 in 2010. The system design and construction will serve as a model for applying a similar solution for this project.

Why do this project now?

As a result of recent inspections, NSPI's insurance providers have recommended the need to introduce additional fire system risk-control measures. NSPI believes these modifications are important now as the plant's age and a staged installation with one unit at a time is appropriate to reduce risk in the long term. Unit #6 is scheduled for a maintenance outage in 2012 which will facilitate installation of fire suppression equipment.

Why do this project this way?

The benchmark study used for assessing loss control practices was predicated on fire protection practices, NFPA 850 and FM DS7-1 01. Although they are recommended practices, they have become industry guidelines, widely used by insurers in risk assessments for power generation facilities. The new fire protection system will be integrated into the current system that exists at the plant.

- TRE6 - Turbine/Generator Fire Protection

Project Number

Parent CI Number :

- 345-Trenton unit 6 Capital Cost Centre : 345

.

2012 ACE Plan **Budget Version**

Capital Item Accounts

mount Variance	0 4,884	0 10,564	0	0 9,604	0 384	0 32,000	0 3,200	0 44,000	0 3,000	0	0	0 500	0 1,500	0 6,000	0 2,000	0 347,079	
Forecast Amount Ar	4,884	10,564		9,604	384	32,000	3,200	44,000	3,000			500	1,500	6,000	2,000	347,079	
Activity						010 - SGP - Turbo Gen.Instal.	010 - SGP - Turbo Gen.Instal.	010 - SGP - Turbo Gen.Instal.	010 - SGP - Turbo Gen.Instal.	010 - SGP - Turbo Gen.Instal.	cts 010 - SGP - Turbo Gen.Instal.	010 - SGP - Turbo Gen.Instal.	010 - SGP - Turbo Gen.Instal.	085 Design	087 Field Super.& Ops.	Total Cost:	Original Cost:
Account	094 - Interest Capitalized	095-Thermal Term Labour AO	095-Thermal & Hydro Contracts AO	095-Thermal Regular Labour AO	095-Thermal Overtime Labour AO	001 - THERMAL Regular Labour	002 - THERMAL Overtime Labour	004 - THERMAL Term Labour	011 - Travel Expense	012 - Materials	013 - POWER PRODUCTION Contract	021 - Telephones	041 - Meals & Entertainment	001 - THERMAL Regular Labour	001 - THERMAL Regular Labour		
Actv						010	010	010	010	010	010	010	010	085	087		
Acct	094	095	095	095	095	001	002	004	011	012	013	021	041	001	001		

Loca FP#: Title:	tion: Trenton 41508 TRE6 - Turbine/Generator Fire Protection				~	Nova Scotla POWER An Emera Company	energy everywhere."		
Item	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost support Reference	Completed Similar Projects (FP#'s) Note 1		
1	00	1 Bogular	labour						
11	Regular labour	hr	Labour		\$32,000				
1.1	Internal Engineering	hr	-		6.000				
1.3	internal supervisor	hr	-		2,000				
1.4	Term labour	hr			44,000				
1.5					-				
-				Sub Total	84.000		40149 40427		
				Sub-Total	64,000		40146, 40427		
2		012 Mater	ials			ľ			
2.1	Materials (Piping/Sprinkler heads, etc)	lot	1						
				Sub-Total			40148 40427		
Sub-Total 40148, 40427									
3	013 Powe	er Producti	on Contrac	cts					
3.1	Installation/Commissioning	lot	1			Quote T-1112 see note 2	-		
3.2	Contingency for masonry, carpentry work,						40148, 40427		
	hoses						, -		
-				Sub-Total					
4	00	2 Overtime	Labour						
4.1	Labour OT	hr	40	80.00	3,200				
4.2									
				Sub-Total	3,200				
5	01	1 Travel Fx	nenses			1			
5.1	Travel	lot	1	3.000	3.000				
5.2					- ,				
5.3									
				Sub-Total	3,000				
6		Miccollon	0000			1			
6.1	Telenhones	lot	1	500	500				
6.2	Meals and entertainment	lot	1	1.500	1.500				
6.3					-				
				Sub-Total	2,000				
_						1			
71	U94	Interest Ca	ipitalized		1 001				
7.1					4,004				
	•			Sub-Total	4,884				
						1			
8	095 Ad	ministrativ	e Overhea	d					
8.1	Thermal Regular Labour AO				9,604				
8.3		1			384				
8.4	Thermal and Hydro Contracts AO	1			504				
		-	·	Sub-Total					
Project Cost Estimate Total \$347,079									
L 10	Ovining Oper								
10	Unginal Cost								
Note 1	Reference to "Completed similar projects (F	P#'s)" is to	be provided	when the item esti	mate is based on wo	ork of similar scope for a r	ecently completed		
Note 2	: Quote T1112 represents the cost for two uni	ts, whereas	this project	t only includes one	unit. Quote is for Lir	ngan Units 2 and 3 but is u	sed as a basis for this		
estima	ite for Trenton Unit #6 as scope of work is sim	ılar.							

Title:

TRE6 – Motor Control Center (MCC) Room Fire Protection

Start Date:	2012/04
Final Cost Date:	2012/11
Function:	Generation
Forecast Amount:	\$173,605

DESCRIPTION:

This project includes the addition of a fire protection system for the Unit #6 Motor Control Center (MCC) Room at the Trenton Generating Station. At the time of original construction, the fire protection infrastructure was adequate, but a recent risk analysis identified that existing fire protection in the MCC Room no longer meets current industry standards.

Summary of Related CI's +/- 2 years: 2010 CI 40483 TRE U&U Burner Front Fire Protection \$55,252 2011 CI 40444 TRE6 Burner Front Fire Protection \$56,915 2012 CI 41527 TRE6 4kV Switchgear Room Fire Protection \$151,152 2012 CI 41508 – TRE6 – Turbine / Generator Fire Protection \$347,079

JUSTIFICATION:

Justification Criteria: Health & Safety

Why do this project?

In the recent assessment of fire protection systems at all NSPI thermal plants, the Motor Control Center (MCC) Room for Unit #6 was identified as an area requiring additional fire suppression.

Why do this project now?

As a result of recent inspections, NSPI's insurance providers have recommended the need to introduce additional fire system risk-control measures. NSPI believes these modifications are important now as the plants age and a staged installation plan is appropriate to reduce risk in the long term. Unit #6 is scheduled for a maintenance outage in 2012, which will facilitate installation of fire suppression equipment.

Why do this project this way?

The benchmark study used for assessing loss control practices was predicated on fire protection practices, NFPA 850 and FM DS7-1 01. Although they are recommended practices, they have become industry guidelines, widely used by insurers in risk assessments for power generation facilities. The new fire protection system will be integrated into the current system that exists at the plant.

Title: TRE6 – 4 kV Switchgear Room Fire Protection

Start Date:	2012/06
Final Cost Date:	2012/10
Function:	Generation
Forecast Amount:	\$151,152

DESCRIPTION:

This project includes the addition of a fire protection system for the Unit #6 4kV Switchgear Room at the Trenton Generating Station. At the time of original construction, the fire protection infrastructure was adequate, but a recent risk analysis identified that existing fire protection in the Switchgear Room no longer meets current industry standards.

Summary of Related CI's +/- 2 years: 2010 CI 40483 TRE U&U Burner Front Fire Protection \$55,252 2011 CI 40444 TRE6 Burner Front Fire Protection \$56,915 2012 CI 41524 TRE6 Motor Control Center (MCC) Room Fire Protection \$173,605 2012 CI 41508 – TRE6 – Turbine / Generator Fire Protection \$347,079

JUSTIFICATION:

Justification Criteria: Health & Safety

Why do this project?

In the recent assessment of fire protection systems at all NSPI thermal plants, the 4kV Switchgear Room for Unit #6 was identified as an area requiring additional fire suppression.

Why do this project now?

As a result of recent inspections, NSPI's insurance providers have recommended the need to introduce additional fire system risk-control measures. NSPI believes these modifications are important now as the plants age and a staged installation plan is appropriate to reduce risk in the long term. Unit #6 is scheduled for a maintenance outage in 2012, which will facilitate installation of fire suppression equipment.

Why do this project this way?

The benchmark study used for assessing loss control practices was predicated on fire protection practices, NFPA 850 and FM DS7-1 01. Although they are recommended practices, they have become industry guidelines, widely used by insurers in risk assessments for power generation facilities. The new fire protection system will be integrated into the current system that exists at the plant.

Title:

POT - Vacuum Pump Replacement

Start Date:	2012/04
Final Cost Date:	2012/11
Function:	Generation
Forecast Amount:	\$332,994

DESCRIPTION:

The Point Tupper Unit 2 air extraction system (condenser vacuum) was constructed utilizing Allis Chalmer's Ro-Flo vacuum pumps. Air and gases are compressed by being trapped between blades in pump rotor segments which become smaller as the segment rotates from its position at maximum blade projection to the point where the segment is open to the pumps' discharge port.

This project consists of replacing two of the existing vacuum pumps at the Point Tupper Generating Station with liquid-ring vacuum pumps. The existing pumps are original to the plant (installed in 1976) and have reached the end of their useful life.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

The current operating logic for the existing pumps involves running one pump continuously and having a second pump as a backup. The pump that is normally running is now only able to achieve full vacuum once it is has been in operation for approximately one half hour. If the other pump is operating to achieve full vacuum, there is no reserve vacuum pump capacity available. Loss of the vacuum pumps could result in either a major increase in turbine back pressure (and associated efficiency loss), or the complete loss of generation due to an inability to maintain condenser vacuum. In order to maintain the availability and reliability of Unit #2, the air extraction system must be maintained at a reliable service condition. Replacing two of the existing vacuum pumps will allow the Unit to continue operating reliably.

Why do this project now?

The current pumps have reached the end of their useful lives and must be replaced. In addition, spare parts are no longer available for these pumps. Completing the project now will mitigate the risk of unplanned outage due to vacuum pump failure.

Why do this project this way?

Replacing the existing pumps is the most feasible option. Rebuilding the existing pumps is no longer an option as parts are no longer available and the existing pumps are obsolete.

- POT Vacuum Pump Replacement

Project Number

2012 ACE Plan

Budget Version

Parent Cl Number :

.

Cost Centre : 351 - 351-Pt. Tupper Admin /Capital

Capital Item Accounts

Accolut	Activity	For	ecast	Amount	Variance
	6				
- I HEKIMAL Kegular Labour		.7	Z,UUU	D	22,000
- THERMAL Overtime Labour		-	0,000	0	10,000
- THERMAL Term Labour				0	
- Travel Expense			500	0	500
- Materials				0	
- POWER PRODUCTION Contract	S			0	
- Consulting			5,000	0	5,000
- Meals & Entertainment			500	0	500
- Interest Capitalized			4,321	0	4,321
-Thermal Regular Labour AO			5,282	0	5,282
-Thermal Overtime Labour AO			1,201	0	1,201
Thermal & Hydro Contracts AO				0	
-Thermal Term Labour AO				0	
	Total C	ost: 30	32,994	0	332,994
	Original C	Cost: (34,059		
	Account 001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 003 - THERMAL Term Labour 014 - Travel Expense 012 - Materials 013 - POWER PRODUCTION Contrac 013 - POWER PRODUCTION Contrac 013 - POWER PRODUCTION Contrac 014 - Meals & Entertainment 028 - Consulting 041 - Interest Capitalized 095 - Thermal Regular Labour AO 095 - Thermal & Hydro Contracts AO 095 - Thermal Term Labour AO 095 - Thermal Term Labour AO	Account Activity 001 - THERMAL Regular Labour 001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 002 - THERMAL Term Labour 003 - THERMAL Term Labour 011 - Travel Expense 011 - Travel Expense 012 - Materials 013 - POWER PRODUCTION Contracts 013 - POWER PRODUCTION Contracts 028 - Consulting 041 - Meals & Entertainment 031 - Interest Capitalized 035 - Thermal Regular Labour AO 035 - Thermal & Hydro Contracts AO 035 - Thermal & Hydro Contracts AO 035 - Thermal Term Labour AO 035 - Thermal Term Labour AO	Account Activity Activity 001 - THERMAL Regular Labour 002 - THERMAL Overtime Labour 2 002 - THERMAL Overtime Labour 003 - THERMAL Overtime Labour 2 003 - THERMAL Term Labour 004 - THERMAL Term Labour 1 011 - Travel Expense 013 - PowER PRODUCTION Contracts 2 013 - POWER PRODUCTION Contracts 013 - PowER PRODUCTION Contracts 1 014 - Meals & Entertainment 03 - Interest Capitalized 035 - Thermal Regular Labour AO 035 - Thermal & Hydro Contracts AO 035 - Thermal & Hydro Contracts AO 035 - Thermal Term Labour AO 035 - Thermal Cost: 3	Acount Activity Fereast Amount 001 - THERMAL Regular Labour 22,000 002 - THERMAL Overtime Labour 22,000 003 - THERMAL Overtime Labour 10,000 004 - THERMAL Overtime Labour 004 014 - Travel Expense 500 015 - POWER PRODUCTION Contracts 5,000 015 - POWER PRODUCTION Contracts 5,000 016 - Materials 6,000 017 - Materials 1,201 018 - Consulting 5,282 019 - Interest Capitalized 6,321 05 - Thermal Regular Labour AO 6,000 05 - Thermal Regular Labour AO 05 - Thermal Regular Labour AO 055 - Thermal & Hydro Contracts AO 1,201 055 - Thermal & Hydro Contracts AO 1,201 055 - Thermal & Hydro Contracts AO 05 - Thermal Regular Labour AO 055 - Thermal & Hydro Contracts AO 055 - Thermal Regular Labour AO 055 - Thermal & Hydro Contracts AO 055 - Thermal Regular Labour AO 055 - Thermal Regular Labour AO 1,201 055 - Thermal Regular Letter 6,059	Acount Activity Forecast Amount Amount 01 - THERMAL Regular Labour 22,000 0 02 - THERMAL Overtime Labour 10,000 0 01 - Travel Expense 500 0 01 - Travel Expense 500 0 01 - Travel Expense 5,000 0 01 - Travel Expense 5,000 0 01 - Materials 5,000 0 0 02 - Consulting 6,321 0 0 0 03 - Formal Regular Labour AO 0 1,201 0 0 03 - Thereat Capitalized 0 0 0 0 0 03 - Thereat Capitalized 0 1,201 0 0 0 0 03 - Thermal Regular Labour AO 0 0 0 0 0 0 03 - Thereast Capitalized 0 0<

Loca FP#: Title:	tion: Point Tupper 41584 POT - Vacuum Pump Replacement				~	Nova Scotia POWER An Emera Company	energy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1	001 Regular Labour	002 Ovetime	Labour & (04 Term Labour		1	
1.1	Mechanical Labour	Lot		22.000	\$22.000		
1.2	Ovetime Labour	Lot	1	10,000	10,000		
1.3	Term Labour	Lot	1				00000
				Sub-Total			29882
2		012 Mater	ials				
2.1	Replacement pumps	Lot	1				29882
2.2	Misc. and consumables	Lot	1				
				Sub-Total			
				Sub-Total			
3	013 Po	wer Product	ion Contra	cts			_
3.1	Contractor Labour for installation	Lot	1				29882
							_
				Sub-Total			
4		028 Consu	ılting				
4.1	Engineering	Lot	1	5,000	5,000		
				Sub-Total	5,000		
							•
5	(011 Travel Ex	penses	1			
5.1	Iravel	Lot	1	500	500		
5.3					-		
				Sub-Total	500		
_	·						
6	041 Maala/avpanaga	leals and En	tertainmen	t 500	500		
0.1	ivieais/expenses	LUI	1	500	500		
				Sub-Total	500		
7	00	A Interact Co	nitalizad				
7.1	Interest	Lot	1	4.321	4.321		1
				.,021	.,021		
				_			
				Sub-Total	4,321		
8	095 /	Administrativ	e Overhead	1		1	
8.1	Overhead	Lot	1	15,674	15,674		
				Sub Total	45 674	L	
Projec	t Cost Estimate			Total	10,074 \$332 004	ļ	
					400 <u>2</u> ,004		
9 9.1	Original Cost				\$64,058		
Note 1 project	: Reference to "Completed similar projects t	(FP#'s)" is to	be provided	when the item esti	mate is based on wo	ork of similar scope for	a recently completed

POT Replace Vacuum Pumps Summary of Alternatives & Assumptions

R energy everywhere."

Budget Year :	2012	Date :	20-Oct-11
Division :	Power Production	CI Number:	41584
Department :	Point Tupper	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Replace Vacuum Pumps	6.67%	23,432	1	9.00%	9.9 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the Vacuum Pumps be replaced

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Replace Vacuum Pumps

-25% Minus the Probability of failure in year 1

75% Probability that the vacuum pump does not fail in year 1

х

1

26% Probability of vacuump failing in year 2 if no failure occurs in year 1

20% Probability of the vacuum pump failing in year 2

Avoided Cost Calculations

	Budget Year : Division : Department : Originator :	2012 Power Production Point Tupper	Date : Cl Number: Project No.	20-Oct-11 41584
Replace Vacuum Pumps				
Capital Cost	\$ 332,994.23			
Avoided Replacement Energy costs (2012) =	MWh x	2 outages x 90% x 25	% x MW x 4	8 h = \$8,63

Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	\$ 209,377.12 \$113,325.79	x	25% :	¢	2	=	\$ 104,689				
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	\$ 214,423.41 90,362.17	MWh x	x 20% :	2 outa	ages 2	x =	\$ 90% x 83,625	20% x	MW x	48 h =	\$6,737

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

POT Replace Replace Vac	e Vacuum Pump: uum Pumps										
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012	•	113,326	(332,994)	13,320	319,674	(219,668)	(34,266)	(253,934)	-	(253,934)	(253,934)
2013	•	90,362	•	25,574	294,100	90,362	(21,205)	69,157	~	64,833	(189,101)
2014	•	71,096	•	23,528	270,572	71,096	(14,793)	56,303	~	49,482	(139,619)
2015	•	62,621	•	21,646	248,926	62,621	(12,702)	49,919	~	41,128	(98,491)
2016	•	47,876	•	19,914	229,012	47,876	(8,708)	39,169	F	30,253	(68,238)
2017	•	36,055	•	18,321	210,691	36,055	(5,498)	30,557	~	22,126	(46,112)
2018	•	30,038	•	16,855	193,836	30,038	(4,087)	25,952	~	17,616	(28,496)
2019	•	21,962	•	15,507	178,329	21,962	(2,001)	19,961	~	12,702	(15,794)
2020	•	15,810	•	14,266	164,063	15,810	(479)	15,332	~	9,146	(6,647)
2021	•	12,465	•	13,125	150,938	12,465	205	12,669	~	7,086	438
2022	•	8,702	•	12,075	138,863	8,702	1,046	9,748	~	5,111	5,549
2023	•	5,979	•	11,109	127,754	5,979	1,590	7,569	0	3,721	9,270
2024	•	4,460	•	10,220	117,533	4,460	1,786	6,245	0	2,878	12,148
2025	•	2,968	•	9,403	108,131	2,968	1,995	4,963	0	2,144	14,291
2026	•	1,943	•	8,650	99,480	1,943	2,079	4,022	0	1,629	15,920
2027	•	1,370	•	7,958	91,522	1,370	2,043	3,412	0	1,295	17,215
2028	•	867	•	7,322	84,200	867	2,001	2,868	0	1,021	18,236
2029	•	540	•	6,736	77,464	540	1,921	2,460	0	821	19,057
2030	•	359	•	6,197	71,267	359	1,810	2,169	0	678	19,735
2031	•	216	•	5,701	65,566	216	1,701	1,916	0	562	20,297
2032	•	127	•	5,245	60,320	127	1,587	1,714	0	471	20,769
2033	•	•	•	4,826	55,495	•	1,496	1,496	0	386	21,154
2034	•	•		4,440	51,055	•	1,376	1,376	0	332	21,487
2035	•	•	•	4,084	46,971	•	1,266	1,266	0	287	21,773
2036	•			3,758	43,213		1,165	1,165	0	247	22,021
2037	•	•	•	3,457	39,756	•	1,072	1,072	0	213	22,234
2038	•	•		3,180	36,576	•	986	986	0	184	22,418
2039	•	•	•	2,926	33,650	•	206	206	0	159	22,577
2040	•			2,692	30,958	•	835	835	0	137	22,713
2041	•		•	2,477	28,481	•	768	768	0	118	22,831
2042	•	•	•	2,278	26,202	•	206	706	0	102	22,933
2043	•	•	•	2,096	24,106	•	650	650	0	88	23,021
2044	•	•	•	1,929	22,178	•	598	598	0	76	23,097
2045	•		•	1,774	20,404	•	550	550	0	65	23,162
2046	•	•		1,632	18,771	•	506	506	0	56	23,218
2047	•	•		1,502	17,270		466	466	0	49	23,267
2048	•	•	•	1,382	15,888	•	428	428	0	42	23,309
2049	•		•	1,271	14,617		394	394	0	36	23,345
2050	•		•	1,169	13,448	•	363	363	0	31	23,376
2051	•		•	1,076	12,372		334	334	0	27	23,403
2052	•		•	066	11,382	•	377	377	0	29	23,432
Total	•	529,142	(332,994)	321,612	3,865,034	196,148	(68,735)	127,414	15	23,432	(218,735)

Title:

TRE6 Turbine Controls Power Supply Replacement

Start Date:	2012/03
Final Cost Date:	2012/11
Function:	Generation
Forecast Amount:	\$321,691

DESCRIPTION:

This project includes replacement of the power supplies in the control system for the Unit #6 turbine. The control system power supplies have reached the age where replacement is required.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

Replacing the control system power supplies will mitigate the risk of an unplanned failure and potential loss of generation.

Why do this project now?

These components have been in service since 1991 and are beyond the Original Equipment Manufacturer (OEM) -recommend age for replacement. To mitigate the risk of unplanned failures, the power supplies must be replaced now.

Why do this project this way?

Replacement of the power supplies is the only option.

CI Number : 28645-S795 - TRE6 - Turbine Controls Power Supplies Replacement

.

Parent Cl Number :

Cost Centre : 345 - 345 - 345-Trenton unit 6 Capital

Budget Version 2012 ACE Plan

S795

Project Number

	Variance	9,584	960		3,457	9,600	8,000			2,400	500	500	1,000	2,400	5,600	321,691	
	Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Forecast Amount	9,584	960		3,457	9,600	8,000			2,400	500	500	1,000	2,400	5,600	321,691	240,000
	Activity					011 - SGP - Plant Control and Inst	011 - SGP - Plant Control and Inst	011 - SGP - Plant Control and Inst	icts 011 - SGP - Plant Control and Inst	085 Design	085 Design	085 Design	085 Design	087 Field Super.& Ops.	087 Field Super.& Ops.	Total Cost:	Original Cost:
Accounts	Account	094 - Interest Capitalized	095-Thermal Overtime Labour AO	095-Thermal & Hydro Contracts AO	095-Thermal Regular Labour AO	001 - THERMAL Regular Labour	002 - THERMAL Overtime Labour	012 - Materials	013 - POWER PRODUCTION Contra-	001 - THERMAL Regular Labour	011 - Travel Expense	021 - Telephones	041 - Meals & Entertainment	001 - THERMAL Regular Labour	028 - Consulting		
tal Item /	Actv					011	011	011	011	085	085	085	085	087	087		
Capi	Acct	094	095	095	095	001	002	012	013	001	011	021	041	001	028		

Loca FP#: Title:	tion: Trenton 28645 TRE6 Turbine Controls Power Supplies Upgrade				~	Nova Scotia POWER An Emera Company	energy everywhere."
Item	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1		01 Regular	Labour				
1.1	Electrical Labour	hr	240	40.00	\$9,600		
1.2	Engineering	hr			2,400		
1.3	Supervisor	hr	40	60.00	2,400		
				Sub-Total	14,400		
2		012 Mate	erials				1
2.1	Power Supplies and Associated Parts	lot	1			March 7, 2011 quote	
2.2	Contingency	%	10	-		andonou	
2.3	Misc. parts / Materials	lot	1	11,034	11,034		
2.4				Sub-Total			
				Cub Fotal			
3	013 Pov	ver Produc	tion Contrac	ts			
3.1	Technician - Hitachi	lot	-				
3.2	Contingency	%					
				Sub-Total			
4	00	02 Overtime	e Labour	00.00	0.000		r
4.1		nr	100	80.00	8,000		
4.3							
				Sub-Total	8,000		
5		028 Cons	ulting				
5.1	External Engineering	hr			5,600		
5.2							
5.3				Sub Tatal	E 600		
				Sub-Total	5,000		
6	Telephones	s & Meals a	and Entertair	nment			
6.1	Telephones	lot	1	500	500		
6.2	Meals and Entertainment	lot	1	1,000	1,000		
0.3				Sub-Total	1,500		
							-
7	0,	11 Travel E	xpenses				•
7.1	Travel expenses	lot	1	500	500		
7.3		†	1		-		1
	· · · · · · · · · · · · · · · · · · ·		·	Sub-Total	500		
		Interest C	opitalized			i	
8 1	094 Interest	Interest C	apitalized	9 584	Q 58 <i>1</i>		1
8.2		101		0,004	0,004		
8.3					0.8-1		
┣──				Sub-Total	9,584		
9	095 A	dministrati	ve Overhead	1		Ì	
9.1	AO	lot	1				
9.2		<u> </u>			-		l
9.3	1	1	1	Sub-Total	-		<u> </u>
Projec	t Cost Estimate			Total	\$321,691		
10	Original Cost				\$240,000		
Note 1	: Reference to "Completed similar projects (F	P#'s)" is to	be provided v	vhen the item estim	ate is based on worl	k of similar scope for a re	cently completed project
1		,					

TRE Turbine Controls Power Supplies Summary of Alternatives & Assumptions

Nova Scotia
POWER

energy everywhere."

Budget Year :	2012	Date :	29-Oct-11
Division :	Power Production	CI Number:	28645
Department :	Trenton	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Replace Power Supplies	6.67%	815,640	1	#NUM!	0.0 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the power supplies be replaced

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Replace Power Supplies

1

-30% Minus the Probability of failure in year 1

70% Probability that unit does not fail in year 1

х

35% Probability of unit failing in year 2 if no failure occurs in year 1

25% Actual probability of the unit failing in year 2

Avoided Cost Calculations

Budget Year :	2012		Date :	31-Oct-11
Division :		Power Production	CI Number:	28645
Department :		Trenton	Project No.	
Originator :				

Replace Power Supplies	
Capital Cost	\$ 321,691.00
Avoided Replacement Energy costs (2012) =	MWh x 1 outages x 90% x 30% x MW x 480 h = \$396,175
Avoided Unplanned Repair Costs (2012)	\$ 404,000.00 x 30% x 1 = \$ 121,200
Total Annual Avoided costs	\$517,375
Avoided Replacement Energy costs (2013) =	MWh x 1 outages x 90% x 24.5% x MW x 480 h = \$323,543
Avoided Unplanned Repair Costs (2013)	\$ 420,169.60 x 24.5% x 1 = \$ 102,942
Total Annual Avoided costs	\$ 426,484

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Replace Pow	ver Supplies										
Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012		517,375	(321,691)	12,868	308,823	195,684	(171,787)	23,897	1	23,897	23,897
2013		426,484	•	24,706	284,117	426,484	(130,722)	295,763	1	277,269	301,166
2014		324,685	•	22,729	261,388	324,685	(93,651)	231,033	1	203,044	504,210
2015		224,620	•	20,911	240,477	224,620	(63,150)	161,470	1	133,035	637,245
2016		140,697	•	19,238	221,239	140,697	(37,690)	103,006	1	79,560	716,805
2017		79,322		17,699	203,540	79,322	(19,103)	60,219	-	43,603	760,408
2018		39,918		16,283	187,257	39,918	(7,327)	32,591	-	22,123	782,531
2019		17,734		14,981	172,276	17,734	(853)	16,880	-	10,742	793,273
2020		6,853		13,782	158,494	6,853	2,148	9,001	-	5,370	798,643
2021		2,259		12,680	145,814	2,259	3,230	5,489	-	3,070	801,713
2022	•	618	•	11,665	134,149	618	3,425	4,042	-	2,119	803,832
2023	•	135	•	10,732	123,417	135	3,285	3,420	0	1,681	805,513
2024		22	•	9,873	113,544	22	3,054	3,076	0	1,417	806,930
2025		2	•	9,084	104,460	2	2,815	2,818	0	1,217	808,147
2026		0	•	8,357	96,104	0	2,591	2,591	0	1,049	809,196
2027		•	•	7,688	88,415	•	2,383	2,383	0	902	810,101
2028		•	•	7,073	81,342	•	2,193	2,193	0	780	810,882
2029		•	•	6,507	74,835	•	2,017	2,017	0	673	811,555
2030		•		5,987	68,848	•	1,856	1,856	0	580	812,135
2031		•		5,508	63,340	•	1,707	1,707	0	501	812,636
2032		•	•	5,067	58,273	•	1,571	1,571	0	432	813,068
2033		•	•	4,662	53,611	•	1,445	1,445	0	372	813,440
2034		•	•	4,289	49,322		1,330	1,330	0	321	813,761
2035		•	•	3,946	45,376	•	1,223	1,223	0	277	814,038
2036		•	•	3,630	41,746	•	1,125	1,125	0	239	814,277
2037		•	•	3,340	38,407	•	1,035	1,035	0	206	814,483
2038		•	•	3,073	35,334	•	952	952	0	178	814,661
2039		•	•	2,827	32,507	•	876	876	0	153	814,814
2040		•	•	2,601	29,907	•	806	806	0	132	814,946
2041		•	•	2,393	27,514	•	742	742	0	114	815,060
2042	•	•	•	2,201	25,313	•	682	682	0	98	815,159
2043		•	•	2,025	23,288	•	628	628	0	85	815,244
2044			•	1,863	21,425		578	578	0	73	815,317
2045			•	1,714	19,711		531	531	0	63	815,380
2046			•	1,577	18,134		489	489	0	54	815,434
2047		•	•	1,451	16,683	•	450	450	0	47	815,481
2048		•	•	1,335	15,349	•	414	414	0	40	815,522
2049			•	1,228	14,121		381	381	0	35	815,557
2050			•	1,130	12,991		350	350	0	30	815,587
2051			•	1,039	11,952	•	322	322	0	26	815,613
2052		•	•	956	10,996	•	364	364	0	28	815,640
Total		1,780,723	(321,691)	310,695	3,733,841	1,459,032	(477,284)	981,748	15	815,640	31,323,296

Title:

TRE6 - Pulverizer Refurbishment

Start Date:	2012/06
Final Cost Date:	2012/10
Function:	Generation
Forecast Amount:	\$311,074

DESCRIPTION:

Unit #6 at the Trenton Generating Station utilizes two ball mill coal pulverizers to prepare coal for combustion in the boiler. These mills were originally installed and commissioned in 1991 and have been subjected to continuous use.

The scope of this project includes refurbishment of the 6A and 6B pulverizer rotating elements and improving the performance of the raw coal supply system to each pulverizer. Components to be replaced or refurbished will be determined based on the condition assessment completed when disassembly is undertaken as part of the planned outage for each pulverizer.

Summary of Related CI's +/- 2 years: 2010 CI38622 TRE6 Pulverizer Refurbishment \$277,432

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Maintenance

Why do this project?

As Unit #6 has only two pulverizers, an unplanned pulverizer failure would have a significant impact on production and could also limit peak generation of the unit depending on the fuel blend in service. This makes it imperative that the pulverizers are available and able to operate for extended lengths between scheduled outages.

Why do this project now?

An evaluation of the pulverizers identified several items that need to be addressed in order for the pulverizers to meet availability targets. Replacement parts are now needed due to age and wear on many of the components. Some of the components are worn beyond Original Equipment Manufacturer (OEM) tolerances and must be replaced.

Why do this project this way?

A phased refurbishment program allows for scheduled outages of selected pulverizers and reduces the risk of extended unplanned outages. An unplanned outage could require in excess of 16 weeks based on material lead time and labor requirements.

CI Number : ³⁸¹⁶³

- TRE6 Pulverizer Refurbishments

Parent Cl Number :

Project Number

Budget Version 2012 ACE Plan

Cost Centre : 345 - 345-Trenton unit 6 Capital

Capital Item Accounts

	Account	Activity		Forecast Amount	Amount	Variance
094 - Int	terest Capitalized			4,713	0	4,713
095-Th	ermal Regular Labour AO			12,581	0	12,581
095-Th	lermal & Hydro Contracts AO				0	
095-Th	nermal Term Labour AO				0	
095-T	hermal Overtime Labour AO			768	0	768
001 -	THERMAL Regular Labour	013 - SGP - Boiler		46,400	0	46,400
002 -	THERMAL Overtime Labour	013 - SGP - Boiler		6,400	0	6,400
004 -	THERMAL Term Labour	013 - SGP - Boiler			0	
012 -	Materials	013 - SGP - Boiler		136,000	0	136,000
013 -	POWER PRODUCTION Contrai	cts 013 - SGP - Boiler			0	
001 -	THERMAL Regular Labour	085 Design		2,000	0	2,000
001 -	THERMAL Regular Labour	087 Field Super.& Ops.		4,000	0	4,000
011 -	Travel Expense	087 Field Super.& Ops.		400	0	400
013 -	POWER PRODUCTION Contrai	cts 087 Field Super.& Ops.			0	
021 -	Telephones	087 Field Super.& Ops.		300	0	300
041 -	Meals & Entertainment	087 Field Super.& Ops.		300	0	300
			Total Cost:	311,074	0	311,074
			Original Cost:	240,000		

Loca FP#: Title:	tion: Trenton 38163 TRE6 Pulverizer Refurbishments				~	Nova Scotia POWER An Emera Company	energy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1	0	1 Regular	Labour				
11	Utility	hr	320	25	8 000		
1.2	Mechanical	hr	960	40	38.400		
1.3	Engineering	lot					
1.4	Supervisor	lot	1	4,000	4,000		
				Sub-Total	52,400		39970, 39971
2		012 Mate	rials			1	
21	Raw coal inlet gate valve	each			36 000		
2.2	Raw coal pipes	lot	-		7.000		
2.3	Ribbion Conveyors	each			72,000		
2.4	Trunnion bearing seals	each			12,000		
2.5	Ribbon Conveyor Bearings	each	-		4,000		
2.6	Miscellaneous	lot	1	5,000	5,000		
2.7				_	-		
				Sub-Total			39970, 39971
_	040 5	or Drade	tion Contact	to.		I	
3	U13 Pow	rer Produc	tion Contrac	15			
3.1	Rentals	lot	1				
3.2		lot	1				
3.3	Vacuum Truck Machining/fabrics	lot	1				
3.4	Machining/Tablics	101		Sub-Total			
				oub rotai			
4		004 Term I	abour				
41	Term - Litility	hr					
4.2	Term - E/I	hr					
4.3	Term Mechanical	hr					
				Sub-Total			39970, 39971
5	00	2 Overtime	e Labour				-
5.1	Overtime labour	hr	80	80	6,400		
5.2					-		
5.3				Out. Tatal	-		
				Sub-1otal	6,400		
6	01	1 Travel E	vpopeoe			h	
61		Inavere	1	400	400		
6.2		101	1	400	400		
6.3							
				Sub-Total	400		
							B
7	Μ	iscellaneo	us Items				
7.1	Telephones	lot	1	300	300		
7.2	Meals and Entertainment	lot	1	300	300		
7.3					-		
				Sub-Total	600		
_						4	
8	094	Interest C	apitalized				1
8.1	Interest	lot	1	4,713	4,713		
8.2							
0.3	l		1	Sub-Total	1 712		+
<u> </u>					т, 15		1
8	095 Ad	ministrati	ve Overhead			l III	
8.1	AO	lot	1	29.560	29.560		
8.2			1		,0		
8.3							
				Sub-Total	29,560		
Projec	t Cost Estimate			Total	\$ 311,073		
9	Original Cost						
9.1					\$ 240,000		
Note 1	: Reterence to "Completed similar projects (FI	P#'s)" is to	be provided w	hen the item estim	ate is based on work	t of similar scope for a	recently completed project

TRE6 Pulverizer Refurbishment Summary of Alternatives & Assumptions energy everywhere."

 Budget Year :
 2012
 Date :
 20-Oct-11

 Division :
 Power Production
 CI Number:
 38163

 Department :
 Trenton
 Project No. :
 Originator :

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Refurbish Pulverizers	6.67%	97,341	1	36.74%	2.6 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the TRE6 pulverizers be refurbished

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Refurbish Pulverizers

-45% Minus the Probability of failure in year 1

55% Probability that pulverizers do not fail in year 1

х

1

50% Probability of pulverizers failing in year 2 if no failure occurs in year 1

28% Actual probability of the pulverizers failing in year 2

energy everywhere."

Avoided Cost Calculations

	Budget Year : Division : Department : Originator :	2012 Power Production Trenton	Date : CI Number: Project No.	20-Oct-11 38163
Refurbish Pulverizers				
Capital Cost	\$ 311,073.00			
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	MWh x \$ 429,373.00 x 45% x \$248,104.60	1 outages x 95% x 45% : 1 = \$ 193,218	x MW x	336 h = \$54,887
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	MWh x \$ 437,294.46 x 28% x \$ 153,797.88	1 outages x 95% x 28% : 1 = \$ 120,256	x MW x	336 h = \$33,542

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

	UIVERIZERS	Outrating Conto	Louise C	<u>د</u> ن د		CET	Audiochic Teves	7E A T	Discount Feeter		
Tear	I OTAL REVENUE			10 1 10							
2012	•	248,105	(311,073)	12,443	298,630	(62,968)	(80,371)	(143,340)	-	(143,340)	(143,340)
2013		153,798		23,890	274,740	153,798	(42,359)	111,439	1	104,471	(38,869)
2014	•	94,014	•	21,979	252,760	94,014	(22,375)	71,640	1	62,961	24,092
2015	•	47,892	•	20,221	232,540	47,892	(8,578)	39,314	-	32,391	56,483
2016	•	14,639	•	18,603	213,936	14,639	1,192	15,831	1	12,227	68,710
2017	•	1,657	•	17,115	196,822	1,657	4,792	6,449	-	4,670	73,380
2018	•	•	•	15,746	181,076	•	4,881	4,881	-	3,313	76,693
2019	•	•	•	14,486	166,590	•	4,491	4,491	-	2,858	79,551
2020				13,327	153,263	•	4,131	4,131	-	2,465	82,015
2021		•		12,261	141,002	•	3,801	3,801	~	2,126	84,141
2022		•		11,280	129,721	•	3,497	3,497	~	1,833	85,974
2023	•			10,378	119,344	•	3,217	3,217	0	1,581	87,556
2024	•	•	•	9,547	109,796	•	2,960	2,960	0	1,364	88,920
2025	•	•		8,784	101,013	•	2,723	2,723	0	1,176	90'06
2026	•	•	•	8,081	92,932	•	2,505	2,505	0	1,014	91,110
2027	•	•	•	7,435	85,497	•	2,305	2,305	0	875	91,985
2028				6,840	78,657	•	2,120	2,120	0	755	92,740
2029				6,293	72,365	•	1,951	1,951	0	651	93,391
2030		•		5,789	66,576	•	1,795	1,795	0	561	93,952
2031				5,326	61,249	•	1,651	1,651	0	484	94,436
2032	•	•	•	4,900	56,350	•	1,519	1,519	0	418	94,854
2033	•		•	4,508	51,842	-	1,397	1,397	0	360	95,214
2034	•	•	•	4,147	47,694	•	1,286	1,286	0	311	95,524
2035	•			3,816	43,879		1,183	1,183	0	268	95,792
2036				3,510	40,368	•	1,088	1,088	0	231	96,023
2037				3,229	37,139	•	1,001	1,001	0	199	96,223
2038		•		2,971	34,168	•	921	921	0	172	96,394
2039				2,733	31,434	•	847	847	0	148	96,543
2040				2,515	28,920	•	780	780	0	128	96,670
2041	•	•	•	2,314	26,606	•	717	717	0	110	96,781
2042	•	•	•	2,128	24,478	-	660	660	0	95	96,876
2043	•	•	•	1,958	22,519	•	209	209	0	82	96,958
2044	•		•	1,802	20,718	-	558	558	0	71	97,029
2045	•	•	•	1,657	19,060	•	514	514	0	61	92,090
2046	•	•	•	1,525	17,536	-	473	473	0	53	97,142
2047	•	•	•	1,403	16,133	•	435	435	0	45	97,188
2048	•		•	1,291	14,842	-	400	400	0	39	97,227
2049	•	•	•	1,187	13,655	-	368	368	0	34	97,260
2050	•	•	•	1,092	12,562	-	339	339	0	29	97,290
2051	•	•	•	1,005	11,557	-	312	312	0	25	97,315
2052	•	•		925	10,633	-	352	352	0	27	97,341
Fotal	•	560,105	(311,073)	300,440	3,610,599	249,032	(89,915)	159,117	15	97,341	3,301,746

Title:

TUC- Unit #3 Turbine High Pressure (HP) Cylinder Fastener Replacement

Start Date:	2012/04
Final Cost Date:	2012/11
Function:	Generation
Forecast Amount:	\$275,729

DESCRIPTION:

This project includes the replacement of the Unit #3 steam turbine high-pressure cylinder fasteners (bolts and studs) to ensure the integrity of the steam turbine for continued safe and efficient operation. High-pressure fasteners are monitored for life cycle maintenance as described in NSPI's TMP (Thermal Maintenance Practice) - Steam Turbine - High Temperature Bolting Maintenance Practice. The practice applies to the high-pressure outer casing, high-pressure inner casing, intermediate-pressure outer casing, main stop valve cover, control valves, reheat stop valve covers, intercept valve covers, and combined reheat valve covers that are exposed to high temperatures. The Unit #3 high-pressure cylinder fasteners are exposed to operating temperatures in excess of 700 degrees Fahrenheit.

The basic criteria for evaluating the consumed life for steam turbine high-temperature bolts are the material, number of times the bolts have been tightened, number of unit start/stop cycles, running hours, bolt operating temperature and critical maintenance data.

Evaluation of Unit #3 high-pressure cylinder fasteners using Original Equipment Manufacturer (OEM) criteria indicated that these fasteners are now at the end of their service life and must be replaced.

Summary of Related CI's +/- 2 years: 2012 CI 41228 TUC Unit 3 Turbine High Pressure (HP) Impulse Blades Replacement \$882,152

JUSTIFICATION:

Justification Criteria: Health & Safety

Why do this project?

The function of these fasteners is to maintain a tight joint with no steam leakage into other sections of the turbine or into the plant. High pressure steam leaking from high-pressure joints is a critical safety issue and may require maintenance outages and costly repairs. Leaking joints within the steam turbine can result in steam bypassing portions of the intended steam path and resultant loss of efficiency.

Why do this project now?

These bolts will exceed the calculated consumed fastener life criteria recommended by the OEM if they are not replaced during the planned maintenance shutdown in 2012.

Why do this project this way?

In addition to ensuring safe and reliable operation of the turbine is maintained, completing the bolting replacement during the 2012 planned outage represents the most cost effective solution by minimizing the cost associated with potential unplanned outages going forward.

- TUC3 - Turbine High Pressure (HP) Cylinder Fastener Replacement	
CI Number : ⁴¹²⁵¹	

•

Parent CI Number :

- 311-Tufts Cove Admin./Common Capita

2012 ACE Plan **Budget Version**

Project Number

Cost Centre : 311

Capit	al Item A	ccounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		11,925	0	11,925
095		095-Thermal Regular Labour AO			0	
095		095-Thermal & Hydro Contracts AO			0	
001	010	001 - THERMAL Regular Labour	010 - SGP - Turbo Gen.Instal.	19,200	0	19,200
012	010	012 - Materials	010 - SGP - Turbo Gen.Instal.		0	
013	010	013 - POWER PRODUCTION Contrac	s 010 - SGP - Turbo Gen.Instal.		0	
			Total Cost:	275,729	0	275,729
			Original Cost:	71,437		

Loca Cl#: Title:	Location: Tuft's Cove Cl#: 41251 Title: TUC3 – Turbine High Pressure (HP) Cylinder Fastener Replacement energy everywhere."						
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (Cl#'s) Note 1
1	A Desules Leheur						
11	Generation Services Engineering	hr			\$3,000		
1.2	Electrical/ Mechanical Tradesperson	hr	360	45.00	16,200		
1.3					-		
				Sub-Total	19,200		
_		012 Mat				1	
21	Bolting	lot	enais			Quote EH3882	
2.2	Doning	101					
2.3							
2.4							
2.5				Out Tatal			
				Sub-Total			
3	013 Po	wer Produ	ction Contrac	ts			
3.1	Removal and Installation	lot					
3.2					-		
3.3					-		
				Sub-Total			
4	09	4 Interest (Capitalized			ĺ	
4.1	Interest	4 11101001	Capitalized		11.925		
				Sub-Total	11,925		
5 ODE Administrative Overkeed							
51	Construction AQ	anninstrat			5 604		
0.1					-		
					-		
				Sub-Total	5,604		
Cost	Estimate			Total	\$275,729		
_							
61					\$41 437		
Note 1	: Reference to "Completed similar projects (Cl	#'s)" is to b	e provided whe	en the item estimate	is based on work of	similar scope for a recer	tly completed project
	· · · · · · · · · · · · · · · · · · ·	-,					

TUC3 - Turbine HP Cylinder Fastener Replacement Summary of Alternatives & Assumptions

Nova Scotia
POWER
An Emera Company

R energy everywhere."

Budget Year :	2012	Date :	20-Oct-11
Division :	Power Production	CI Number:	41251
Department :	Tufts Cove	Project No. :	
Originator :			

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	Replace Fasteners	6.67%	87,303	1	26.64%	3.1 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the HP Cylinder Fasteners be replaced

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: Replace Fasteners

1

-25% Minus the Probability of failure in year 1

75% Probability that fasteners do not fail in year 1

х

45% Probability of fasteners failing in year 2 if no failure occurs in year 1

34% Probability of the fasteners failing in year 2

70% x 34% x MW x 504 h =

\$62,850.51

Avoided Cost Calculations

Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs

	Budget Year : Division : Department : Originator :	2012 Power Production Tufts Cove	Date : CI Nur Projec	20-Oct-11 41251
Replace Fasteners Capital Cost Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	\$ 275,729 MWh x 1 \$ 311,500.00 x 25% x \$124,430.93	outages x 70% x 25% x 1 = \$ 77,875	MW x 504 h	= \$46,555.93

MWh

\$ 317,730.00 \$ 170,084.39

MWh x 1 outages x 70% x 34% x 1 = \$ 107,234

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Year	Total Revenue	Operating Costs	Capitai	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor		CNPV
2012		124,430.9	(275,729)	11,029.2	264,699.8	(151,298.1)	(38,775.0)	(190,073.0)	1.000	(190,073.0)	(190,073.0)
2013	•	170,084.4		21,176.0	243,523.9	170,084.4	(48,518.5)	121,565.9	0.937	113,964.4	(76,108.6)
2014	•	106,019.3		19,481.9	224,041.9	106,019.3	(26,865.2)	79,154.0	0.879	69,564.6	(6,544.0)
2015	•	81,104.7		17,923.4	206,118.6	81,104.7	(19,586.2)	61,518.5	0.824	50,684.9	44,141.0
2016	•	23,439.3		16,489.5	189,629.1	23,439.3	(2,187.1)	21,252.1	0.772	16,414.7	60,555.7
2017	•	4,008.1	•	15,170.3	174,458.8	4,008.1	3,460.3	7,468.4	0.724	5,407.7	65,963.4
2018	•	215.2	•	13,956.7	160,502.1	215.2	4,259.9	4,475.0	0.679	3,037.7	69,001.1
2019	•	•	•	12,840.2	147,661.9	•	3,980.5	3,980.5	0.636	2,533.0	71,534.1
2020	•	•	•	11,813.0	135,849.0	•	3,662.0	3,662.0	0.597	2,184.6	73,718.8
2021	•			10,867.9	124,981.0	•	3,369.1	3,369.1	0.559	1,884.2	75,603.0
2022	•	•		9,998.5	114,982.6	•	3,099.5	3,099.5	0.524	1,625.1	77,228.0
2023	•	•		9,198.6	105,783.9	•	2,851.6	2,851.6	0.492	1,401.6	78,629.6
2024	•	•		8,462.7	97,321.2	•	2,623.4	2,623.4	0.461	1,208.8	79,838.5
2025	•	•		7,785.7	89,535.5	•	2,413.6	2,413.6	0.432	1,042.6	80,881.0
2026	•			7,162.8	82,372.7	•	2,220.5	2,220.5	0.405	899.2	81,780.2
2027	•			6,589.8	75,782.9	•	2,042.8	2,042.8	0.380	775.5	82,555.8
2028	•			6,062.6	69,720.2	•	1,879.4	1,879.4	0.356	668.9	83,224.6
2029	•			5,577.6	64,142.6	•	1,729.1	1,729.1	0.334	576.9	83,801.5
2030	•	•	•	5,131.4	59,011.2	•	1,590.7	1,590.7	0.313	497.6	84,299.1
2031	•			4,720.9	54,290.3	•	1,463.5	1,463.5	0.293	429.1	84,728.2
2032	•	•	•	4,343.2	49,947.1	•	1,346.4	1,346.4	0.275	370.1	85,098.3
2033	•			3,995.8	45,951.3	•	1,238.7	1,238.7	0.258	319.2	85,417.5
2034	•	•		3,676.1	42,275.2	•	1,139.6	1,139.6	0.242	275.3	85,692.8
2035	•	•		3,382.0	38,893.2	•	1,048.4	1,048.4	0.226	237.4	85,930.3
2036	•	•		3,111.5	35,781.7	•	964.6	964.6	0.212	204.8	86,135.1
2037	•	•		2,862.5	32,919.2	•	887.4	887.4	0.199	176.6	86,311.7
2038		•		2,633.5	30,285.7	•	816.4	816.4	0.187	152.3	86,464.0
2039				2,422.9	27,862.8	•	751.1	751.1	0.175	131.4	86,595.4
2040		•		2,229.0	25,633.8	•	691.0	691.0	0.164	113.3	86,708.7
2041	•	•		2,050.7	23,583.1	•	635.7	635.7	0.154	97.7	86,806.5
2042				1,886.6	21,696.4	•	584.9	584.9	0.144	84.3	86,890.7
2043	•	•		1,735.7	19,960.7	•	538.1	538.1	0.135	72.7	86,963.4
2044				1,596.9	18,363.9	•	495.0	495.0	0.127	62.7	87,026.1
2045	•			1,469.1	16,894.8	•	455.4	455.4	0.119	54.1	87,080.2
2046				1,351.6	15,543.2	•	419.0	419.0	0.111	46.6	87,126.9
2047	•	•		1,243.5	14,299.7	•	385.5	385.5	0.104	40.2	87,167.1
2048	•	•		1,144.0	13,155.7	•	354.6	354.6	0.098	34.7	87,201.8
2049	•	•		1,052.5	12,103.3	•	326.3	326.3	0.092	29.9	87,231.7
2050	•	•		968.3	11,135.0	•	300.2	300.2	0.086	25.8	87,257.5
2051	•	•		890.8	10,244.2	•	276.1	276.1	0.081	22.3	87,279.8
2052	•			819.5	9,424.7	•	312.4	312.4	0.076	23.6	87,303.4
otal	•	509.301.9	(275.729.0)	266.304.3	3.200.364.1	233.572.9	(81.319.6)	152.253.3	14.9	87,303,4	2 824 447 0

CI Number: 41620

Title:

TUC- Unit 3 Turbine-Generator Area Fire Protection

Start Date:	2012/05
Final Cost Date:	2012/12
Function:	Generation
Forecast Amount:	\$272,743

DESCRIPTION:

This project includes the addition of a fixed fire protection system for the Unit #3 steam turbine and generator at the Tufts Cove Generating Station. At the time of original construction, the fire protection infrastructure was adequate, but a recent risk analysis identified that existing fire protection around the turbine generator no longer meets current industry standards. Construction will be similar to work recently undertaken in the Lingan Generating Station.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Health & Safety

Why do this project?

In the recent assessment of fire protection systems at all NSPI thermal plants, the highest risk areas identified are associated with the turbine generator area of the plants. This risk is best mitigated by applying a fixed fire protection system around the equipment in this area as well as drainage for hydraulic oils and lubricants. A system of similar design was successfully installed at LIN Unit #4 in 2009 and LIN Unit #1 in 2010. The system design and construction will serve as a model for applying a similar solution for this project.

Why do this project now?

As a result of recent inspections, NSPI's insurance providers have recommended the need to introduce additional fire system risk-control measures. NSPI believes these modifications are important now as the plants age and a staged installation with one unit at a time is appropriate to reduce risk in the long term. Unit #3 is scheduled for a maintenance outage in 2012 which will facilitate installation of fire suppression equipment.

Why do this project this way?

The benchmark study used for assessing loss control practices was predicated on fire protection practices, NFPA 850 and FM DS7-1 01. Although they are recommended practices, they have become industry guidelines, widely used by insurers in risk assessments for power generation facilities. The new fire protection system will be integrated into the current system that exists at the plant.

CI Number : ⁴¹⁶²⁰

Cost Centre : 319

- 319-TC Unit 3 Capital

.

Budget Version 2012 ACE Plan

Capita	al Item A	ccounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		8,746	0	8,746
095		095-Thermal & Hydro Contracts AO			0	
095		095-Thermal Regular Labour AO		10,949	0	10,949
001	004	001 - THERMAL Regular Labour	004 - SGP - Misc.Equipment	45,600	0	45,600
012	004	012 - Materials	004 - SGP - Misc.Equipment		0	
013	004	013 - POWER PRODUCTION Contra	cts 004 - SGP - Misc.Equipment		0	
028	004	028 - Consulting	004 - SGP - Misc.Equipment		0	
			Total Cost:	272,743	0	272,743
			Original Cost:			

Locat FP#: Title:	tion: Tuft's Cove 41620 TUC3 Turbine Generator Fire Protection					Nova Scotia POWER An Emera Company	energy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1		001 Regula	r Labour				
1.1	Generation Services Engineering	hr			6,000		
1.2	CADD Operator	hr		_	3,600		
1.3	Electrical/Mechanical labour	hr	800	45	36,000		10110 10107
				Sub-Total	45,600		40148, 40427
2		012 Mat	erials			1	
2.1	Panel, Sensors, Cable	lot					
2.2	Misc. Materials	lot				-	
2.3							
2.4							
2.5				Sub-Total			40148, 40427
						-	, -
3	013 Po	wer Produ	ction Contract	ts			
3.1	Mechanical Materials and labour	lot	1	_			
3.2	Scattoldding	lot	1				
3.3				Sub-Total			40148, 40427
							, .
4		028 Cons	sulting	-			
4.1	Consulting	lot	1	_			
4.2							
4.5				Sub-Total			40148, 40427
							, .
5							
5.1					\$-		
5.2					\$ - ¢		
5.5			<u> </u>		Ψ		
6	00	4 Interest C	Capitalized				
6.1	Interest				8,746.00		
6.2							
6.3				Sub-Total	8 746 00		
				Sub-Tolai	6,740.00		
7	095 /	Administrat	ive Overhead			1	
7.1	AO						
7.2							
7.3		L		Sub Total			
Projec	t Cost Estimate			Total	272 744		
i i ojec	Coot Laumate				212,144		
8	Original Cost					İ	
	-						
Note 1	: Reference to "Completed similar projects (F	P#'s)" is to b	be provided wh	nen the item estima	te is based on work of	of similar scope for a red	cently completed project

Generating	V			Inves	stment Time	rame	
Station	Area	Protection	2010	2011	2012	2013	2014
	Unit 1 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler	×				
	Fire System Electrical Panel Upgrades		×				
	Fire System Valve Replacement		×				
	Unit 1 Burner Front	Wet Automatic Sprinkler	××				
	Unit 2 Burner Front	Wet Automatic Sprinkler	×	>			
	Unit z Turbine - Generator Sprinkler System Thit 3 Turbine - Concretor Sprinkler System	Pre-Action water Sprinkler Dro Action Wotor Scrinklor		< >			
	Unit 3 Turbine - Generarui oprinkiel oysterii Thit 3 Burnar Front	Mot Automatic Sprinkler		< >			
Lingan	Unit 4 Burner Front	Wet Automatic Sprinkler Wet Automatic Sprinkler		< ×			
5	Unit 1/2 Cable Spreading Room Flev 112 5 m (4 m X 12 m X	Clean Gaseous (Novec 1230 Inergen) Victaulic		×			
	36 m) 1728 cubic metres, 61,000 cubic feet	Vortex or VEWFD with Pre-Action			×		
	Unit 1/2 Cable Spreading Room Elev. 120.2 m (3 m X 12 m X	Clean Gaseous (Novec 1230, Inergen), Victaulic			>		
	42.3 m) 1522 cubic metres, 54,000 cubic feet	Vortex or VEWFD with Pre-Action			<		
	Unit 3/4 Cable Spreading Room Elev. 112.5 m (4 m X 12 m X	Clean Gaseous (Novec 1230, Inergen), Victaulic			×		
	36 m) 1728 cubic metres, 61,000 cubic feet	Vortex or VEWFD with Pre-Action			<		
	Unit 3/4 Cable Spreading Room Elev. 120.2 m (3 m X 12 m X 42 3 m) 1522 cubic metres 54 000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action			×		
	Unit 1 Burner Fronts	Wet Automatic Sprinkler		×			
	Unit 1 Switch Gear Room Elevation 107.2 m (25 m X 14.5 m X	Clean Gaseous (Novec 1230, Inergen), Victaulic		×			
Point Aconi	6 m) 21/5 cubic metres, 77,000 cubic feet	Vortex or VEWFD with Pre-Action					
	Unit 1 Relay Room Elevation 113.2 m (25 m X 14.5 m X 6 m) 2125 cubic matras 77 000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWED with Dre-Action		×			
	2173 david mettes, 77,000 david reet Hinit 1 Turhine - Generator Sprinklar System	Pre-Action Water Sprinkler					×
		Close Construct (Notice 1220, Increase) Misterilia					<
	will 1/2 Gable Spreaurig Koorri Elevation (100 m A 3 m A 2.3 m) 1250 cubic matras 45 000 cubic faat	Orean Gaseous (Noved 1230, mergen), victauric Vortex or VEMED with Pre-Action				×	
Point Tupper	Fire System Electrical Panel Updrade					×	
	Unit 1 Turbine - Generator Sprinkler Svstem	Pre-Action Water Sprinkler					×
	Replace Fire Pumps - More Capacity						×
	Fire System Upgrades		×				
	Unit 5 Burner Front	Wet Automatic Sprinkler	Х				
	Unit 6 Burner Front	Wet Automatic Sprinkler		×			
	Unit 5 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler			×		
	Unit 6 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler			×		
	Unit 6 4160 Switchgear Cable Spreading Room Elevation 29.8 m (7.6 m X 37.8 m X 3 m) 860 cubic metres, 30,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWFD with Pre-Action			×		
Trenton	Unit 6 MCC Cable Spreading Room Elevation 22.7 m (7.6 m X	Clean Gaseous (Novec 1230, Inergen), Victaulic			>		
	37.8 m X 3 m) 860 cubic metres, 30,000 cubic feet	Vortex or VEWFD with Pre-Action			×		
	Unit 5 Relay Room Elev 42 ft (50 ft X 30 ft X 12 ft) 18,000 cubic feet	Clean Gaseous (Novec 1230, Inergen), Victaulic Vortex or VEWED with Pre-Action				Х	
	Unit 5 4160 v Switch Gear Room Elev. 73' 0" (100' X 20' X 15')	Clean Gaseous (Novec 1230, Inergen), Victaulic				×	
	30,000 cubic feet I hit 5 4160 v Switch Gear Cable Area Elev. 57' 6" /400' X 30'	Vortex or VEWFD with Pre-Action				;	
	X 15') 30.000 cubic feet	Vortex or VEWFD with Pre-Action				×	
	Unit 1 Burner Front	Wet Automatic Sprinkler	×				
	Unit 2 Burner Front	Wet Automatic Sprinkler	×				
	Unit 3 Burner Front	Wet Automatic Sprinkler	Х				
	TUC 6 Turbine-Generator and Lube Oil Sprinkler, Transformer	Pre Action Water Sprinkler and Deluge	×				
Tufts Cove	Unit 2 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler				×	
	Unit 3 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler				×	
	Fire System Electrical Panel Upgrade					×	2
	Unit 1 Turbine - Generator Sprinkler System	Pre-Action Water Sprinkler					×
	Cable Spreading/Relay Room	Vortex or VEWFD with Pre-Action					×

CI Number: 41561

Title:

POT - Maintenance Facilities Refurbishment

Start Date:	2012/04
Final Cost Date:	2012/12
Function:	Generation
Forecast Amount:	\$258,558

DESCRIPTION:

The Point Tupper Generating Station was originally built in 1969. Although regular building maintenance and some additions and modifications to the buildings have taken place over the last forty years, some of the maintenance facilities (maintenance washrooms, shower and locker room facilities) are no longer completely functional and must be refurbished.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Health & Safety

Sub Criteria: Buildings

Why do this project?

The maintenance employee washroom, locker room, and shower facilities have reached the end of their useful life and must be refurbished to modern-day standards to ensure appropriate facilities are provided to those using them.

Why do this project now?

This project must be completed now as the existing facilities have degraded through decades of use and have reached the end of useful life.

Why do this project this way?

Refurbishment of the maintenance facilities is the most viable option and will reduce the likelihood of more costly repairs in the future.

CI Number : ⁴¹⁵⁶¹

- POT - Maintenance facilities Refurbishment

Project Number

Number

Parent CI Number :

- 351-Pt.Tupper Admin./Capital

.

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 351

Variance	3,000	1,000	3,000	250				250	2,527		720	120		258,558	
Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Forecast Amount	3,000	1,000	3,000	250				250	2,527		720	120		258,558	49,739
														Total Cost:	Original Cost:
Activity	Labour	e Labour	bour			ION Contracts		ent		r AO	our AO	bour AO	tracts AO		
Account	001 - THERMAL Regular I	002 - THERMAL Overtime	004 - THERMAL Term Lat	011 - Travel Expense	012 - Materials	013 - POWER PRODUCT	028 - Consulting	041 - Meals & Entertainme	094 - Interest Capitalized	095-Thermal Term Labour	095-Thermal Regular Labo	095-Thermal Overtime Lat	095-Thermal & Hydro Con		
Actv															
Acct	001	002	004	011	012	013	028	041	094	095	095	095	095		

Location: FP#: Title:	Point Tupper 41561 POT - Maintenance facilities Refurbishment				~	Nova Scotia POWER An Emera Company	energy everywhere."
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (FP#'s) Note 1
1	001 Regular Labour, 00	02 Overtin	ne Labour . (004 Term Labour			
1.1	Regular	hr	75	40.00	\$3,000		
1.2	Overtime Labour	hr	15	66.50	\$1,000		
1.3	Term Labour	hr	_	1	3,000		_
				Sub-Total	7.000		
					.,		
2		012 Mate	erials				
2.1	Gyproc, flooring, fixtures, etc.	lot	1				-
				Sub-Total			38895
2	012 Pow	or Broduo	tion Control	oto			
31	Installation Contract	lot	1	-15			
011		101	· ·				
				Sub-Total			38895
4		028 Cons	ultina			T	
4.1	Detailed Engineering	lot	1	Ţ.			
4.2							
4.3							
				Sub-Total			38895
5	041 Me	eals and E	ntertainmen	ıt			
5.1	Meals/expenses	lot	1	500	500		
5.2							
5.3				Sub-Total	500		
				Sub-Tolai	500		
6	094	Interest C	apitalized				
6.1	Interest				2,527		
6.2							_
6.3		<u> </u>		Sub-Total	2 527		+
				oub rotai	2,021		
7	095 Ad	Iministrati	ve Overhead	d			
7.1	Overhead				6,531		
7.2		-	+				
1.3		1		Sub-Total	6.531		
Project Cost	Estimate			Total	\$258,558		
8	Original Cost				¢ 40 700		
8.1 Noto 1: Pofor	anas to "Completed similar projects (EB#'s)" is	to be prov	ided when th	a itam aatimata ia k	\$49,739	ailar agona far a raganth	
Note 1. Refere	ence to Completed similar projects (FF#S) is	to be provi		e ilem estimate is t	Jaseu on work of sin	nilar scope for a recently	completed project

CI Number: 41124

LIN – Cooling Water (CW) Screen Refurbishment

2012/03
2012/12
Generation
\$251,544

DESCRIPTION:

Title:

There are 8 travelling screens (2 per Unit) at the Lingan Generating Station. The self-cleaning screens remove sea debris from the incoming sea water before it enters the CW pump and downstream cooling systems.

The screens consist of bottom, top and intermediate sections. The bottom section includes the tail sprocket assembly and support structure. The top section is comprised of the drive sprocket assembly and the support structure. The intermediate section spans vertically between the bottom and top sections and supports the entire structure. The screens' intermediate sections and top sections require replacement, as they have corroded over time. These sections will be replaced with stainless steel components.

During periods of low seaweed loading in the cooling water intake, one of the two screens on each unit is taken out of service and refurbished. The plan is to refurbish two screens per year until all eight screens have been upgraded. Screens 3B and 4B were completed in 2011. Screens 2B and 4A are planned for 2012. Two additional projects will be advanced in 2013 and 2014 to complete refurbishment of all 8 traveling screens.

Summary of Related CI's +/- 2 years: No projects for 2010,2011,2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Thermal

Sub Criteria: Equipment Replacement

Why do this project?

Eel grass passing through degraded or non-functioning traveling screen panels results in downstream fouling of strainers at CW and ACW locations and increases the risk of unit de-rating or outages due to inadequate cooling capacity, particularly during the late summer and fall. The degree of fouling also often results in high mechanical loading on the screens and circulating water pumps. This high loading causes component failure at the screens and CW pumps and increases the risk of de-rating or unit outages due to the loss of cooling water.

Why do this project now?

Completing this project will reduce existing issues with the circulating water system during periods of heavy seaweed and debris. This will reduce the risk of unit de-ratings and subsequent associated replacement energy costs.

Why do this project this way?

The screens operate in an aggressive seawater environment and have experienced normal corrosion and wear. The most cost effective solution is to replace the corroded and worn components as opposed to replacing the complete screen. Primary components to be refurbished include the top drives (sprocket refurbishment, bearing replacement, shaft refurbishment, top boot replacement with stainless steel material), Intermediate Section (guides, supports and screen panels replacement) and Lower Section (sprocket refurbishment, bearing replacement, shaft refurbishment, bottom boot replacement with stainless steel material).

CI Number : 41124

- LIN-Cooling Water (CW) Screen Refurbishment

•• Parent CI Number

.

- 301-Lingan Admin./Common Capital

Project Number

2012 ACE Plan

Budget Version

Cost Centre : 301

Capit	al Item A	ccounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		6,424	0	6,424
095		095-Thermal & Hydro Contracts AO			0	
095		095-Thermal Regular Labour AO		24,274	0	24,274
001	014	001 - THERMAL Regular Labour	014 - SGP - Circ.Water Sys.	101,100	0	101,100
012	014	012 - Materials	014 - SGP - Circ.Water Sys.	104,000	0	104,000
013	014	013 - POWER PRODUCTION Contract	ts 014 - SGP - Circ.Water Sys.		0	
			Total Cost:	251,544	0	251,544
			Original Cost:	214,000		

Location:	lingan					Nova Scolia	
FP#:41124	Lingan					POWER	energy everywhere."
Title:	LIN-Cooling Water (CW) Screen Refurbishment					An Emera Company	
ltem	Description	Unit	Quantity	Unit Estimate	Total Estimate	Cost Support Reference	Completed Similar Projects (CI#'s)
	001 Bogu	ler Labour				-	T
	Plant / CS Engineering - Technical and Project Support				¢ 1.000		
1.1	Mach Trades (6 @10w/c@0hr/dov@E dov/w/k) Inc Crane				φ 1,000	-	
1.2	Ops)	hr	2400	39.50	\$ 94,800	1	
1.3	EI Trades - diconnects / connects	hr	40	42.50	\$ 1,700	1	T
1.4	Utility Trades	hr	120	30.00	\$ 3,600)	
				Sub-Total	\$ 101,100	1	37743, 40223
		-t-riele					
21	UIZ Ma	ateriais	-		40.000		-
2.1	Screen Section Panels -stainless	ea			22 000		-
2.3	Bottom Boot screen components	ea	-		42,000)	
-		-					
						1	1
				Sub-Total	\$ 104,000	1	37743, 40223
	013 Power Prod	uction Con	tracte			 ¬	
31	Machining and Refurbishment Contingery		1 2				Т
3.1	Machining and Returbishment Conungecy	ea	<u> </u>				
		1	1				
					r		
				Sub-Total			
6	094 Interest	t Capitalize	d			٦	
6.1		1	1	6,424	6,424	F	
				Sub-Total	6,424	·	
7	095 Administr	ative Overh	ead			г	
7.1	Therm & Hydro Contracts AO	T					Т
7.2	Thermal Regualr labour AO	1			24,274		
				Sub-Total			
Project Cos	t Estimate			Total	\$251,544	4	
8 8.1	Original Cost				\$214,00	0	
Note 1: Refe	rence to "Completed similar projects (Cl#'s)" is to be provided whe	en the item of	estimate is ba	sed on work of sim	ilar scope for a rec	ently completed project	t

LIN CW Screen Refurbishment Summary of Alternatives & Assumptions

Budget Year :2012Date :20-Oct-11Division :Power ProductionCI Number:41124Department :LinganProject No. :Originator :

		After Tax				
	Alternative	WACC	PV of EVA / NPV	Rank	IRR	Disc Pay
Α	CW Screen Refurbishment	6.67%	21,607	1	23.33%	5.3 years
в	Test 2	6.67%	0	2	#NUM!	0.0 years
С	Test 3	6.67%	0	2	#NUM!	0.0 years
D	Test 4	6.67%	0	2	#NUM!	0.0 years

Recommendation :

Based on a positive NPV, it is recommended that the CW screens be refurbished

Assumptions

Incremental replacement energy costs and annual operating costs in the years following 2013 are escalated at 2% annually.

Calculations:

Total annual avoided cost = [Replacement energy costs] + [Avoided unplanned repair costs]

Avoided replacement energy cost = [Incremental replacement energy cost] x [Quantity of predicted annual unit outages / de-ratings] x [capacity factor] x [Probability of failure] x [Derating/outage] x [Duration of Derating]

Avoided unplanned repair costs = [cost of Labour and materials in event of failure] x [Probability of failure] x [quantity of predicted annual unit outages / de-ratings]

Calculation of probability of failure in Year 2

The probability of the unit failing in year 2 is: (Probability of unit not failing in year 1) x (probability the unit will fail in year 2 if no failure accured in year 1)

Example: CW Screen Refurbishment

1

-100% Minus the Probability of failure in year 1

0% Probability that CW screen does not fail in year 1

х

60% Probability of CW Screen failing in year 2 if no failure occurs in year 1

0% Probability of the CW Screen failing in year 2

energy everywhere."

Avoided Cost Calculations

	Budget Year : Division : Department : Originator :	2012 Power Production Lingan	Date : Cl Number: Project No. :	20-Oct-11 41124
CW Screen Returbishment Capital Cost Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	\$ 251,544 MWh x 1 \$ 322,943.64 x 100% x \$347,120.37	outages x 80% x 100% x 1 = \$ 322,944	MW x	240 h = \$24,176.73
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	MWh x 2 \$ 72,967.92 x 0% x \$ -	outages x 80% x 0% x 2 = \$ -	MW x	240 h = \$0.00

Test 2	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 3	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Test 4	
Capital Cost	
Avoided Replacement Energy costs (2012) = Avoided Unplanned Repair Costs (2012) Total Annual Avoided costs	
Avoided Replacement Energy costs (2013) = Avoided Unplanned Repair Costs (2013) Total Annual Avoided costs	

Year	Total Revenue	Operating Costs	Capital	CCA	ncc	CFBT	Applicable Taxes	CFAT	Discount Factor	PV of CF	CNPV
2012	•	347,120.4	(251,544)	10,061.7	241,481.9	95,576.7	(114,799.2)	(19,222.4	() 1.000	(19,222.4)	(19,222.4)
2013		•	•	19,318.6	222,163.3	•	6,166.1	6,166.1	0.937	5,780.5	(13,441.9)
2014	•	•	•	17,773.1	204,390.3	•	5,474.4	5,474.4	0.879	4,811.2	(8,630.7)
2015	•	•	•	16,351.2	188,039.1	•	5,068.9	5,068.9	0.824	4,176.2	(4,454.5)
2016	•		•	15,043.1	172,995.9	•	4,633.5	4,633.5	0.772	3,578.8	(875.7)
2017	•		•	13,839.7	159,156.3	•	4,290.3	4,290.3	0.724	3,106.5	2,230.9
2018	•	•	•	12,732.5	146,423.8	•	3,947.1	3,947.1	0.679	2,679.3	4,910.2
2019	•	•	•	11,713.9	134,709.9	•	3,631.3	3,631.3	0.636	2,310.8	7,221.0
2020	•	•	•	10,776.8	123,933.1	•	3,340.8	3,340.8	0.597	1,993.0	9,214.0
2021	•		•	9,914.6	114,018.4	•	3,073.5	3,073.5	0.559	1,718.9	10,932.9
2022	•	•	•	9,121.5	104,896.9	•	2,827.7	2,827.7	0.524	1,482.5	12,415.5
2023	•	•	•	8,391.8	96,505.2	•	2,601.4	2,601.4	0.492	1,278.6	13,694.1
2024	•	•	•	7,720.4	88,784.8	•	2,393.3	2,393.3	0.461	1,102.8	14,796.9
2025	•	•	•	7,102.8	81,682.0	•	2,201.9	2,201.9	0.432	951.1	15,748.0
2026	•		•	6,534.6	75,147.4	•	2,025.7	2,025.7	0.405	820.3	16,568.4
2027	•		•	6,011.8	69,135.6	•	1,863.7	1,863.7	0.380	707.5	17,275.9
2028	•		•	5,530.9	63,604.8	•	1,714.6	1,714.6	0.356	610.2	17,886.1
2029	•		•	5,088.4	58,516.4	•	1,577.4	1,577.4	0.334	526.3	18,412.4
2030	•	•	•	4,681.3	53,835.1	•	1,451.2	1,451.2	0.313	453.9	18,866.3
2031	•	•	•	4,306.8	49,528.3	•	1,335.1	1,335.1	0.293	391.5	19,257.8
2032	•	•	•	3,962.3	45,566.0	•	1,228.3	1,228.3	0.275	337.6	19,595.4
2033	•	•	•	3,645.3	41,920.7	•	1,130.0	1,130.0	0.258	291.2	19,886.6
2034	•	•	•	3,353.7	38,567.1	•	1,039.6	1,039.6	0.242	251.2	20,137.8
2035	•	•	•	3,085.4	35,481.7	•	956.5	956.5	0.226	216.6	20,354.4
2036	•		•	2,838.5	32,643.2	•	879.9	879.9	0.212	186.8	20,541.2
2037	•		•	2,611.5	30,031.7	•	809.6	809.6	0.199	161.1	20,702.4
2038	•		•	2,402.5	27,629.2	•	744.8	744.8	0.187	139.0	20,841.3
2039	•	•	•	2,210.3	25,418.9	•	685.2	685.2	0.175	119.9	20,961.2
2040	•	•	•	2,033.5	23,385.3	'	630.4	630.4	0.164	103.4	21,064.6
2041	•	•	•	1,870.8	21,514.5	•	580.0	580.0	0.154	89.2	21,153.7
2042	•	•	•	1,721.2	19,793.4	•	533.6	533.6	0.144	76.9	21,230.6
2043	•	•	•	1,583.5	18,209.9	•	490.9	490.9	0.135	66.3	21,296.9
2044	•	•	•	1,456.8	16,753.1	•	451.6	451.6	0.127	57.2	21,354.1
2045	•	•	•	1,340.2	15,412.8	•	415.5	415.5	0.119	49.3	21,403.5
2046	•	•	•	1,233.0	14,179.8	•	382.2	382.2	0.111	42.5	21,446.0
2047	•	•	•	1,134.4	13,045.4	•	351.7	351.7	0.104	36.7	21,482.7
2048	•	•	•	1,043.6	12,001.8	•	323.5	323.5	0.098	31.7	21,514.4
2049	•	•	•	960.1	11,041.7	•	297.6	297.6	0.092	27.3	21,541.7
2050	•	•	•	883.3	10,158.3	•	273.8	273.8	0.086	23.5	21,565.2
2051	•		•	812.7	9,345.7	•	251.9	251.9	0.081	20.3	21,585.5
2052			•	747.7	8,598.0	•	285.0	285.0	0.076	21.5	21,607.1
Total	•	347,120.4	(251,543.6)	242,945.6	2,919,646.6	95,576.7	(42,439.7)	53.137.0	14.9	21.607.1	594.071.4

4 Integrated Customer Service

Integrated Customer Services (ICS) incorporates all aspects of NSPI Customer related operation and service functions, including Transmission and Distribution operations, Resource Management Centre, Customer Care Centre, Contact Centre and Revenue Operations.

In order to provide further insight into NSPI's ICS capital investment plan, the following tables provide the investment plan by investment category. All 2012 individual transmission and distribution projects are included within one of the following investment categories:

- Reliability; 5 Year Plan & Incremental Reliability Investments
- Load Growth
- Regulatory Compliance
- Renewable Infrastructure Development
- Capital Maintenance Investments

To achieve the most effective execution of required work the Resource Management Centre (RMC) is responsible for resource planning, scheduling and dispatch of work resources (NSPI and external contractors) for most Transmission and Distribution capital projects. Generally, the construction of new Transmission and Distribution assets are planned and executed by the Technical and Construction Services (T&CS) group. Considerations incorporated into the capital planning and execution work plans include:

- Synergies with other operating, or capital work
- The nature of the work to be undertaken (e.g. transmission versus distribution, live line versus deadline, customer requested versus new construction);
- The availability and cost of NSPI's resources versus contracting options
- The scope of the project (i.e. Is the project better matched with NSPI crew availability/size or a contractor crew);
- Project location, duration, resource requirements.

Compliance \$14.5

The breakdown of 2012 ICS capital projects by investment category is illustrated below in figure 4.0.1.

Load Growth \$9.8

Incremental Reliability \$16.9

Figure 4.0.1 Integrated Customer Service- Capital Projects by Investment Category

4.1 Integrated Customer Service – Capital Projects Presented by Investment Category

Reliability: The capital expenditures identified in this investment category serve to maintain and enhance the reliability of NSPI's electrical system and improve performance. Investments in reliability are focused on aging assets and deteriorated equipment replacements, system performance improvements, technology improvements and storm hardening. All projects in this investment category are included in Table 4.1.0.

CI#	Project Title	2012 ACE	Total	Related Capital items 2012 &
	110,000 1100	Plan	Estimate	+/- 2 years
40281	2011 Transmission Line Insulator Replacement	\$150,000	\$3,018,100	2010 – CI 38110 2010 Transmission Line Insulator Replacement \$2,236,148 2012 - CI 41517 L6535 Lidar Upgrades & Maintenance \$2,361,250 2013 - CI TBD 2013 Transmission Line Insulator Replacements \$TBD
41387	2012 Transmission Line Insulator Replacements	3,619,166	3,619,166	2010 – CI 38110 2010 Transmission Line Insulator Replacement \$2,236,148 2011 – CI 40281 2011 Transmission Line Insulator Replacement \$3,018,100 2012 - CI 41517 L6535 Lidar Upgrades & Maintenance \$2,361,250 2013 - CI TBD 2013 Transmission Line Insulator Replacements \$TBD
41430	2012 Substation Recloser Replacement	2,120,686	2,120,686	2011 - CI 40287 Substation Recloser Replacement - \$3,764,921 2013 CI TBD Substation Recloser Replacement \$TBD
41426	2012 Transmission Switch & Breaker Upgrades	2,000,849	2,000,849	2010 - CI 38027 2010 Trans Switch & Breaker Upgrades \$2,070,094 2011 - CI 40280 2011 Trans Switch & Breaker Upgrade \$2,866,718 2013 - CI TBD Transmission Switch & Breaker Upgrades \$TBD
41536	2012 Reliability Technologies Transmission	877,747	958,276	NA

Table 4.1.0: Reliability Investment Capital Projects

CI#	Project Title	2012 ACE Plan	Total Estimate	Related Capital items 2012 & +/- 2 years
41399	2012 Substation Insulator & Cutout Replacements	800,013	800,013	2010 - CI 38878 2010 Subs Cutout and Insul. Replacement \$1,506,414
41392	2012 Distribution Cutout Replacements	2,596,796	2,596,796	2010 – CI 38024 Distribution Cutout Replacements \$2,000,606 2011 – CI 39270 Distribution Cutout Replacements \$2,916,035 2013, 2014 – CI TBD Distribution Cutout Replacements \$TBD
41534	2012 Reliability Technologies Distribution	\$2,423,179	\$2,496,069	2010 – CI 38914 2010 Animal Guard Installations \$100,038 2011 – CI 40545 2011 New Reliability Technologies \$110,769
41349	2012 Off Road To Roadside	884,869	884,869	2010 - CI 38062 Off Road to Roadside - \$1,000,119 2011 - CI 40227 Off Road to Roadside - \$2,500,000 2013, 2014 - CI TBD Off Road to Roadside \$TBD
41383	2012 Halifax Underground Feeder Replacement	596,760	596,760	2010 – Cl 38903 Halifax UG Cable Replacement 1H-403 & 405 - \$473,599 2011 – Cl 40220 Halifax Underground Cable Replacement - \$418,861 2013 - Cl TBD Halifax Underground Cable Replacement \$TBD
41351	2012 Distribution Automation	553,965	553,965	2011 – CI 39269 Recloser Additions - \$444,765
41353	2012 Downline Recloser Additions	543,284	543,284	2010 – CI 38022 2010 Recloser Additions \$1,400,271 2011 – CI 39269 2011 Recloser Additions \$444,765 2013 - CI TBD Downline Recloser Additions \$TBD
41355	2012 Remote Communication on Reclosers	536,258	536,258	NA
41339	2012 Distribution Feeder Ties	492,873	492,873	2010 - CI 38847 - 2010 Distribution Feeder Ties - \$531,609 2011 - CI 39272 - 2011 Distribution Feeder Ties - \$500,000 2013 - CI TBD - 2013 Distribution Feeder Ties - \$ TBD

CI#	Project Title	2012 ACE Plan	Total Estimate	Related Capital items 2012 & +/- 2 years
41325	Replacement of 3H and 6H Reclosers	465,327	465,327	2010- CI 38867 - Replacement of 3H and 6H Reclosers - 253,331 2011- CI40211 3H/6H Replacement Program -306,895
41384	2012 Feeder Exit Cable Replacement	374,542	374,542	2011 - CI 40328 Feeder Exit Cable Replacements \$317,587 2013 - CI TBD Feeder Exit Replacement \$TBD
41338	20H-301 Targeted Feeder Replacement	371,361	371,361	NA
40211	2011 3H/6H Replacement Program	110,711	342,219	NA
41393	2012 Automatic Sleeve Replacements	287,831	287,831	NA
41337	1N-405 Targeted Feeder Replacement	%283,892	\$283,892	NA
41334	16N-301 Targeted Feeder Replacement	214,378	214,378	NA
41340	5N-301 Targeted Feeder Replacement	172,695	172,695	NA
41354	519N-201 Partial Feeder Voltage Conversion to 25KV	164,814	164,814	NA
41329	11W-202 Voltage Conversion to 12 kV	98,382	98,382	2012 - CI 41592 - 88W New Reclose and Relocate 88W-322 \$111,171 2012 - CI 41363 - 88W New Feeder \$269,616
41343	81S-302 Targeted Feeder Replacements	96,642	96,642	NA
41344	81S-305 Targeted Feeder Replacements	80,992	80,992	NA
41326	103C-311 Targeted Feeder Replacements	74,612	74,612	NA
41332	15S-302 Targeted Feeder Replacements	73,023	73,023	NA
41345	82S-303 Targeted Feeder Replacements	61,625	61,625	NA
41342	81S-301 Targeted Feeder Replacements	50,632	50,632	NA
41328	103W-312 Targeted Feeder Replacements	47,851	47,851	NA
Five Ye	ear Reliability Plan Total	\$21,225,754	\$25,880,076	

CI#	Project Title	2012 ACE Plan	Total Estimate	Related Capital items 2012 & +/- 2 years			
Increme	ental Year Reliability			· · · · · · · · · · · · · · · · · · ·			
Plan							
33624	Spare Generator Transformer Additional Water Street	\$3,682,026	\$4,142,622	NA			
40317	Transformer & Low Side 25 kV Breakers	2,367,466	3,947,034	NA			
41555	Spare Wind Farm Generator Transformer	2,535,465	2,535,465	NA			
41553	Dartmouth East Transformer Addition	2,307,615	2,307,615	NA			
41552	131H Lucasville Transformer Addition	1,893,150	1,893,150	NA			
41434	Procure Additional 42 MVA Spare Transformer	1,043,984	1,043,984	NA			
40868	64V-T1 Transformer Replacement U&U - Greenwood	391,662	945,187	NA			
40862	101H-T61 Transformer Refurbishment U&U - Cobequid	\$255,853	\$919,893	NA			
41550	Spare 30MVA 69KV 25/12KV Transformer	728,999	859,852	NA			
41437	104H-T62 Kempt Road Transformer Rewind	790,201	790,201	2011 - CI 39723 104H- T63 Transformer Refurbishment \$753,177 2011 - CI 40185 104H- T61 Transformer Refurbishment \$946,675			
41589	22N-Church St Replace 25 kV Bus and Feeder Exit	734,302	734,302	NA			
40867	59C-T61 Transformer Refurbishment U&U - St. Peter's	208,039	725,671	NA			
Incremental Reliability Total \$16,938,764 \$20,844,977							

Load Growth Capital Investments: Capital expenditures identified in this investment category are developed as a result of an increase in customer energy demand. Load growth generally occurs through natural growth of a service area resulting from increased prosperity, productivity or population growth. All projects in this investment category are included in Table 4.1.1.

CI#	Project Title	2012 ACE Plan	Total Estimate	Related Capital items 2012 & +/- 2 years
Transmi	ission			
41519	Harbour East 138 kV Transmission Line	\$211,410	\$7,859,669	2012 - CI 41520 - Harbour East Substation - Eastern Passage - \$3,490,007 2012 - CI 41522 - 138kV Line Terminal at Dartmouth East Substation - \$788,149 2012 - CI 38849- Harbour East Land Purchase and ROW - \$179,680
41520	Harbour East Substation - Eastern Passage	394,305	3,490,007	CI 41519 - Harbour East 138 kV Tx Transmission Line CI 41522 - 138kV Line Terminal at Dartmouth East Substation 2012 CI 38849- Harbour East Land Purchase and ROW
40322	New Prospect Road Substation	3,153,291	3,184,409	2011 - CI 40321 Canaan Road to Prospect Transmission Line \$2,0024,763 2011- CI 40323Canaan Road Line Terminal \$ 738,632 2011 - CI 41540 99V Highbury Rd New Feeders \$1,093,229
40321	Install Canaan Road to Prospect Road Transmission Line	2,104,620	2,182,578	2011 - CI 40322 New Prospect Road Substation \$3,153,291 2011- CI 40323Canaan Road Line Terminal \$ 1,004,202 2011 - CI 41540 99V Highbury Rd New Feeders \$1,093,229
41005	Parrsboro Tidal Interconnection	1,522,568	1,746,574	2008 – CI28678Renewable-In-Stream Tidal Generator \$3,300,000
40323	Canaan Road Line Terminal	967,187	1,004,202	2011 - CI 40321 Canaan Road to Prospect Transmission Line \$2,081,197 2011 - CI 40322 New Prospect Road Substation \$3,068,581 2011 - CI 41540 99V Highbury Rd New Feeders \$1,093,229
41522	138kV Line Terminal at Dartmouth East Substation	40,743	788,149	CI 41519 - Harbour East 138 kV Tx Line - \$TBD CI 41520 - Harbour East Substation - Eastern Passage - \$3,490,007
Transmi Total	ission Load Growth	\$8,394,123	\$20,255,587	

Table 4.1.1.: Load Growth Capital Projects

CI#	Project Title	2012 ACE Plan	Total Estimate	Related Capital items 2012 & +/- 2 years
Distrib	ution			
41540	99V Highbury Rd New Feeders	\$1,093,229	\$1,093,229	2011 - CI 40321 Canaan Road to Prospect Transmission Line \$2,081,197 2011 - CI 40322 New Prospect Road Substation \$3,153,291 2011 - CI 40323Canaan Road Line Terminal \$ 1,004,202
41341	1H-Water Street New Feeder	280,657	280,657	NA
Distribution - Load Growth Total		\$1,373,886	\$1,373,886	
Total L	oad Growth	\$9,768,009	\$21,629,474	

Regulatory Compliance Capital Investments: In certain cases, capital investments are made in order to comply with recognized Canadian Standards Association (CSA) which are routinely incorporated into provincial regulations, internationally recognized reliability standards such as NERC/NPCC, Environment Canada PCB regulations, etc. Examples of projects in this investment category include the Protection Upgrades at Tufts Cove, Lakeside and Onlsow that are required to comply with North American Electric Reliability Corporation (NERC) standards. All projects in this investment category are included in Table 4.1.2.

Table 4.1.2: Regulatory Compliance Capital Projects

CI#	Project Title	2012 ACE Plan	Total Estimate	Related Capital items 2012 & +/- 2 years
40320	LED Street Light Conversion	\$5,739,651	\$100,000,000	NA
40233	2011 Protection Upgrades TUC	2,513,370	3,998,885	2010 – CI 38266 2010 Protection Upgrades \$313,331 2011 – CI 40231 Protection Upgrades Lakeside \$1,609,905 2012 – CI 41348 Protection Upgrades Onslow \$2,274,015 2013 – CI 41347 Protection Upgrades Brushy Hill \$1,873,614
41348	2012 Protection Upgrades Onslow	2,274,015	2,274,015	2010 – CI 38266 2010 Protection Upgrades \$313,331 2011 – CI 40231 Protection Upgrades Lakeside \$1,609,905 2011 – CI 40233 2011 Protection Upgrades TUC \$3,928,932 2013 – CI 41347 Protection Upgrades Brushy Hill \$1,873,614

CI#	Project Title	2012 ACE Plan	Total Estimate	Related Capital items 2012 & +/- 2 years
41429	2012 Substation PCB Equipment Removal	1,854,665	1,854,665	2010 – CI 38122 2010 PCB Equipment Removal/Destruction - \$ 1,487,135 2011 – CI 40288 2011 Substation PCB Equipment Removal - \$2,510,193 2013 – CI TBD PCB Equipment Removal \$TBD 2014 – CI TBD PCB Equipment Removal \$TBD
40231	2011 Protection Upgrades LAK	1,536,649	1,579,848	2010 – CI 38266 2010 Protection Upgrades \$313,331 2011 – CI 40231 Protection Upgrades Lakeside \$1,609,905 2011 – CI 40233 2011 Protection Upgrades TUC \$3,928,932 2013 – CI 41347 Protection Upgrades Brushy Hill \$1,873,614
41386	2012 Pole Retreatment	\$556,017	\$556,017	2010 – CI 38860 2010 Pole Retreatment \$495,505 2011 – CI 40279 2011 Pole Retreatment \$516,341 2013 – CI TBD Pole Retreatment \$TBD
Regulatory (Total	Compliance	\$14,474,367	\$110,263,430	

Renewable Infrastructure Development Investments: The capital expenditures identified in this investment category are required to support the interconnection of renewable projects to NSPI's transmission and distribution systems. All projects in this investment category are included in Table 4.1.3.

Table 4.1.3: 2012 Renewable Infrastructure Investment

CI#	Project Title	2012 ACE Plan	Total Estimate	Related Capital items 2012 & +/- 2 years
41537	Amherst 138kV Substation	\$1,808,362	\$2,781,762	NA
Renewabl	e Infrastructure Total	\$1,808,362	\$2,781,762	

Capital Maintenance Investments: On an annual basis, through planned inspections and performance monitoring NSPI identifies deteriorating components on the electrical system. The capital expenditures identified in this investment category are required to ensure the continued reliable operation of these assets. All projects in this investment category are included in Table 4.1.4.

CI#	Project Title	2012 ACE Plan	Total Estimate	Related Capital items 2012 & +/- 2 years
Transm	ission			
41592	88W New Recloser and Relocate 88W-322	\$111,171	\$111,171	2012 – CI 41363 - 88W New Feeder \$269,619 2012 – CI 41329 - 11W-202 Voltage Conversion to 12 kV \$98,329
41432	L7009 Lidar Upgrades & Maintenance	2,942,809	2,942,809	NA
41517	L6535 Lidar Upgrades & Maintenance	2,361,250	2,361,250	2012 – CI 41387 - 2012 Transmission Line Insulator Replacement \$3,619,166
41535	2012 Steel Tower Painting	1,270,605	1,270,605	NA
41844	Transmission Lines L8004 & L7005	1,139,264	1,139,264	NA
40266	L6002 Deteriorated Replacements	157,029	1,136,031	NA
40310	Circuit Switcher Additions	680,990	680,990	NA
41551	Glentosh Substation Footing Remediation	552,201	552,201	NA
41391	L6025 Spar Arm Reinforcement	489,925	489,925	NA
41422	Onslow Spares Storage Upgrades	415,661	415,661	NA
41439	Mobile Refurbishments 5P & 6P	367,409	367,409	NA
41438	85S-Wreck Cove Cable Termination Replacement	291,194	291,194	NA
41362	7H Beaufort Switchgear Retirement	278,071	278,071	2012 – CI 41388 7H Beaufort Conversion \$174,253
41390	7V Methals Hydro Transformer Replacement	258,506	258,506	NA
41395	8H Fairview Switchgear Retirement	213,288	213,288	NA
Transm	ission Total	\$11,529,375	\$12,508,376	

Table 4.1.4: 2012 Capital Maintenance Investments

CI#	Project Title	2012 ACE Plan	Total Estimate	Related Capital items 2012 & +/- 2 years	
Distrib	ution				
41797	Brier Island Crossing	\$1,006,642	\$1,006,642	NA	
41398	2012 Padmount Transformer Replacements	827,340	827,340	NA	
41359	79V-402 Feeder Load Reduction	797,378	797,378	NA	
41389	8H Fairview Conversion	417,695	417,695	2012 – CI 41395 8H Fairview Switchgear Retirement \$213,288	
40224	78W-301 Second Peninsula	406,598	406,598	NA	
	16N-301 Stewiacke				
41333	Reconductor	353,467	353,467		
41327	103W-311 Gold River Reconductor Phase 2	310,296	310,296	2011 – CI 40203 103W-311 Gold River Phase 1 - \$434,415 2013 – CI TBD 103W-311 Gold River Phase 3 \$TBD 2014 – CI TBD 103W-311 Gold River Phase 4 \$TBD 2012 – CI 41592 – 88W New Pecloser and	
41363	88W New Feeder	269,616	269,616	Relocate 88W-322 \$111,171 2012 – CI 41329 - 11W-202 Voltage Conversion to 12kV \$98,382	
41356	35V-312 Windsor Causeway	252,137	252,137	NA	
40219	2011 Recloser Control Replacements	216,786	216,786	NA	
41388	7H Beaufort Conversion	174,253	174,253	2012 CI 41362 Beaufort Switchgear Retirement \$278,071	
41431	1C-411/22C-404 Transfer Scheme	149,850	149,850	NA	
41360	82V-423 Hardwood Lands Deteriorated Plant Replacement	437,192	437,192	NA	
41397	2012 Padmount Switchgear Replacement	67,738	67,738	NA	
Distrib	ution Total	\$5,686,987	\$5,686,987		
Total C	Capital Maintenance	\$17,216,362	\$18,195,363		

Transmission

5.

Millions of Dollars)

5.1 Transmission – Five-year Plan and Highlights

The focus for Transmission capital investments in 2012 continues to reflect growth in the customer base and customer reliability. The \$68.1M Transmission capital investment plan for 2012 is comprised of the following:

i	New 2012 capital spending for projects with total estimated project spend greater than \$250K and for which approval is sought	\$26.2
ii	New 2012 capital spending for projects with total estimated project spend greater than \$250K for subsequent approval	\$20.1
iii	New capital spending for projects with total estimated spend less than \$250K for which approval is not sought	\$0.3
iv	Carry-over capital spending	\$10.4
v	Routine capital spending	\$11.1
vi	Total 2012 Transmission capital investment plan	\$68.1M
vii	Request for ACE approval (Items i + v)	\$37.2M

5.2 Transmission – Carry-over capital Spending Summary

Table 5.2 Transmission Carry-over Capital Spending Summary

Project Number	CI#	Project Title	Start Date	Final Date	Previous Expenditure	2012 Budget	Subsequent Spending	Total Estimate
Transmiss	ion Plant							
T639	33624	Spare Generator Transformer	2010/06	2012/11	\$460,596	\$3,682,026	\$0	\$4,142,622
T662	40233	2011 Protection Upgrades TUC	2011/01	2012/08	1,485,516	2,513,370	0	3,998,885
T688	40231	2011 Protection Upgrades LAK	2011/07	2012/12	43,198	1,536,649	0	1,579,848
T691	41005	Parrsboro Tidal Interconnection	2011/07	2012/06	224,006	1,522,568	0	1,746,574
	40868	64V-T1 Transformer Replacement	2011/07	2012/03	553,524	391,662	0	945,187
T696	40862	101H-T61 Transformer Refurbishment	2011/08	2012/03	664,040	255,853	0	919,893
	40867	59C-T61 Transformer Refurbishment	2011/05	2012/03	517,632	208,039	0	725,671
T671	40266	L6002 Deteriorated Replacements	2011/05	2012/06	979,001	157,029	0	1,136,031
T668	40281	2011 Tx Line Insulator Replacement	2011/03	2012/08	4,269,394	150,000	0	4,419,393
Total Transmission Plant					\$9,196,908	\$10,417,196	\$0	\$19,614,104
Total Tran	nsmission	Carry Over Spending			\$9,196,908	\$10,417,196	\$0	\$19,614,104

5.3 Transmission – New 2012 Capital items for ACE Approval

Table 5.3 Transmission – New 2012 Capital Items for ACE Approval

75.1 //			2012	
Tab#	<u>Cl#</u>	Project Title	Budget	Project Total
-	Transmissio	n Plant		
101	41387	2012 Transmission Line Insulator Replacements	\$3,619,166	\$3,619,166
T02	41432	L7009 Lidar Upgrades & Maintenance	2,942,809	2,942,809
T03	41517	L6535 Lidar Upgrades & Maintenance	2,361,250	2,361,250
T04	41348	2012 Protection Upgrades Onslow	2,274,015	2,274,015
T05	41430	2012 Substation Recloser Replacement	2,120,686	2,120,686
T06	41426	2012 Transmission Switch & Breaker Upgrades	2,000,849	2,000,849
T07	41429	2012 Substation PCB Equipment Removal	1,854,665	1,854,665
T08	41535	2012 Steel Tower Painting	1,270,605	1,270,605
T09	41844	Reinsulate Transmission Lines L8004 & L7005	1,139,264	1,139,264
T10	41434	Procure Additional 42 MVA Spare Transformer	1,043,984	1,043,984
T11	41399	2012 Substation Insulator & Cutout Replacements	800,013	800,013
T12	41437	104H-T62 Kempt Road Transformer Rewind	790,201	790,201
T13	41589	22N-Church St Replace 25 kV Bus and Feeder Exit	734,302	734,302
T14	41386	2012 Pole Retreatment	556,017	556,017
T15	41551	Glentosh Substation Footing Remediation	552,201	552,201
T16	41391	L6025 Spar Arm Reinforcement	489,925	489,925
T17	41422	Onslow Spares Storage Upgrades	415,661	415,661
T18	41439	Mobile Refurbishments 5P & 6P	367,409	367,409
T19	41438	85S-Wreck Cove Cable Termination Replacement	291,194	291,194
T20	41362	7H Beaufort Switchgear Retirement	278,071	278,071
T21	41390	7V Methals Hydro Transformer Replacement	258,506	258,506
		Total Transmission Plant	\$26,160,795	\$26,160,795
	Total Trans	mission New Spending	\$26,160,795	\$26,160,795

Transmission Cls 1 – 21

CI Number: 41387

Title:

2012 Transmission Line Insulator Replacements

Start Date:	2012/02
Final Cost Date:	2012/12
Function:	Transmission
Forecast Amount:	\$3,619,166

DESCRIPTION:

This project provides for costs associated with the replacement of insulators on five transmission circuits in 2012. Insulators targeted for replacement have a known failure mechanism resulting from cement growth which lead to unplanned transmission outages and customer outages. This CI only covers the replacement of insulators in 2012. NSPI intends to submit a separate CI's for insulator replacements in future years.

Replacement of insulators on the following five lines:

L6004 Sackville to Canaan Road – 7728 insulators L5521 Onslow to Willow Lane – 120 insulators L7002 forty structures only near the Brushy Hill end of the line – 1650 insulators L5536B Pleasant St to Hebron – 1077 insulators L6535 Maccan to NB - 1686 insulators

Summary of Related CI's +/- 2 years: 2010 CI 38110 2010 Transmission Line Insulator Replacement \$2,236,168 2011 CI 40281 2011 Transmission Line Insulator Replacement \$3,018,100 2012 CI 41517 L6535 Lidar Upgrades & Maintenance \$2,361,250 2013 CI TBD 2013 Transmission Line Insulator Replacements \$TBD

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Outage Performance

Why do this project?

This work is being undertaken as part of the overall customer reliability improvement investment. This is year three of a five year (2010-2014) plan to improve reliability to NSPI's customers. The insulator failure mechanism is well known and previously replaced insulators have been performing well.

Why do this project now?

This project is required because throughout NSPI's system, the type of installed insulator on these circuits has failed due to an industry known cement growth failure mechanism.

Why do this project this way?

Replacing the existing defective insulators with a new type of improved insulator is the only option. Based on the scope of the work and availability of NSPI's Power Line Technician workforce, the Company plans to engage a contractor to perform this work.

The labour for this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

CI Number : 41387

Parent CI Number :

- 800-Services - Admin.

.

2012 ACE Plan **Budget Version**

Capital Item Accounts

Cost Centre : 800

		Activity		Forecast Amount	Amount	Varia
Reg. I	Labour AO			24,127	0	24,127
pitalize	q			74,103	0	74,103
lar Lab	our AO			36,754	0	36,754
acts AC	0			620,071	0	620,071
		035 - TP - Wood Poles		8,670	0	8,670
tracts		035 - TP - Wood Poles			0	
		038 - TP - Insulators		104,039	0	104,039
tracts		038 - TP - Insulators			0	
		039 - TP - O/H Cond.		60,689	0	60,689
tracts		039 - TP - O/H Cond.			0	
ar Labo	ur	085 Design		47,615	0	47,615
Regula	r Labour	087 Field Super.& Ops.		0	0	0
Overtin	ne Labour	087 Field Super.& Ops.		0	0	0
			Total Cost:	3,619,166	0	3,619,166
			Original Cost:	466,704		

CI 41387 2012 Transmission Line Insulator Replacements

The following is a breakdown of costs associated with the 2012 Transmission Line Insulator Replacements project:

Administrative Overhead and Interest	\$ 755,055
Materials	\$ 173,398
Contracts	\$ 2,643,098
COPS Labour	\$ 47,615
Total	\$ 3,619,166

The work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services, at a rate of approximately per compatible unit hour. NSPI will be providing field supervision for this project.

The materials amount of this project is based on costs associated with 12,261 porcelain 10" disc insulators and associated hardware.

CI Number: 41432

L7009 Lidar Upgrades & Maintenance

Start Date:	2012/06
Final Cost Date:	2012/12
Function:	Transmission
Forecast Amount:	\$2,942,809

DESCRIPTION:

Title:

This transmission circuit is almost 40 years old and conductor to ground clearance issues have been identified. The conductor will be cut and re-sagged to increase clearances and a number of structures will be replaced with taller poles as required to meet Canadian Standards Association (CSA) clearance requirements. Additionally, a portion of this project will address deteriorated plant which has been identified through NSPI's inspection program.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Maintenance

Why do this project?

This project is required to increase the ground clearance from energized conductors in locations that do not meet minimum CSA standards for ground clearance along with replacing deteriorated plant. Ground Clearance issues exist due to the sag of lines over time, updated CSA requirements or a combination of the two. This work will involve replacing 130 structures.

Why do this project now?

This project will ensure proper clearances are met and operating ratings can be maintained, and will also address deteriorated plant issues.

Why do this project this way?

This project provides for raising the height of spans that do not meet the CSA standard requirement by installing a mid-span structure or changing out existing structures with higher structures.

The labour for this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.
CI Number : 41432

- L7009 Lidar Upgrades & Maintenance

Parent Cl Number :

.

- 800-Services - Admin.

Project Number

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 800

Variance	12,005	13,096	467	18,288	370,954	506,630			303,978		110,537	1,945	0	23,692	0	2,942,809	
Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Forecast Amount	12,005	13,096	467	18,288	370,954	506,630			303,978		110,537	1,945	0	23,692	0	2,942,809	425,041
Activity						035 - TP - Wood Poles	035 - TP - Wood Poles	038 - TP - Insulators	039 - TP - O/H Cond.	039 - TP - O/H Cond.	040 - TP - O/H Cond.Devices	085 Design	085 Design	087 Field Super.& Ops.	087 Field Super.& Ops.	Total Cost:	Original Cost:
Account	092-Vehicle T&D Reg. Labour AO	094 - Interest Capitalized	095-Thermal Regular Labour AO	095-COPS Regular Labour AO	095-COPS Contracts AO	012 - Materials	013 - COPS Contracts	013 - COPS Contracts	012 - Materials	013 - COPS Contracts	012 - Materials	001 - THERMAL Regular Labour	002 - T&D Overtime Labour	001 - T&D Regular Labour	002 - T&D Overtime Labour		
Actv						035	035	038	039	039	040	085	085	087	087		
Acct	092	094	095	095	095	012	013	013	012	013	012	001	002	001	002		

CI 41432 L7009 Lidar Upgrades & Maintenance

The following is a breakdown of costs associated with the L7009 Lidar Upgrades & Maintenance project:

The work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services, at a rate of approximately per compatible unit hour. NSPI will be providing field supervision and engineering design for this project. The materials forecast is based on costs associated with similar projects in which deteriorated poles were replaced and conductor upgraded to achieve higher ratings.

Ε

230kV Transmission Line L7009 - Bridgewater 99W to Brushy Hill 120H 50°C Max Operating Temperature Upgrade Summary

		Let we have a r	lew Structure	e Hequiremen	IS				· · · · · · · · · · · · · · · · · · ·
Structure 99W	Structure Type Bridgewater Sub	Pole Length (ft)	Min. Pole Class	Min Class for 35' Spar Arm	Min Class for 30' Spai Arm	Required Raise (ft)	Nip (m)	Tuck (m)	Additional Comments
1 2	3 Pole Deadend Tangent Gulfport								
3	3 Pole Deadend					8	0.15	0.10	
5	Tangent Gulfport								
<u>5A</u>	Non-Typical 3 Role Deadend								· · · · · · · · · · · · · · · · · · ·
7	3 Pole Deadend								
8	3 Pole Deadend		Series of	all states	in the second				
10	Tangent Gulfport	75	3	6	5	90			
11	3 Pole Deadend	New DE rec	uires 58ft Ins	ulator Attach	ment Ht AGL	13.5			Crossing Wire, Str Raise Coincides with maintenance plan
13	3 Pole Deadend								
14	3 Pole Deadend	New DE rec	uires 44ft Ins	ulator Attach	ment Ht AGL	45			
- 16	3 Pole Deadend	New DE rec	uires 48n ins juires 54ft ins	ulator Attach	ment Ht AGL	45			
	Tangent Gulfport	1000							
18	Tangent Guilport								
20	3 Pole Deadend								
21 22	3 Pole Deadend Tangent Gulfport							-0.20	
23	Tangent Gulfport								
24 25	Tangent Gulfport	-							
26	Tangent Gulfport								
27	Tangent Gulfport	75 New Apolo	3	6 Conductor St		9.0			Water Crossing
29	3 Pole Deadend	New DE req	uires 83ft Ins	ulator Attach	nent Ht AGL	22.5			Water Crossing
20	Tengent Culfacet	105	4	6 (40)	-	17 5			Water Crossing. Add another set of cross braces to this structure.
50	rangent comport	105	'	0(12)	5	10.0			Laminated Wood Structures can be used as well.
31	3 Pole Deadend	New DE req	uires 56ft Ins	ulator Attachr	nent Ht AGL	10.5	100 - 10 - 10 - 10 - 10 - 10 - 10 - 10		Steep Incline
32	3 Pole Deadend	80	3	6	5	13.5	0.35		Steep Incline
34	Tangent Gulfport	- Hereiner -							
35	3 Pole Deadend	New DE reg	uires 45ft Ins	ulator Attachr	nent Ht AGL	9.0			· · · · · · · · · · · · · · · · · · ·
37	Tangent Gulfport								
38	3 Pole Med Apole	New Angle	requires 53ft	Conductor Si	ISD HTAGI	00			Dist Line
40	Tangent Gulfport	Henrigic	requires boit						
41	3 Pole Deadend	1				ļ			
43	3 Pole Deadend						0.15		
44	Tangent Gulfport	1.5				[]			
45	3 Pole Deadend	New DE req	uires 55ft Ins	ulator Attachr	nent Ht AGL	13.5			
47	Tangent Gulfport				•	[]			
40	Tangent Gulfport			See 1					
50	3 Pole Deadend	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -							
51	3 Pole Deadend Tangent Gulfport								······
53	Tangent Gulfport	1							
<u>54</u> 55	3 Pole Deadend 3 Pole Deadend	New DE reg	uires 59ft Ins	ulator Attachn	nent Ht AGI	9 n			
56	3 Pole Deadend								
57	3 Pole Deadend 3 Pole Deadend	-		A STATE OF A			0.15		
59	Tangent Gulfport						0,40	-0.15	
60	Tangent Gulfport	And the second second		All the second second				010	
62	3 Pole Deadend								
<u>63</u>	3 Pole Deadend		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -						······································
65	Tangent Gullport								
66	3 Pole Deadend								•
68	Tangent Gulfport								
69	Tangent Gulfport	No.							
70 71	Tangent Gullport								
72	Tangent Gulfport								
73	Tangent Gulfport	65	3	6	6	45		l	Coincides with maintenance planned for structure
75	Tangent Gulfport						t	[
76	Tangent Gulfport	65	3	6	6	4.5			
78	Tangent Gulfport						,		
79	Tangent Gulfport	70	3	6	6	4.5			
80	Tangent Gulfport				No. of the second second			• 1	

1

Selection (

Status - 1 alto

and and a

		Pole Length	New Structure Min Pole	Requiremen Min Class	ts Min Class	Bequired		Tuck	
Structure	Structure Type	(ft)	Class	for 35' Spar <u>Arm</u>	for 30' Spar <u>Arm</u>	Raise (ft)	Nip (m)	(m)	Additional Comments
82 83	Tangent Gulfport		100 2000	a fi fi staar	and and		0.25	-0.10	
84 85	Tangent Gulfport Tangent Gulfport						0,25	0.10	
86 87	Tangent Gulfport Tangent Gulfport			enderstation.			•		
88 89	Non-Typical Tangent Gullport	24						<u> </u>	
90 91	Tangent Gulfport	75	3	6	5	4.5		<u></u>	· · · · · · · · · · · · · · · · · · ·
93 94	Tangent Gulport				-				
95 96	Tangent Gulfport 3 Pole Med Angle								
97 98	Tangent Gulfport Tangent Gulfport								
99 100	Tangent Gulfport Tangent Gulfport								
102	Tangent Gulfport Tangent Gulfport	75	3	6	6	9.0			Coincides with maintenance planned for structure
103	Tangent Gulfport			-					
106 107	Tangent Gulfport Tangent Gulfport				All and a second				
108 109	Tangent Gulfport Tangent Gulfport	70	3	6	5	9.0			
110 111	Tangent Gulfport Tangent Gulfport								
112 113	Tangent Gulfport Tangent Gulfport								
114	3 Pole Med Angle								
117	Tangent Gulport								
119	3 Pole Deadend Tangent Gulfport	New DE req	uires 40ft Insu	ilator Attachn	nent Ht AGL	4.5			
121 122	Tangent Gulfport Tangent Gulfport								
123 124	3 Pole Med.Angle Tangent Gulfport								
125	Tangent Gulfport Tangent Gulfport								
127 127A	Tangent Gulfport								
120	Tangent Gulfport		L.						
131 132	3 Pole Deadend 3 Pole Deadend								
133 134	3 Pole Deadend Tangent Gulfport	New DE req	uires 44ft Insu	lator Attachn	ent Ht AGL	4.5			
135 136	Non-Typical 3 Pole Med Angle	New Angle	requires 60ft 0	Conductor Su	sp. Ht AGL	9.0			
137	Tangent Gulfport 3 Pole Deadend					<u> </u>			
139 140	3 Pole Deadend Tangent Gulfport	75	3	6	5	4.5			
142	Tangent Gulfport 3 Pole Deadend						0.15		
144 145	Tangent Gulfport Tangent Gulfport		-				0,10		
146 147	Tangent Gulfport Tangent Gulfport								
148 149	Tangent Gulfport Tangent Gulfport								
150 151 150	3 Pole Deadend 3 Pole Deadend	Nam DE	drag EOU	Jahan Atta al					
152	Tangent Gulfport	New DE requ	a solutionsu	ator Attachm	ent Ht AGL	8.0			
155	3 Pole Deadend Tangent Gulfport				J				
157 158	Tangent Gulfport Tangent Gulfport	65	3	6	6	4,5			
159 160	Tangent Gulfport Tangent Gulfport						0.15		
161 162	Tangent Gulfport Tangent Gulfport								
163 164	3 Pole Deadend Tangent Gulfport								
166	Tangent Gulfport	60	3	6	6	4,5			

			New Structure	Requiremen	ts Min Class		Training		
Structure	Structure Type	Pole Length (ft)	Min. Pole Class	for 35' Spar Arm	for 30 Spa	Required Raise (ft)	Nip (m)	Tuck (m)	Additional Comments
168	3 Pole Deadend	New DE re	quires 48ft Ins	sulator Attach	ment Ht AGL	9.0			Add one (1) bell to strain insulators on Span 168-169 side. This bell is needed to reduce the tension in dead end section from Structure 168- 169.
170	3 Pole Deadend Tangent Gulfport	60	3	6	6	1.5			
172 173	Tangent Gulfport Tangent Gulfport								
174 175	Tangent Gulfport Tangent Gulfport								
176	3 Pole Deadend Tangent Gulfport			Alt Alteration					
178 179 190	3 Pole Deadend 3 Pole Deadend	70		6					
181	3 Pole Deadend	10	3	0	4	4.3			Add one (1) bell to strain insulators on Span 180-181 side. This bell is needed to reduce the tension in dead and section from Structure 179-
182	Tangent Gulfport	65	3	6	4	4.5			181.
183 - 184	3 Pole Deadend Tangent Gulfport	75	3	_6	6	9.0			
185 186 197	Tangent Gulfport Tangent Gulfport Tangent Gulfport	70	3	6	5	4,5			· · · · · · · · · · · · · · · · · · ·
188	Tangent Gullport								
190 191	Tangent Gulfport Tangent Gulfport	60	3	6	5	45	0.15		
192 193	Tangent Gulfport Tangent Gulfport	70	3	6	5	4,5			
194 195	Tangent Gulfport Tangent Gulfport Tangent Gulfport	75	-						
196 197 198	Tangent Gulfport	/5	3		0	4.5			
199 200	Tangent Gulfport Tangent Gulfport	75	3	6	6	9.0			
201 202	Tangent Gulfport Tangent Gulfport	70	3	6	6	9.0			
203 204	Tangent Gulfport Tangent Gulfport	80	3	6	5	13.5			
205	Tangent Gulfport						0.25	0.05	
208 209	Tangent Gulfport Tangent Gulfport								
210 210A	Tangent Gulfport Tangent Gulfport	65	3	6	· 6	4.5			
211 212	Tangent Gulfport Tangent Gulfport								
213 214 215	Tangent Guilport Tangent Guilport								
216 217	Tangent Gulfport Tangent Gulfport								
218 219	Tangent Guilport 3 Pole Deadend	80	3	6	5	9.0			Water Crossing
220 221	3 Pole Deadend Tangent Gulfport	New DE rec	uires 53ft Ins	ulator Attachn	nent Ht AGL	4.5			
223	3 Pole Deadend	New DE reg	uires 64ft Insu	ulator Attachn	nent Ht AGL	<u>135</u>			Water Crossing
225 226	Tangent Gulfport 3 Pole Deadend	Hell DE lec	unes son ma		Mik Mik Add				
227 228	Tangent Gulfport Tangent Gulfport								
229 230	Tangent Gulfport Tangent Gulfport		and foreign						
231 232 233	Tangent Gulfport								
234 235	Tangent Gulfport Tangent Gulfport	70	3	6	6	4.5			
236 237	Tangent Gulfport Tangent Gulfport	80	3	6	6	90		-0.10	
238 239	Tangent Gulfport Tangent Gulfport						0.30	-0.20 0.05	
240 241 242	Tangent Gulfport						0.40	0.10	
243 244	Tangent Gulfport						0,15		
245 246	Tangent Gulfport Tangent Gulfport				4				
247 248	Tangent Gulfport Tangent Gulfport	70	3	6	4	9.0			
249	Tangent Gulfport Tangent Gulfport			<u>'</u>					

1000

		1	New Structure	Requirement	ts	1			
Structure	Structure Type	Pole Length (ft)	Min. Pole Class	Min Class for 35' Spar Arm	Min Class for 30' Spar Arm	Required Raise (ft)	Nip (m)	Tuck (m)	Additional Comments
251 252	Tangent Gulfport 3 Pole Deadend	65 New DE ree	3 quires 45ft Ins	6 Sulator Attach	6 ment Ht AGL	<u>4.5</u> 4,5			Add one (1) bell to strain insulators on Span 252-253 side. This bell is needed to reduce the tension in dead end section from Structure 252-
253	3 Pole Deadend				Marine Street				233.
254	3 Pole Med.Angle								
256 257	3 Pole Deadend	New DE red	quires 49ft Ins	ulator Attach	ment Ht AGL	90			Coincides with maintenance planned for structure
258 259	Tangent Gulfport	70	3	6	6	45			
260	Non-Typical	. 80	3	6	>	90			
262	Tangent Gulfport		100						
265	3 Pole Deadend 3 Pole Deadend	New DE red	uires 58ft Ins	ulator Attachr	ment Ht AGL	9.0			
200	Tangent Gulfport	76		6					
268	Tangent Gulfport	/5	3	6	<u> </u>	<u>au</u>	0.42		
270 271	Tangent Gulfport	A 17					0.15		·
272	Tangent Gulfport	85	3	6	6	5.0			
274 275	Tangent Gulfport						013		
276	3 Pole Deadend 3 Pole Deadend								
278	Tangent Gulfport						0.25		
280	3 Pole Deadend 3 Pole Deadend								
282	3 Pole Deadend Tangent Gulfport	New DE rec 75	uires 44ft Ins 3	ulator Attachr 6	nent Ht AGL	9.0 9.0			Fill added in this Span.
284	Non-Typical Tangent Gulfport	New Angle	requires 59ft	Conductor St	ISP. Ht AGL	9.0			Haise Required to Prevent Uplitt
286 287	Tangent Gulfport Tangent Gulfport								
288 289	Tangent Gulfport Tangent Gulfport								
290 291	3 Pole Deadend						0,40		Due to Steep Decline from 291 to 292, Structure Raise AND Nip are
292 293	3 Pole Deadend Tangent Gulfport	New DE rec	uires 47ft Ins	ulator Attachn	ment Ht AGL	9.0			required to achieve desired clearance
294 295	3 Pole Deadend Tangent Gulfport								
296 297	3 Pole Deadend Tangent Gulfport								
298 299	3 Pole Deadend	85 New DE rec	3 uires 63ft Ins	6 ulator Attachn	6 nent Ht AGL	18.0 22.5			Water Crossing Water Crossing
300 301	3 Pole Med.Angle	80	3	6	6	13.5	0.15		Dist Line
302 303	3 Pole Deadend						05.0	-0.10	
304 305	Tangent Gulfport Tangent Gulfport								
306 307	Tangent Gulfport Tangent Gulfport	80	3	6	5	9.0			
308 309	Non-Typical Tangent Gulfport								
310 311	Tangent Gulfport Non-Typical	80	3	6	6	4,5			
312 313	3 Pole Deadend	New DE rec	uires 64ft Ins	ulator Attachm	nent Ht AGL	22.5			Water Crossing
314 315	3 Pole Deadend Tangent Gulfport	New DE rec 75	uires 78ft Ins 3	ulator Attachn 6	nent Ht AGL 6	27.0 9.0			Water Crossing
316 317	Tangent Gulfport Tangent Gulfport	70	3	6	6	9.0		-0.10	
<u>318</u> 319	Tangent Gulfport Tangent Gulfport				Marrie and		0.50	-0.20 0.15	
320 321	Tangent Gulfport Tangent Gulfport	80	3	6	5	13.5		0.10	
322 323	3 Pole Med.Angle Tangent Gulfport	80	3	6	5	9.0			
324 325	Tangent Gulfport Tangent Gulfport								Dist Line
326	Tangent Gulfport	80	3	6	5	4:5			3.55m excess clearance at 50deg C sag after raising structure 4.5ft. Str Raise is required to gain clearance to distribution crossing line in Span 325-326
327 328	Tangent Gulfport								0.21m excess clearance at 50deg C sag. 2.31m excess clearance at 50deg C sag.
329 330	Tangent Gulfport								4.62m excess clearance at 50deg C sag. 0.29m excess clearance at 50deg C sag.
331 332	Tangent Gulfport								5.05m excess clearance at 50deg C sag.
AND THE PROPERTY OF A DESCRIPTION OF A D			And a second sec	and the second s					
310 317 318 319 320 321 322 323 324 325 326 326 327 328 329	Tangent Guliport Tangent Guliport Tangent Guliport Tangent Guliport Tangent Guliport 3 Pole Med.Angle Tangent Guliport Tangent Guliport Tangent Guliport Tangent Guliport Tangent Guliport Tangent Guliport Tangent Guliport Tangent Guliport Tangent Guliport Tangent Guliport	80 80 80	3	6 6 6	5 5 5	9.0 4:5	0.50	-0.10 -0.20 0.15 0.10	Dist Line 3.55m excess clearance at 50deg C sag after raising structure 4.5ft. Str Raise is required to gain clearance to distribution crossing line in Span 325-326 0.21m excess clearance at 50deg C sag. 2.31m excess clearance at 50deg C sag. 4.62m excess clearance at 50deg C sag.

		1	lew Structure	e Reguirement	S	1			
Structure	Structure Type	Pole Length (ft)	Min. Pole Class	Min Class for 35' Spar Arm	Min Class for 30' Spar Arm	Required Raise (ft)	Nip (m)	Tuck (m)	Additional Comments
335	Tangent Gulfport	A State of the second		Alter States and all sheet					
336	Tangent Gulfport	Action of the second	1000	distance of the sec	Register 1				
337	Tangent Gulfport	- Street Production			CREASED CONT	L	L		
338	Tangent Gulfport		Seal Freidericker states	and the second second					
339	Non-Typical	105 Contraction of	See all and					ļ	
340	Non-Typical	A CONTRACTOR OF THE OWNER	A CONTRACTOR	-Western State	All and a state			ļ	
	Non-Typical		1046930403639	AND A REPORT OF THE	ACCESSION OF THE				
342	Double Circuit Deadend								
343	Double Circuit Tangent								
945	Double Circuit Tangent								
346	Double Circuit Tangent								
347	Double Circuit Tangent			And Andrews	Area and a second				
348	Double Circuit Tangent	the second second second		Sector Sector	all and a second				
349	Double Circuit Tangent		enter seus service	and the second	AND STREET, NO.				
350	Double Circuit Tangent		And the second second	ne desta de la	See Section Section				
351	Double Circuit Deadend	1.00	100 States and	No.	All the second second				
352	3 Pole Deadend Heavy Angle								
353	3 Pole Deadend Heavy Angle		N. Second		Sector 10				
354	Tangent Gulfport	and the second second	Sec. Surgers	and server of	Wetter and				
355	Tangent Gulfport	- Alexandra and a second		1000	and the second				
356	3 Pole Deadend	Sector Sector	Sec. Sec.	Card and the second					
357	Tangent Gulfport	- A Barren Barris	and the second	10000	Statistics of the				
358	Tangent Gullport			a second second	CORRECTOR OF	_			······································
359	Tangent Guiport	2.48.000 (P.10.000)		1 Constant State	all services in				· · · · · · · · · · · · · · · · · · ·
360	Tangent Gulfport								
362	Tangent Gulfport								
363	Tangent Gulfport								
364	Tangent Gulfport								
365	Tangent Gulfport		and a second state		Sale Statistics				
366	Tangent Gulfport	1.		Contraction in the	Garden (c.m.	_			
367	Tangent Gulfport								
368	Tangent Gulfport			1992-1973 - 1979	- Marine Carlo				
369	Tangent Gulfport	A STATE OF A STATE OF A STATE							
370	Tangent Gulfport	1000			And the second				
371	Tangent Gulfport			1000					
3/2	Tangent Gulfport			100000000000					
3/3	3 Pole Med.Angle				AND AND AND				······································
375	3 Pole Deadend								
376	Double Circuit Deadend								
377	Double Circuit Tangent								
378	Double Circuit Tangent								
379	Double Circuit Tangent		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.						
380	Double Circuit Tangent	and a state		All and the second	Sector and				
381	Double Circuit Tangent	and a second second	(And a second second second second second second second second second second second second second second second	1.00	Colleged Second				
382	Double Circuit Tangent	100000000000000000000000000000000000000			and the second				
383	Double Circuit Tangent				100 Contractor				
384	Double Circuit Tangent	1.11.11.11.11.11.11			and the second				
385	Double Circuit Tangent	1000		2015					
386	Double Circuit Deadend			Second Second					
387	Double Circuit Tangent								
388	Double Circuit Tangent								
389	Double Circuit Tangent								
301	Double Circuit Tangent	1000							
392	Double Circuit Deadand								
120H	Brishy Hill Sub							Sec. 22.6	
			1999 December 1997 December 1997 December 1997 December 1997 December 1997 December 1997 December 1997 December 1		A COMPANY CONTRACTOR OF A COMPANY OF A COMPA	Raises	Nios	Tucks	
					ŀ	73	21	19	

NOTES A Nip refers to the specified length of wire removed from the span between the listed structure and next structure (ie, a nip for structure 1 refers to removal of wire in the span from Str 1-2. A -ve Tuck refers to a Tuck towards the back span (lower structure number) A +ve Tuck refers to a Tuck towards the ahead span (higher structure number) The Required Pole Raise has already been taken into account in the "New Structure Requirements" columns For Gulfport Structure Geometry, refer to NSPI Structure No. T7009-1-510-01-001

CI Number: 41517

L6535 Lidar Upgrades & Maintenance

Start Date:	2012/08
Final Cost Date:	2012/10
Function:	Transmission
Forecast Amount:	\$2,361,250

DESCRIPTION:

Title:

This transmission circuit is almost 40 years old and conductor to ground clearance issues have been identified. The conductor will be cut and re-sagged to increase clearances and a number of structures will be replaced with taller poles as required to meet Canadian Standards Association (CSA) clearance requirements. In addition the line will be retensioned and some structures will be modified to address the increased tension. Work will be completed on 56 structures.

Summary of Related CI's +/- 2 years: 2012 - CI 41387 2012 Transmission Line Insulator Replacement \$3,619,166

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Maintenance

Why do this project?

This project is required to increase the ground clearance from energized conductors in locations that do not meet minimum Canadian Standards Association (CSA) standards for ground clearance along with replacing deteriorated plant. Ground Clearance issues exist due to the sag of lines over time, updated CSA requirements or a combination of the two.

Why do this project now?

This project will ensure proper clearances are met and operating ratings can be maintained, and will address deteriorated plant issues.

Why do this project this way?

This is a steel tower transmission line similar to a 138 Kv steel tower transmission circuit between Onslow and Burnside. The modifications to L-6535 will be similar to the Onslow – Burnside circuit which includes retensioning, cutting some conductor, resagging and possibly the addition of some midspan structures.

The labour for this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

CI Number : 41517

- L6535 Lidar Upgrades & Maintenance

Parent CI Number :

.

- 800-Services - Admin.

Project Number

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 800

					L		
Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
092		092-Vehicle Cust. Serv. Reg. Labour			1,013	0	1,013
092		092-Vehicle T&D Reg. Labour AO			53,986	0	53,986
094		094 - Interest Capitalized			36,271	0	36,271
095		095-COPS Contracts AO			336,651	0	336,651
095		095-COPS Regular Labour AO			83,785	0	83,785
012	035	012 - Materials	035 - DP - Wood Poles		100,000	0	100,000
013	035	013 - COPS Contracts	035 - DP - Wood Poles			0	
012	037	012 - Materials	037 - DP - Steel Towers		150,000	0	150,000
013	037	013 - COPS Contracts	037 - DP - Steel Towers			0	
012	038	012 - Materials	038 - DP - Insulators		45,000	0	45,000
013	038	013 - COPS Contracts	038 - DP - Insulators			0	
012	039	012 - Materials	039 - DP - O/H Cond.		5,000	0	5,000
013	039	013 - COPS Contracts	039 - DP - O/H Cond.			0	
001	085	001 - T&D Regular Labour	085 Design		56,544	0	56,544
001	085	001 - CUST. SERV. Regular Labour	085 Design		2,000	0	2,000
001	085	001 - Regular Labour (No AO)	085 Design		6,000	0	6,000
002	085	002 - Overtime Labour (No AO)	085 Design		0	0	0
002	085	002 - T&D Overtime Labour	085 Design		0	0	0
001	087	001 - T&D Regular Labour	087 Field Super.& Ops.		50,000	0	50,000
002	087	002 - T&D Overtime Labour	087 Field Super.& Ops.		0	0	0
				Total Cost:	2,361,250	0	2,361,250
				Original Cost:			

CI 41517 L6535 Lidar Upgrades & Maintenance

The following is a breakdown of costs associated with the L6535 Lidar Upgrades & Maintenance project:

706
000
5,000
544
1,250

The work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services, at a rate of approximately per compatible unit hour. NSPI will be providing field supervision and engineering design for this project. The materials forecast is based on costs associated with similar projects in which deteriorated poles were replaced and conductor upgraded to achieve higher ratings.

CI Number: 41348

Title: 2012 Protection Upgrades Onslow

2012/03
2012/12
Transmission
\$2,274,015

DESCRIPTION:

This project provides for the costs to upgrade the protections system at 1 N-Onslow to comply with Northeast Power Coordination Council (NPCC) reliability criteria for bulk power systems.

Summary of Related CI's +/- 2 years: 2010 CI 38266 2010 Protection Upgrades \$313,331 2011 CI 40231 Protection Upgrades Lakeside \$1,609,905 2011 CI 40233 2011 Protection Upgrades TUC \$3,928,932 2013 CI 41347 Protection Upgrades Brushy Hill \$1,873,614

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: System Protection

Why do this project?

In 2008, NPCC approved new criteria (Criteria Document A-10 – Attachment #2) for determining whether a substation bus is categorized as bulk power. The criterion is used to identify substation busses that, if a fault was not successfully cleared by protection, the situation could result in disturbances outside the local operating area. Stations identified through this criterion are required to have fully redundant protection, control and communication schemes as defined in NPCC Directory #4 – Bulk Power System Protection Criteria (Attachment #3). The 1N-Onslow substation bus meets the criteria for a bulk power element and currently does not have fully redundant protection, control, and communication schemes in place.

Why do this project now?

Implementation of the redundant protection schemes are based on agreement with NPCC which requires completion by the end of 2013. Because this work is technically complex and involves modifications to energized equipment, NSPI has developed a plan to complete the modifications to the five stations requiring this upgrade over a four year period. A portion of 79N-Hopewell was completed in 2010 and will be finished in 2011. The 138kV portion of 103H-Lakeside will be completed in 2012 as well as 91H-Tufts Cove. 20H-Brushy Hill will be submitted in the 2013 ACE Plan.

Why do this project this way?

To comply with the updated NPCC standards, fully redundant protection, control and communication systems must be installed for all bulk power elements identified under the A-10 Criteria.

CI Number : 41348

- 2012 Protection Upgrades Onslow

- 800-Services - Admin.

.

Project Number

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 800

Parent CI Number :

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		127,898	0	127,898
094		094 - Interest Capitalized		52,437	0	52,437
095		095-COPS Contracts AO			0	
095		095-COPS Regular Labour AO		194,838	0	194,838
095		095-Thermal Regular Labour AO		25,687	0	25,687
013	003	013 - COPS Contracts	003 - TP - Bldg., Struct. Grnd.		0	
001	022	001 - T&D Regular Labour	022 - TP - Elec Contr.Equip.	62,316	0	62,316
002	022	002 - T&D Overtime Labour	022 - TP - Elec Contr.Equip.	0	0	0
012	022	012 - Materials	022 - TP - Elec Contr.Equip.	431,250	0	431,250
013	022	013 - COPS Contracts	022 - TP - Elec Contr.Equip.		0	
066	022	066 - Other Goods & Services	022 - TP - Elec Contr.Equip.	143,000	0	143,000
001	023	001 - T&D Regular Labour	023 - TP - Power EquipStation S	7,002	0	7,002
002	023	002 - T&D Overtime Labour	023 - TP - Power EquipStation S	0	0	0
012	023	012 - Materials	023 - TP - Power EquipStation S	43,700	0	43,700
013	023	013 - COPS Contracts	023 - TP - Power EquipStation S		0	
001	043	001 - T&D Regular Labour	043 - TP - Substn Dev.	32,733	0	32,733
002	043	002 - T&D Overtime Labour	043 - TP - Substn Dev.	0	0	0
012	043	012 - Materials	043 - TP - Substn Dev.	391,000	0	391,000
066	043	066 - Other Goods & Services	043 - TP - Substn Dev.	46,904	0	46,904
001	061	001 - T&D Regular Labour	061 - TP - Switched Telecomm. Sys	4,901	0	4,901
002	061	002 - T&D Overtime Labour	061 - TP - Switched Telecomm. Sys	0	0	0
012	061	012 - Materials	061 - TP - Switched Telecomm. Sys	46,460	0	46,460
001	085	001 - THERMAL Regular Labour	085 Design	106,985	0	106,985
002	085	002 - THERMAL Overtime Labour	085 Design	0	0	0
001	086	001 - T&D Regular Labour	086 Commissioning	145,462	0	145,462
002	086	002 - T&D Overtime Labour	086 Commissioning	0	0	0
013	087	013 - COPS Contracts	087 Field Super.& Ops.		0	
			Total Cost:	2,274,015	0	2,274,015
			Original Cost:	74,713		

CI 41348 - 2012 Protection Upgrade Onslow

The following is a breakdown of costs associated with the Onslow Protection Upgrade project:

Administrative Overhead and Interest	
Materials	\$912,410
Contracts	
COPS Labour	\$359,399
Other	\$189,904
Total	\$2,274,015
Contracts COPS Labour Other Total	\$359,399 \$189,904 \$2,274,015

The contracts cost estimate for this project is based on work being performed in the Onslow substation by outside contractors and is not expected to be completed by an affiliate. NSPI COPS labour will be carried out by NSPI personnel at a rate of approximately **betacher** / person day along with engineering design work. The project estimate is based on a similar project carried out in 2010 at Hopewell substation.

NORTHEAST POWER COORDINATING COUNCIL, INC. 1040 AVE OF THE AMERICAS, NEW YORK, NY 10018 TELEPHONE (212) 840-1070 FAX (212) 302-2782

Implementation Plan for Revised NPCC Document A-10

Approved by Full Member Ballot – December 01, 2009

This Implementation Plan provides for testing in accordance with the revised NPCC *Classification of Bulk Power System Elements*, Document A-10, to be completed as follows:

- Testing in accordance with the revised A-10 methodology shall be performed on all facilities that have not been evaluated under the existing A-10 methodology as of the date the revised A-10 is approved.
- Testing in accordance with the revised A-10 methodology shall be performed on all facilities within five years from the date the revised A-10 is approved.

Each Area shall ensure that this Implementation Plan is followed within its Area.

2012 ACE CI 41348 Attachment 2 Page 1 of 10 Document A-10

NORTHEAST POWER COORDINATING COUNCIL, INC. 1040 AVE OF THE AMERICAS, NEW YORK, NY 10018 TELEPHONE (212) 840-1070 FAX (212) 302-2782

Classification of Bulk Power System Elements

Adopted by the Members of the Northeast Power Coordinating Council Inc., this April 28, 2007 based on recommendation by the Reliability Coordinating Committee, in accordance with Section VIII of the NPCC Inc. Bylaws dated May 18, 2006 as amended to date.

1.0 <u>Introduction</u>

NPCC defines specific requirements applicable to design, operation, and **protection** of the **bulk power system**. The object of this *Classification of Bulk Power System Elements* (Document A-10) is to provide the methodology to identify the **bulk power system elements**, or parts thereof, of the interconnected NPCC Region.

The methodology in this document is used to classify **elements** of the **bulk power system** and may result in **elements** being added to or removed from the NPCC **Bulk Power System** List. The methodology in this document is based on the following:

- Results of an analysis done on a bus basis can be applied to identify which **elements**, or portions thereof, connected to the bus are part of the **bulk power system**.
- Elements shall not automatically be included or excluded from the bulk power system based on voltage class. Application of this methodology may be omitted at buses that can be logically excluded from the bulk power system based on study results at other buses tested using this methodology. If a bus is determined to be bulk power system, all other buses with elements connected to that bus must be tested.
- Elements shall be evaluated based on this methodology when significant changes occur on the system that could change an element's bulk power system status; the evaluation may be limited to the affected part of the system.
- Areas and facility owners may adopt methodologies that exceed the requirements set forth in this document for their own purposes. However, only elements classified as **bulk power system** as a result of testing described in this document shall be included on the NPCC's list of **bulk power system elements**. NPCC criteria and compliance monitoring shall consider only the system elements listed on NPCC's list of **bulk power system elements**.

The Classification of **Bulk Power System Elements** is based on three defined terms: **bulk power system**, **local area** and **significant adverse impact**.

2.0 Definitions

Terms in italics in this document are defined in this section.

Terms in bold are defined in the NPCC Glossary of Terms (Document A-7).

2.1 Bus

Within this document the term *bus* refers to a junction with sensing or **protection** equipment within a substation or switching station at which the terminals of two or more **elements** are connected, regardless of whether circuit breakers are provided. In this context, *bus* may not have a direct correlation to the use of this term in substation design or a power flow data set.

In some configurations a *bus* may include more than one physical *bus*, such as in a breaker-and-a-half arrangement or a single-line-single-breaker arrangement in which two physical *buses* are connected through a *bus*-tie breaker. The examples in Figure 1 depict two of many possible configurations where two physical *buses* are tested as a single *bus*. *Buses* that are separated by normally open *bus*-tie breakers are considered as separate *buses*. The termination of line sections through switches should not be considered as a *bus* requiring testing unless the switches are activated as part of a **protection system** for the line which they sectionalize as part of normal **protection system** actions.

Figure 1 – Configurations where *Bus* A and *Bus* B are tested as one *bus*.

In some configurations **elements** may not be terminated to the *bus* through circuit breakers, such as the generator *bus* for a unit connected generator or a *bus* between a transmission line and transformer that are switched as a single circuit. The examples in Figure 2 depict two of many configurations where two physical *buses* are tested as separate *buses*.

2012 ACE CI 41348 Attachment 2 Page 4 of 10 NPCC Inc. Document A-10 Classification of Bulk Power System Elements Revised – December 01, 2009

Figure 2 – Configurations where Bus A and Bus B are tested as two separate buses.

2.2 Uncleared Locally

Within this document the phrase *uncleared locally* is used to denote failure of the **protection** including **Special Protection Systems** for the *bus* under test to initiate tripping of all associated interrupting devices regardless of their location.

Protection located at other *buses* is assumed to operate as designed when that **protection** cannot be disabled by failure of a single component in common with the **protection** at the *bus* under test. For example, consider the case where the **protection** for **elements** connected to higher voltage level and lower voltage level *buses* in the same station share a dc source, and an independent dc source is provided for second **protection groups** associated with **elements** connected to the higher voltage level *bus*. In this case, it is acceptable when testing the lower voltage level *bus* to assume correct operation of any **protection groups** associated with **elements** connected to the higher voltage level *bus* to the higher voltage level *bus* to bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus to the higher voltage level bus capable of detecting the **fault** and supplied by the independent dc source.

In cases where circuit breakers are not provided at the terminals of the **element** at the *bus* under test (as shown in Figure 2, *bus* A), *uncleared locally* includes a failure to clear a **fault** by circuit breakers located at another *bus* within the same substation, unless back-up **protection** at that other *bus* using an independent dc source would detect the **fault** and initiate clearing.

3.0 Classification of Bulk Power System Elements

3.1 <u>Testing Conditions and Assumptions</u>

Studies conducted for the purpose of determining the **elements** of the **bulk power system** shall assume the following conditions:

- 3.1.1. Power flow transfers, **load** and **generation** patterns expected to exist for the period under study which stress the system in a manner critical to the classification of the *bus* to be tested. All **reclosing** facilities rendered inoperative.
- 3.1.2. Operation of **Special Protection Systems**, undervoltage **load shedding** and underfrequency **load shedding** modeled as designed.
- 3.1.3. Load models used in the **Transient Stability** Test are consistent with **Area** practices for the studies of rotor angle stability.
- 3.1.4. Load models used for steady state testing are either constant MVA or are based on actual system testing with LTC movement.
- 3.1.5. Stability simulation runs until the system response can be clearly determined.
- 3.1.6. Generic or detailed relay models to monitor, after tripping of remote terminals, the potential for tripping of un-faulted **elements**.

3.2 <u>Test Methodology</u>

Both **transient stability** and steady-state tests are used to determine the impact on system performance resulting from power system **faults**.

Testing is based on application of a *bus* **fault** at a single voltage level that is *uncleared locally*. Tripping of un-faulted **elements** associated with clearing the test **fault** does not constitute a **significant adverse impact**.

Depending on system configuration or topology, testing only **faults** at *buses* can fail to uncover **significant adverse impacts** arising <u>from a</u> design criteria contingency involving the loss of two adjacent transmission circuits on a common tower. Hence, specific tests in 1c and 2c below are designed to assess this contingency for its potential **significant adverse impact** outside of the **local area**.

A transient stability test may be done first to identify *buses* at which faults may cause a significant adverse impact outside of the local area.

For those *buses* which are not classified as **bulk power system** in the **transient stability** test, a steady-state test is used to identify *buses* at which **faults** may cause a **significant adverse impact** outside of the **local area**.

Step 1 - Transient Stability Test

Simulate the **transient stability** condition of a three-phase **fault** with delayed clearing at the *bus* under test (step 1a). If the test results in a positive **bulk power system** determination, more detailed testing (step 1b) may be applied to obtain a more precise determination.

- 1a. Apply a three-phase fault for at least 10 seconds at the *bus* that is being tested. Do not open any of the elements connected to the *bus* for the duration of the fault. After 10 seconds, simulate tripping of all terminals of each element connected to the *bus* under test. In cases where there is no fault interrupting device at the remote terminal of an element, open all terminals of all elements between the *bus* under test and the interrupting device(s) that will open to clear the fault. This test is performed as an efficient, but conservative method for evaluating the impacts of:
 - *bus* faults which would result in faster clearing time, and
 - **faults** off the *bus*.

It is recognized that due to the conservative nature of this test some elements could be classified unnecessarily as part of the **bulk power system**. If the above test results in a positive **bulk power system** determination, the following additional testing may be utilized to obtain a more precise determination. Subsequent testing utilizes design clearing times for the conditions being tested, as stated below.

1b. Apply a three-phase **fault** at the *bus*, which is *uncleared locally* and trip the remote terminals of all **elements** that will open to clear the **fault**. Remote clearing times shall be based on design **fault clearing** times, assuming no communications from the station under test to the remote terminals.

Transformers and other **elements** connected to the *bus* shall only be tripped by operation of independent remote **protection groups** capable of clearing a **fault** on the *bus* under test.

Some **protection groups** (e.g. directional comparison blocking) at remote terminals may provide high-speed **fault clearing** for faults at the bus under test. In order to test the effects of longer **fault clearing** times for fault conditions when these remote **protection** NPCC Inc. Document A-10 Classification of Bulk Power System Elements Revised – December 01, 2009

groups would not provide high speed **fault clearing**, for either test (1a) or (1b) above:

- High-speed **fault clearing** at remote terminals must be ignored; or
- Testing must vary the placement of the 3-phase **fault** on the elements connected to the bus under test to include locations beyond the reach of the high-speed tripping relay element at the remote terminal.

However, the **protective relay** settings may be reviewed to determine whether the *bus* could be classified as not part of the **bulk power system** if faster remote **fault** clearing can be achieved. If **protective relay** settings are modified, an assessment shall be conducted to ensure that the faster clearing time does not compromise the security of the **protection system**. Until the **protective relay** settings are modified, the *bus* must be classified as **bulk power system**.

1c. The test above is meant to cover the majority of design criteria contingencies. However, the **elements** associated with the *bus* under test must be reviewed to ensure adverse consequences resulting from a design criteria contingency involving the loss of two adjacent transmission circuits on a common tower are not overlooked.

If a circuit terminating at the *bus* under test shares a multiple circuit tower with an adjacent circuit that does not terminate at the *bus* under test, the adjacent circuit design contingency must also be assessed. In such cases, simultaneous permanent phase to ground **faults** on different phases of each of two adjacent transmission circuits shall be applied at critical common tower locations. The **fault** on the circuit associated with the *bus* under test which is *uncleared locally*, shall be simulated with **normal fault clearing** at the remote terminal and on the adjacent circuit.

If the **fault** has a **significant adverse impact** outside of the **local area**, the *bus* is classified as part of the **bulk power system**.

For *buses* not classified as part of **bulk power system** in Step 1, continue with the Steady State Test in step 2.

Step 2 - Steady State Test

Simulate the post-contingency steady-state conditions based on one of the

following outcomes of the fault applied to the bus under test:

- 2a. If the **fault** was cleared based on design **fault clearing** times in the **Transient Stability** Test, open the same **elements** that were opened to clear the **fault** in the Transient Test. Post-**contingency** conditions shall reflect operation of all automatic devices.
- 2b. If the **fault** was not cleared based on design **fault clearing** times in the **Transient Stability** Test, assume that the **fault** propagates to the nearest location where it can be detected by independent **protection groups** and open the **elements** that would be opened by the **protection groups** to clear the **fault**. Note that because **fault clearing** will occur at interrupting devices capable of clearing the **fault**, it may be necessary to open multiple **elements** between the *bus* under test and the relevant interrupting devices, for example, a transmission line and transformer in series as shown in Figure 2.
- 2c. As in Step 1, the steady state test above is meant to cover the majority of design criteria contingencies. However, the **elements** associated with the *bus* under test must be reviewed to ensure adverse consequences resulting from a design criteria contingency involving the loss of two adjacent transmission circuits on a common tower are not overlooked. The post-contingency analysis must assess the loss of any adjacent circuit on common towers with a circuit terminating at the *bus* under test in addition to the **elements** associated with the *bus* under test.

Voltages and thermal loading will be assessed for **significant adverse impact** outside of the **local area** following automatic actions. In cases where a power flow solution is not obtained, other techniques shall be used to assess the impact of the event on the power system.

If the **fault** has a **significant adverse impact** outside of the **local area**, the *bus* is classified as part of the **bulk power system**.

Note that Step 2 can be done prior to Step 1. If a *bus* is classified as part of the **bulk power system** by the Steady State Test (Step 2), the **Transient Stability** Test (Step 1) need not be done for that *bus*.

3.3 <u>Utilization of Test Results to Classify on an Element-by-Element Basis.</u>

Classification of **bulk power system elements** is achieved by applying the results of the above tests to the **elements** connected to the tested *bus*.

NPCC Inc. Document A-10 Classification of Bulk Power System Elements Revised – December 01, 2009

An **element** with only one terminal such as a generator, shunt reactor, or capacitor bank, is classified as part of the **bulk power system** if the *bus* at which it is connected is classified as part of the **bulk power system**.

An **element** with multiple terminals such as a transformer or transmission line is classified as part of the **bulk power system** if any terminal of the **element** is connected to a *bus* that is classified as part of the **bulk power system**. The **bulk power system** classification may be limited to only a portion of the **element** if all of the following conditions are met:

- At least one terminal is connected to a *bus* that is not part of the **bulk power system**.
- The Steady State Test has been applied at the *buses* connected to all terminals of the **element** and none of these *buses* have been classified as part of the **bulk power system** based on results of the Steady State Test.
- The **Transient Stability** Test has been applied between the terminals of the **element** to identify those portions of the **element** for which the **Transient Stability** Test will not result in a **significant adverse impact** outside of the **local area**.

3.4 Documentation

Documentation for Bulk Power System classification shall include:

- 3.4.1 The rationale for the test conditions and assumptions used that are not listed above in 3.1.
- 3.4.2 The criteria used in evaluating the result of the testing including but not limited to stability, voltage, and thermal performance.
- 3.4.3 Detailed result of the testing shall be provided upon request.

4.0 Application and List Maintenance

Each **Area** shall be responsible for the application of the *Classification of* **Bulk Power System** *Elements* as described in this document and shall submit proposed changes and supporting documentation to the Task Force on System Studies (TFSS).

The "NPCC **Bulk Power System** List" will be maintained by the TFSS. Additions to and removals from the NPCC **Bulk Power System** List will be submitted by TFSS to the Reliability Coordinating Committee (RCC) for approval.

4.1 Addition of Elements to the Bulk Power System List

When application of this methodology identifies an **element** that was not part of the **bulk power system** should be classified as a **bulk power system element**, documentation of the analysis shall be presented to the TFSS. Once classification of the **element** is recommended by TFSS and approved by the RCC the **element** will be added to the NPCC **Bulk Power System** List with the appropriate comments and information. All task forces and the Compliance Committee will be notified once an **element** is approved by the RCC to be added to the **Bulk Power System List**. Within three months of an element being added to the **Bulk Power System** List, a plan and schedule for achieving compliance shall be provided to TFSP for review and acceptance. TFSP may require modifications to the proposed plan and schedule.

4.2 <u>Removal of Elements from the Bulk Power System List</u>

When application of this methodology identifies a **bulk power system element** that no longer should be classified as a **bulk power system element**, documentation of the analysis shall be submitted to the TFSS. If reclassification of the **element** is recommended by TFSS and approved by the RCC, the **element** will be removed from the NPCC **Bulk Power System** List.

Lead Task Force:	Task Force on Coordination of Planning
Reviewed for concurrence by:	TFSS, TFCO, TFSP, and TFIST
Review frequency:	4 years
References:	Basic Criteria for Design and Operation of Interconnected Power Systems (Document A-2)
	NPCC Glossary of Terms (Document A-7)

NORTHEAST POWER COORDINATING COUNCIL, INC. 1040 AVE OF THE AMERICAS, NEW YORK, NY 10018 TELEPHONE (212) 840-1070 FAX (212) 302-2782

NPCC Regional Reliability Reference Directory # 4 Bulk Power System Protection Criteria

Task Force on System Protection Revision Review Record:			
December 01, 2009			

Adopted by the Members of the Northeast Power Coordinating Council, Inc. December 01, 2009 based on recommendation by the Reliability Coordinating Committee, in accordance with Section VIII of the NPCC Amended and Restated Bylaws dated July 24, 2007 as amended to date.

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

Revision History

Version	Date	Action	Change Tracking (New, Errata or Revisions)

Table of Content

Title	Page		1	
Revis	ion Hist	ory	2	
Table	of Cont	ent	3	
1.0	Introduction			
2.0	Terms Defined in This Directory			
3.0	NERC	ERO Reliability Standard Requirements	6	
4.0	NPCC	Regional Reliability Requirements	7	
5.0	NPCC	Full Member More Stringent Requirements	7	
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.10 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20	General Criteria Criteria for Dependability Criteria for Security Criteria for Dependability and Security Operating Time Criteria Current Transformer Criteria Voltage Transformer and Potential Devices Criteria Batteries and Direct Current (DC) Supply Criteria Station Service ac Supply Criteria Circuit Breaker Tele protection Criteria Environment Grounding Criteria Transmission Line Protection Criteria Breaker Failure Protection Criteria Generating Station Protection Criteria Automatic Under frequency Load Shedding Prot. System Criteria HV dc System Protection Criteria Protection System Testing and Maintenance Criteria Analysis of Protection Performance Requirements	7 7 8 8 8 9 9 10 10 10 10 10 10 11 12 12 12 13 13 13 13 14	
6.0	Measu	res and Assessments	14	
7.0	Compliance Monitoring			
Appe	ndix A		16	

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

- 1.0 Introduction
 - 1.1 Title Protection Criteria
 - 1.2 Directory Number 4
 - 1.3 Objective

The purpose of this Directory is to provide the **protection** criteria, for **protection** of the NPCC **bulk power system**. It is not a design specification.

- 1.4 Effective Date December 01, 2009
- 1.5 Background

This Directory was developed from the draft NPCC A-05 Bulk Power Protection Criteria document dated December 4, 2008 and approved B-05, B-07, B-24 and C-22 documents. Guidelines and procedures for consideration in the implementation of this Directory are provided in Appendix A.

- 1.6 Applicability
 - 1.6.1 Functional Entities

Transmission Owners Generator Owners

- 1.6.2 Facilities
 - 1.6.2.1 New Facilities

These criteria shall apply to all new Bulk Power System (BPS) facilities.

1.6.2.2 Existing Facilities

It is the responsibility of individual companies to assess the **protection systems** at existing facilities and to make modifications which are required to meet the intent of these criteria as follows.

1.6.2.2.1 Planned Renewal or Upgrade to Existing BPS Facilities It is recognized that there may be portions of the **bulk power system**, which existed prior to each member's adoption of the *Bulk Power System Protection Criteria* (Document A-5) that do not meet these criteria. However, if **protection systems** or sub-systems of these facilities are replaced as part of a planned renewal or upgrade to the facility and do not meet all of these criteria, then an assessment shall be conducted for those criteria that are not met.

The result of this assessment shall be reported, It is recommended this reporting be in accordance with the procedure stipulated in Section 4.0 of Appendix A of this Directory and using the appropriate portion of the "Protection System Review forms" (formerly <u>C-22 forms</u>), for review and disposition by the TFSP, or in a form consistent with the intent of the procedure.

1.6.2.2.2 Facility Classification Upgraded to **Bulk Power System**.

These criteria apply to all existing facilities which become classified as **bulk power system**. A mitigation plan shall be required to bring such a facility into compliance with these criteria.

Where the owner of the **protection system** has determined that the cost and risks involved to implement physical separation, as per Section 5.12, cannot be justified, the reason for this determination and an assessment shall be reported to the TFSP.

It is recommended this reporting be in accordance with the procedure stipulated in Section 4.0 of Appendix A of this Directory and using the appropriate portion of the "Protection System Review forms" (formerly C-22 forms), for review and disposition by the TFSP, or in a form consistent with the intent of the procedure.

1.6.2.2.3 Additions to Bulk Power System Facilities

If a **bulk power system element** is added to an existing **bulk power system** facility that is recognized under Section 1.6.2.2.1, Planned Renewal or Upgrade to Existing Facilities, these criteria apply to the **protection systems** for the new **element**.

1.6.2.2.4 "In-Kind" Replacement of **Bulk Power** System Equipment

If a **bulk power system element** (e.g., breaker, transformer, capacitor bank, reactor, etc.) or a **protective relay** is replaced "in kind" as a result of an unplanned event, then it is not required to upgrade the associated **protection system** to comply with these criteria.

1.6.2.2.5 Change in **Bulk Power System** Facility Status

When a facility was originally on the BPS list of April 2007 and has been shown to be non-BPS but later was determined to be BPS again, Section 1.6.2.2.1 would apply. When the facility returns to BPS status, it shall be maintained in accordance with Directory #3 within two years timeframe.

1.6.3 Responsibility

Whenever changes are anticipated in generating sources, transmission facilities, or operating conditions, Generator Owners and Transmission Owners shall review those **protection system** applications (i.e., settings, ac and dc supplies) which can reasonably be expected to be impacted by those changes.

2.0 Terms Defined in this Directory

The definitions of terms found in this Directory appearing in bold typeface, can be found in Document A-07, NPCC *Glossary of Terms*.

3.0 NERC ERO Reliability Standard Requirements

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

The NERC ERO Reliability Standards containing requirements that are associated with this Directory include, but may not be limited to:

- 3.1 <u>PRC-001</u>
- 3.2 <u>PRC-002</u>
- 3.3 <u>PRC-012</u>
- 4.0 NPCC Regional Reliability Standard Requirements

None.

5.0 NPCC Full Member, More Stringent Criteria

These Criteria are in addition, more stringent or more specific than the NERC or any Regional Reliability standard requirements.

5.1 General Criteria

The intent of the criteria established in this Directory is to ensure dependable and secure operation of the **protection systems** for **Bulk Power System** facilities. For those **protective relays** intended for removal of **faults** from the **bulk power system**, dependability is paramount, and the redundancy provisions of the criteria shall apply. For **Protective relays** installed for reasons other than **fault** sensing such as overload, etc., security is paramount, and the redundancy provisions of the criteria do not apply. The relative effect on the **bulk power system** of a failure of a **protection system** to operate when desired versus an unintended operation shall be weighed carefully in selecting design parameters as follows.

- 5.2 Criteria for Dependability
 - 5.2.1 Except as identified otherwise in these criteria, all elements of the **bulk power system** shall be protected by two protection **groups**, each of which is independently capable of performing the specified protective function for that **element**. This requirement also applies during energization of the **element**.
 - 5.2.2 Except as identified otherwise in these criteria, the two **protection groups** shall not share the same component.
 - 5.2.3 Means shall be provided to trip all necessary local and remote breakers in the event that a breaker fails to clear a fault. This **protection** need not be duplicated.

5.3 Criteria for Security

Protection systems shall be designed to isolate only the faulted **element**, except in those circumstances where additional **elements** are tripped intentionally to preserve system integrity, or where isolating additional **elements** has no impact outside the local area.

- 5.4 Criteria for Dependability and Security
 - 5.4.1 The thermal capability of all **protection system** components shall be adequate to withstand rated maximum short time and continuous loading of the associated **protected elements**.
 - 5.4.2 Communication link availability, critical switch positions, and trip circuit integrity, shall be monitored to allow prompt attention by appropriate operating authorities.
 - 5.4.3 When remote access to **protection systems** is possible, the design shall include security measures to minimize the probability of unauthorized access to the protection systems.
 - 5.4.4 Short Circuit Models used to assess **protection** scheme design and to develop **protection** settings shall take into account minimum and maximum fault levels and mutual effects of parallel transmission lines. Details of neighboring systems shall be modeled wherever they can affect results significantly.
- 5.5 Operating Time Criteria

Bulk power system protection shall take corrective action within times determined by studies with due regard to security, dependability and selectivity.

5.6 Current Transformer Criteria

Current transformers (CTs) associated with **protection systems** shall have adequate steady-state and transient characteristics for their intended function as follows:

- 5.6.1 The output of each current transformer secondary winding shall be designed to remain within acceptable limits for the connected burdens under all anticipated **fault** currents to ensure correct operation of the **protection system**.
- 5.6.2 The thermal and mechanical capabilities of the CT at the operating

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

tap shall be adequate to prevent damage under maximum **fault** conditions and normal or **emergency** system loading conditions.

- 5.6.3 For **protection groups** to be independent, they shall be supplied from separate current transformer secondary windings.
- 5.6.4 Interconnected current transformer secondary wiring shall be grounded at only one point.
- 5.6.5 Current transformers shall be connected so that adjacent **protection** zones overlap.
- 5.7 Voltage Transformer and Potential Devices Criteria

Voltage transformers and potential devices associated with **protection systems** shall have adequate steady-state and transient characteristics for their intended functions as follows:

- 5.7.1 Voltage transformers and potential devices shall have adequate voltampere capacity to supply the connected burden while maintaining their **relay** accuracy over their specified primary voltage range.
- 5.7.2 The two **protection groups** protecting an element shall be supplied from separate voltage sources. The two protection groups may be supplied from separate secondary windings on one transformer or potential device, provided all of the following requirements are met:
 - 5.7.2.1 Complete loss of one or more phase voltages does not prevent all tripping of the protected **element**;
 - 5.7.2.2 Each secondary winding has sufficient capacity to permit fuse **protection** of the circuit;
 - 5.7.2.3 Each secondary winding circuit is adequately fuse protected.
- 5.7.3 The wiring from each voltage transformer secondary winding shall not be grounded at more than one point.
- 5.8 Batteries and Direct Current (DC) Supply Criteria

DC supplies associated with **protection** shall be designed to have a high degree of dependability as follows:

5.8.1 No single battery or dc power supply failure shall prevent both

independent **protection groups** from performing the intended function. Each lattery shall be provided with its own charger. Physical separation shall be maintained between the two station batteries or dc power supplies used to supply the independent **protection groups**.

- 5.8.2 Each station battery shall have sufficient capacity to permit operation of the station, in the event of a loss of its battery charger or the ac supply source, for the period of time necessary to transfer the **load** to the other station battery or re-establish the supply source. Each station battery and its associated charger shall have sufficient capacity to supply the total dc **load** of the station.
- 5.8.3 A transfer arrangement shall be provided to permit connecting the total **load** to either station battery without creating areas where, prior to failure of either a station battery or a charger, a single event can disable both dc supplies.
- 5.8.4 The battery chargers and all dc circuits shall be protected against short circuits. All protective devices shall be coordinated to minimize the number of dc circuits interrupted.
- 5.8.5 Dc systems shall be continuously monitored or annunciated to detect abnormal voltage levels (both high and low), dc grounds, and loss of ac to the battery chargers, in order to allow prompt attention by the appropriate operating authorities.
- 5.8.6 **Protection group** dc sources shall be continuously monitored to detect loss of voltage in order to allow prompt attention by the appropriate operating authorities.
- 5.9 Station Service ac Supply Criteria

On **bulk power system** facilities there shall be two sources of station service ac supply, each capable of carrying at least all the critical **loads** associated with **protection systems**.

5.10 Circuit Breaker

No single trip coil failure shall prevent both independent **protection groups** from performing the intended function. The design of a breaker with two trip coils shall be such that the breaker will operate if both trip coils are energized simultaneously. The correct operation of this design shall be verified by tests.

5.11 Teleprotection Criteria

- 5.11.1 Communication facilities required for **teleprotection** shall be designed to have a level of performance consistent with that required of the **protection system**, and shall meet the following:
 - 5.11.1.1 Where each of the two **protection groups** protecting the same **bulk power system element** requires a communication channel, the equipment and channel for each **protection group** shall be separated physically and designed to minimize the risk of both **protection groups** being disabled simultaneously by a single event or condition.
 - 5.11.1.2 **Teleprotection** equipment shall be monitored to detect loss of equipment and/or channels to allow prompt attention by the appropriate operating authorities.
 - 5.11.1.3 **Teleprotection** equipment shall be provided with means to test for proper signal adequacy.
 - 5.11.1.4 **Teleprotection** equipment shall be powered by the substation batteries or other sources independent from the power system.
 - 5.11.1.5 Except as identified otherwise in these criteria, the two **teleprotection** groups shall not share the same component.
 - 5.11.1.5.1 The use of a single communication tower for the radio communication systems used by two **protection groups** protecting a single **element** is permitted as long as directional diversity of the communication signals is achieved.

5.12 Environment

- 5.12.1 Each separate **protection group** and **teleprotection** protecting the same system **element** shall be on different non-adjacent vertical mounting assemblies or enclosures.
- 5.12.2 Wiring for separate **protection groups** and **teleprotections** protecting the same system **element** shall not be in the same cable.
- 5.12.3 Cabling for separate **protection groups** and **teleprotections** protecting the same system **element** shall be physically separated. This can be accomplished by being in different raceways, trays,

trenches, etc.

- 5.12.4 In the event a common raceway is used, cabling for separate **protection groups** protecting the same system **element** shall be separated by a fire barrier.
- 5.13 Grounding Criteria

Station grounding is critical to the correct operation of **protection systems**. The design of the ground grid directly impacts proper **protection system** operation and the probability of false operation from **fault** currents or transient voltages. Each member shall have established as part of its substation design procedures or specifications, a mandatory method of designing the substation ground grid, which:

- 5.13.1 Can be traced to a recognized calculation methodology
- 5.13.2 Considers cable shielding
- 5.13.3 Considers equipment grounding
- 5.14 Transmission Line Protection Criteria
 - 5.14.1 **Protection system** settings shall not constitute a loading limitation as per NERC requirement/standard. In cases where NERC approved exceptions are used the limits thus imposed shall be adhered to as system operating constraints.
 - 5.14.2 A **pilot protection** shall be so designed that its failure or misoperation will not affect the operation of any other **pilot protection** on that same **element**.
- 5.15 Breaker Failure Protection Criteria

Means shall be provided to trip all necessary local and remote breakers in the event that a breaker fails to clear a **fault**, as follows.

- 5.15.1 Breaker failure **protection** shall be initiated by each of the **protection groups** which trip the breaker, with the optional exception of a breaker failure **protection** in an adjacent zone.
- 5.15.2 Fault current detectors shall be used to determine if a breaker has failed to interrupt a **fault.**
5.16 Generating Station Protection Criteria

All under- and over-frequency **protection systems** designed to disconnect generators from the power system shall be coordinated with automatic under frequency **load shedding** programs, in accordance with the *Emergency Operation Criteria* (Directory #2).

- 5.17 Automatic Under frequency Load Shedding Protection System Criteria
 - 5.17.1 The requirements and guides for the operation of these Protection Systems are detailed in the *Emergency Operation Criteria* (Directory #2). The guideline for automatic under frequency load shedding protective relaying design is provided in Appendix A of this Directory.
- 5.18 HVdc System Protection Criteria
 - 5.18.1 The ac portion of an HVdc converter station, up to the valve-side terminals of the converter transformers, shall be protected in accordance with these criteria.
 - 5.18.2 Multiple commutation failures, unordered power reversals, and **faults** in the converter bridges and the dc portion of the HVdc link which are severe enough to disturb the **bulk power system** shall be detected by more than one independent control or **protection group** and appropriate corrective action shall be taken, in accordance with the considerations in these criteria.
- 5.19 Protection System Testing and Maintenance Criteria
 - 5.19.1 Protection systems shall be maintained in accordance with the *Maintenance Criteria for Bulk Power System Protection* (Directory #3).
 - 5.19.2 The design of **protection systems** both in terms of circuitry and physical arrangement shall facilitate periodic testing and maintenance.
 - 5.19.3 Each **protection group** shall be functionally tested to verify the dependability and security aspects of the design, when initially placed in service and when modifications are made.

- 5.20 Analysis of Protection Performance Requirements
 - 5.20.1 **Bulk power system** automatic operations shall be analyzed to determine proper **protection system** performance. Corrective measures shall be taken promptly if a **protection group** fails to operate or operates incorrectly.
 - 5.20.2 Event and fault recording capability shall be provided to the extent required to permit analysis of **system disturbances** and **protection system** performance.
 - 5.20.3 Internal clocks in event and **fault** recording equipment shall be time synchronized to within 2 milliseconds or less of Universal Coordinated Time scale. The time zone shall be clearly identified as either universal time zone or local time zone.
 - 5.20.4 Each **protective relay** which trips **Bulk Power System** equipment shall provide separate target indication.
- 6.0 Measures and Assessments

None developed at this time.

- 7.0 Compliance Monitoring
 - 7.1 Each member shall provide the Task Force on System Protection (TFSP) with advance notification of any of the member's new **bulk power system protection systems**, or significant changes in the member's existing **bulk power system protection systems**.
 - 7.2 Each member shall also provide the TFSP with advance notification of nonmember **protection** facilities as required per *NPCC Bylaws*.
 - 7.3 Each new or revised **protection system** shall be reported to the TFSP. It is recommended this reporting be in accordance with the procedure detailed in Section 4.0 of Appendix A of this Directory, or in a form consistent with the intent of the procedure.
 - 7.4 Adherence to these Criteria shall be reported by the responsible entity in a manner and form designated by the Compliance Committee.

Prepared by: Task Force on System Protection

Review and Approval: Revision to any portion of this Directory will be posted by the lead Task Force in the NPCC Open Process for a 45 day review

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

and comment period. Upon satisfactorily addressing all the comments in this forum, the Directory document will be sent to the remaining Task Forces for their recommendation to seek RCC approval.

Upon approval of the RCC, this Directory will be sent to the Full Member Representatives for their final approval if sections pertaining to the Requirements and Criteria portion have been revised. All voting and approvals will be conducted according to the most current "NPCC. Bylaws" in effect at the time the ballots are cast.

Revisions pertaining to the Appendices or any other portion of the document such as Links glossary terms, etc., only RCC Members will need to conduct the final approval ballot of the document.

This Directory will be updated at least once every three years and as often as necessary to keep it current and consistent with NERC, Regional Reliability Standards and other NPCC documents.

Appendix A Guideline and Procedure for Bulk Power System Protection

1.0 Introduction

This Appendix provides the guidance for consideration in the implementation of the **bulk power system Protection** criteria stipulated in this Directory, and the procedure on reporting new and revised **bulks power system protection** facilities.

2.0 Design Considerations

2.1 General Considerations

In general, the function of a **protection system** is to limit the severity and extent of **system disturbances** and possible damage to system equipment.

The Directory's criteria objectives can be met only if **protection systems** have a high degree of dependability and security. In this context dependability relates to the degree of certainty that a **protection system** will operate correctly when required to operate. Security relates to the degree of certainty that a **protection system** will not operate when not required to operate.

Often increased security (fewer unintended operations) results in decreased dependability (more failures to operate), and vice versa. As an example, consideration is given to the consequence of applying permissive line **protection** schemes, which often are more secure, but less dependable, than blocking line protection schemes. The relative effect on the **bulk power system** of a failure of a **protection system** to operate when desired versus an unintended operation should be weighed carefully in selecting design parameters. Considerations for specific aspects of **protection** design are provided below.

- 2.2 Issues Affecting Dependability
 - 2.2.1 Some portions of **elements** may not in themselves be part of the **bulk power system**. Those portions do not require two **protection groups**.
 - 2.2.2 Two identical measuring **relays** should not be used in independent **protection groups** due to the risk of simultaneous failure of both groups because of design deficiencies or equipment problems.
 - 2.2.3 In addition to the separation requirements in the criteria, areas of common exposure should be kept to a minimum to reduce the possibility of both **protection groups** being disabled by a single

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

event such as fire, excavation, water leakage, and other such incidents.

- 2.2.4 On installations where free-standing or column-type current transformers are provided on one side of the breaker only, resulting in a **protection** blind spot, **protection** should be provided to detect a **fault** to ground on the primaries of such current transformers. When frame ground **protection** is used, then frame ground and breaker failure **protections** are the two local independent **protections** for the blind spot between the current transformer and the circuit breaker. Neither of these **protections** need be duplicated. Both of these **protections** should be designed so as to not be disabled by the same failure. The frame ground **protection** and breaker failure **protection** will in fact provide independent **protections** for the blind spot.
- 2.3 Issues Affecting Security
 - 2.3.1 For **faults** external to the protected zone, each **protection group** should be designed either to not operate, or to operate selectively with other groups and with breaker failure **protection**.
 - 2.3.2 For planned system conditions, **protection systems** should not operate to trip for stable power swings.
- 2.4 Issues Affecting Dependability and Security
 - 2.4.1 **Protection systems** should be no more complex than required for any given application.
 - 2.4.2 The components and software used in **protection systems** should be of proven quality, as demonstrated either by actual experience or by stringent tests under simulated operating conditions.
 - 2.4.3 **Protection systems** should be designed to minimize the possibility of component failure or malfunction due to electrical transients and interference or external effects such as vibration, shock and temperature.
 - 2.4.4 **Protection system** circuitry and physical arrangements should be designed so as to minimize the possibility of incorrect operations due to personnel error.
 - 2.4.5 **Protection system** automatic self-checking facilities should be designed so as to not degrade the performance of the **protection**

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

system.

- 2.4.6 Consideration should be given to the consequences of loss of instrument transformer voltage inputs to **protection systems**.
- 2.4.7 **Protection systems**, including intelligent electronic devices (IEDs) and communication systems used for **protection**, should comply with applicable industry standards for utility grade **protection** service. Utility Grade **Protection System** Equipment are equipment that are suitable for protecting transmission power system elements, that are required to operate reliably, under harsh environments normally found at substations. Utility grade equipment should meet the applicable sections of all or some of the following types of industry standards, to ensure their suitability for such applications:
 - IEEE C37.90.1-2002 (oscillatory surge and fast transient)
 - IEEE C37.90.1-2002 (service conditions)
 - IEC 60255-22-1, 2005 (1 MHz burst, i.e. oscillatory)
 - IEC 61000-4-12, 2001 (oscillatory surge)
 - IEC 61000-4-4, 2004 (EFT)
 - IEC 60255-22-4, 2002 (EFT)
 - IEEE C37.90.2-2004 (narrow-band radiation)
 - IEC 60255-22-3, 2000 (narrow-band radiation)
 - IEC 61000-4-3, 2002 (narrow-band radiation)
 - IEEE 1613 (communications networking devices in Electric power Substations)
- 2.5 Operating Time

Adequate time margin should be provided taking into account study inaccuracies, differences in equipment, and **protection** operating times. In cases where clearing times are deliberately extended, consideration should be given to the following:

- Effect on system **stability** or reduction of **stability** margins.
- Possibility of causing or increasing damage to equipment and subsequent extended repair and/or outage time.
- Effect of **disturbances** on service to customers.
- 2.6 Current Transformer

None.

2.7 Voltage Transformers and Potential Devices

Voltage transformer installations should be designed with due regard to ferroresonance.

- 2.7.1 Special attention should be given to the physical properties (e.g. resistance to corrosion, moisture, fatigue) of the fuses used in **protection** voltage circuits.
- 2.8 Batteries and Direct Current (dc) Supply
 - 2.8.1 The circuitry between each battery and its first protective device cannot be protected and therefore should be designed so as to minimize the possibility of electrical short circuit.
 - 2.8.2 The design for the regulation of the dc voltage should be such that, under all anticipated charging and loading conditions, voltage within acceptable limits will be supplied to all devices, while minimizing ac ripple and voltage transients.
- 2.9 Station Service ac Supply

None.

2.10 Circuit Breakers

The indication of the circuit breaker position in **protection systems** should be designed to reliably mimic the main contact position.

- 2.11 Teleprotection
 - 2.11.1 **Teleprotection** systems should be designed to prevent unwanted operations such as those caused by equipment or personnel.
 - 2.11.2 Two identical **teleprotection** equipments should not be used in independent **protection groups**, due to the risk of simultaneous failure of both groups because of design deficiencies or equipment problems.
 - 2.11.3 Areas of common exposure should be kept to a minimum to reduce the possibility of both groups being disabled by a single event such as fire, excavation, water leakage, and other such incidents.
 - 2.11.4 **Teleprotection** systems should be designed to mitigate the effects of signal interference from other communication sources and to

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

assure adequate signal transmission during **bulk power system disturbances**.

2.12 Environment

Means should be employed to maintain environmental conditions that are favorable to the correct performance of **protection systems**.

2.13 Grounding

None.

2.14 Transmission Lines Protection

For planned system conditions, line **protection systems** associated with transmission facilities should not operate to trip for stable **power swings**.

- 2.15 Breaker Failure Protection
 - 2.15.1 It is not necessary to duplicate the breaker failure **protection** itself.
 - 2.15.2 Auxiliary switches may also be required in instances where the **fault** currents are not large enough to operate the **fault** current detectors. In addition, auxiliary switches may be necessary for high-speed detection of a breaker failure condition.
- 2.16 Generating Station Protection
 - 2.16.1 Each **protection system** should be designed to minimize the effects to **the bulk power system** of **faults** and **disturbances**, while itself experiencing a single failure.
 - 2.16.2 Generators should be protected to limit possible damage to the equipment. The following are some of the abnormal (not necessarily **fault**) conditions that should be detected:
 - Unbalanced phase currents, loss of excitation
 - Overexcitation, generator out of step, field ground
 - inadvertent energization.
 - 2.16.2.1 **Protections** for the above conditions, which are applied for equipment **protection**, need not be duplicated.

- 2.16.2.2 When a directional over current or distance **relay** is applied to remove the generator for slowly cleared **faults** on the external system, such **protection** is a backup and need not be duplicated.
- 2.16.2.3 The apparatus should be protected when the generator is starting up or shutting down as well as running at normal speed; this may require additional **relays** as the normal **relays** may not function satisfactorily at low frequencies.
- 2.16.2.4 Generator **protection systems** should not operate for stable **power swings** except when that particular generator is out of step with the remainder of the system. This does not apply to **Special Protection Systems** designed to trip the generator as part of an overall plan to maintain **stability** of the power system.
- 2.16.2.5 Loss of excitation and out of step **relays** should be set with due regard to the performance of the excitation system.
- 2.16.2.6 It is recognized that the overall **protection** of a generator involves non-electrical considerations that have not been included as a part of the criteria in this Directory.
- 2.16.2.7 All over frequency, overvoltage and under voltage **protection systems** designed to disconnect generators from the power system should be coordinated with automatic under frequency **load shedding** programs.
- 2.17 Automatic Under frequency Load Shedding Protection Systems
 - 2.17.1 Automatic under frequency **load shedding protection systems** are not generally located at **bulk power system** stations; however, they have a direct effect on the operation of the **bulk power system** during major **emergencies**.
 - 2.17.2 Automatic under frequency **load shedding protection** need not be duplicated.
 - 2.17.3 Under frequency **relays** which operate at a discrete frequency value are called "under frequency threshold **relays**." Selection of under frequency sensing devices should be on a threshold basis. Alternatively, rate of change of frequency **load shedding** may be used when the requirements of the Balancing Authority indicate that this method will achieve the intent of the **load shedding** program.

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

Appropriate studies are necessary to determine the application and settings of the rate of change of frequency **relays** for a particular Balancing Authority area.

- 2.17.4 In order for each Balancing Authority within NPCC to **shed** approximately the same proportion of **load**, given the same frequency condition, all styles and manufacture of under frequency **relays** should trip at essentially the same time. For electromechanical **relays**, time delay depends on rate of frequency decline, and it is not possible to achieve uniform response for different rates of decline. The recommendations in this guideline are based on the goal of a uniform response at a rate of frequency decline of 0.2 Hz per second.
- 2.17.5 Additional Application Considerations
 - 2.17.5.1 Where undesired under frequency **relay** operation can be caused by decaying frequency due to isolated generation or motor load, additional supervising undercurrent or voltage **relays** may be used to prevent misoperation.
 - 2.17.5.2 Where the AC voltage source for an under frequency **relay** is derived from a potential device connected to a cable circuit, care should be taken to estimate the voltage present during deenergization of the circuit. The natural frequency of the decaying cable voltage may be less than 60 Hz, and thus cause an incorrect **relay** operation.
 - 2.17.5.3 The AC Voltage Inhibit feature available on some relays may be useful as a security tool to restrain operation during cable deenergization, depending on the voltage decay time constant
 - 2.17.5.4 Due regard should be given to the expected power system voltage during events for which the underfrequency **relays** are expected to operate. The **relay's** minimum AC voltage operating characteristic should not inhibit proper **relay** operation, nor should the Voltage Inhibit feature, where it exists, be set to prevent proper operation.
- 2.17.6 Settings and Maintenance Recommendations
 - 2.17.6.1 Pickup Time Delay Settings

Pickup and time delay settings of underfrequency threshold **relays** should be applied in accordance with the requirements specified in Section 5.2 and Section 5.4 of *Emergency Operation Criteria* (Directory #2).

2.17.6.2 Relay Performance Considerations

Any underfrequency **relay** which has been found to have drifted more than ± 0.2 Hz from its set point or ± 0.1 seconds from its time delay should be recalibrated and then retested in six months. If, at that time, the **relay** has drifted ± 0.2 Hz or more from its set point or ± 0.1 seconds or more from its fixed time delay, the cause of the drift should be corrected or the **relay** should be replaced.

2.17.6.3 Maintenance

Underfrequency **load shedding relays** have a direct effect on the operation of the **bulk power system** during major **emergencies**. These **relays** should be maintained in accordance with requirements stipulated in *Maintenance Criteria for Bulk Power System Protection* (Directory 3), even though they are usually located in non-**bulk power system** stations.

- 2.18 HVdc Systems Protection
 - 2.18.1 Converter terminals should be protected to avoid excessive equipment stresses and to minimize equipment damage and outage time. These **protections** are usually specific to the design of the converter station(s) and are determined by the manufacturer to comply with availability guarantees. The followings are some conditions which should be detected:
 - ac and dc undervoltage,
 - ac and dc overvoltage,
 - valve misfire,
 - excessive harmonics on the dc,
 - dc ground faults and open circuits,
 - dc switching device failures,
 - thyristor failures,
 - valve and snubber circuit overloads.
 - 2.18.2 The overall **protection** and control of an HVdc link may also involve the initiation of actions in response to abnormal conditions

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

on the ac interconnected system. The control and **protection** systems associated with such conditions are not considered part of the HVdc systems **protection**.

2.19 Protection System Testing and Maintenance

Test facilities and test procedures should be designed such that they do not compromise the independence of **protection groups** protecting the same **bulk power system element**. Test devices or switches should be used to eliminate the necessity for removing or disconnecting wires during testing.

2.20 Analysis of Protection System

Insofar as possible, each active protective function within a **protective relay** should provide separate target information.

- 2.21 Transmission Station Protection
 - 2.21.1 The **protection systems** should operate properly for the anticipated range of currents.
 - 2.21.2 For planned system conditions, all station **protection systems** should not operate for **load** current or stable **power swings**.
 - 2.21.3 Load responsive protection relays applied to transmission autotransformers should allow all possible load ability, consistent with equipment protection requirements.
 - 2.21.4 Fault pressure or Buchholz **relays** used on transformers, phase shifters or regulators should be applied so as to minimize the likelihood of their misoperation due to through **faults**.
- 2.22 Capacitor Banks
 - 2.22.1 Each **protection system** should be designed to minimize the effects to the **bulk power system** of **faults** and **disturbances**, while itself experiencing a single failure.
 - 2.22.2 Capacitor bank **protection** should be applied with due consideration for capacitor bank transients, power system voltage unbalance, and system harmonics.

- 2.22.3 Protection may be provided to minimize the impact of failures of individual capacitor units on the remaining capacitor units, however, these types of **protections** do not need to be duplicated:
 - a. Overvoltage Protection
 - b. Individual fuses for each capacitor unit
 - c. Overvoltage Protection for each capacitor units
- 2.23 Static Var Compensation (SVC) Protection
 - 2.23.1 The low voltage branch circuits contain the reactive controlling equipment, filters, etc. These may include all or some of the following:
 - a. Thyristor Controlled Reactors (TCR)
 - b. Thyristor Switched Capacitors (TSC)
 - c. Switched or Fixed Capacitors
 - d. Harmonic Filters
 - 2.23.2 **Protection** for the branch circuits that are not part of the **bulk power system** need not be duplicated. **Protection** for these branch circuits should be applied with due consideration for capacitor bank transients, power system voltage unbalance, and system harmonics.
 - 2.23.3 **Protection** against abnormal non-**fault** conditions within the SVC via control of the TSC and TCR valves should be designed so as to not interfere with the proper operation of the SVC.
- 2.24 Logic System

The design should recognize the effects of contact races, spurious operation due to battery grounds, dc transients, radio frequency interference or other such influences.

It is recognized that timing is often critical in logic schemes. Operating times of different devices vary. Known timing differences should be accounted for in the overall design.

2.25 Microprocessor-Based Equipment and Software

A **protection system** may incorporate microprocessor-based equipment. Information from this equipment may support other functions such as power system operations. In such cases, the software and the interface should be designed so as to not degrade the **protection system** functions.

2.26 Control Cable, Wiring and Ancillary Control Devices

Control cables and wiring and ancillary control devices should be highly dependable and secure. Due consideration should be given to published codes and standards, fire hazards, current-carrying capacity, voltage drop, insulation level, mechanical strength, routing, shielding, grounding and environment.

2.27 Environment

Means should be employed to maintain environmental conditions that are favorable to the correct performance of **protection systems**.

3.0 Guideline for Application of Remote Access to Protection System

The following guideline is established for the application of remote access to **protection system** Intelligent Electronic Devices (IEDs), such as relays, programmable logic controllers (PLC), and teleprotection equipment that have remote access capabilities, and are designed and configured for remote access applications. It is intended to assist in meeting the requirement stipulated in Section 5.1.3.3 of this Directory, and Section 3.3.1.6 of the *Special Protection System Criteria* (Directory 7).

This guideline assumes that appropriate physical measures are in place, and that they meet all applicable standards.

3.1 Definitions for Use in this Guideline Only

The flowing defined terms are used for illustration of the guideline presented in this Section only. These terms are not defined in Appendix A of this Directory, or any other NPCC documents.

IED - Intelligent Electronic Device, normally computer based, equipped with digital communication abilities, some examples are **protective relays**, RTUs, SERs, DFRs, PLCs, data concentrators, telecommunications equipment, and general monitoring equipment.

PLC - Programmable Logic Controller, used to create and implement logical actions and automation.

Remote Access - accessing a device from a remote geographical area via a communications link; once accessed, provides similar local device functionality, at a distance.

Authenticate - to prove to be genuine or is an approved user.

Intrusion - An unauthorized electronic entry into an IED. Access normally provides user access to the functionality of the device.

Cryptography – is the study and application of codes and ciphers. Codes or encryption is used to transform data into a form that is not directly usable. Decryption transforms encrypted data using a decryption key back into the original useful form.

VPN – Virtual Private Network. It uses encryption to provide a private channel between private networks using a public network as its carrier i.e., two users using the Internet to provide confidentiality, integrity, and authentication.

3.2 Governing Principles

The industry has become more reliant on computer technology for power system protection, control, communications, and automation of its power system. Electromechanical and solid-state technologies are being replaced with microprocessor devices, offering, among other functions, local and remote communications access. Protection system IEDs are employed to protect, and or operate power system elements. Unauthorized access to an IED could result in interruption of electric service, damage to the power system equipment, major disturbances, or a danger to life and property. Protection system IEDs also contain a large amount of information that utility personnel have come to rely on, including telemetry, power system disturbance analysis, fault location, preventive maintenance information, as well as asset condition and optimization data. However, this technology has also created vulnerabilities that are similar to those seen in traditional computer networks. Therefore, the following should be the governing principles of any cyber security program:

- Prevent penetration from cyber attacks.
- Prevent local and remote access to critical cyber assets by non-authorized personnel.
- Monitor cyber assets to detect unauthorized access or attempts to access.
- Limit exposure.
- 3.3 Guideline

3.3.1 Authentication

One of the foundations of the cyber security program is controlled, or secure, access. This dictates that some form of user authentication be used. Three common means of authenticating a user's identity are:

- 3.3.1.1 Something the user knows, such as passwords, or IP addresses.
- 3.3.1.2 Something the user has, such as a key, or cryptographic token.
- 3.3.1.3 Something the user is, such as fingerprints and voiceprints

At minimum, at least two factors of authentication should be used, e.g., passwords, and a destination – telephone number, or an IP address. The use of more factors such as encryption, etc. will result in providing more secure authentication. However, most present day and legacy **protection system** IEDs do not yet support this technology. Existing equipment often contains some level of security features. At a minimum, they usually provide multi-level passwords. These features should be activated as a first step in security implementation

3.3.2 Substation IED Access Point

A list of all substation IEDs that have remote electronic access configured should be compiled and maintained. This list should also include the access method(s) (e.g., dial-in, WAN, etc), the associated phone numbers and/or IP address, passwords, and other pertinent data.

3.3.3 Approved Remote Access Authorization List

A list of approved users, and the station IEDs they are authorized to access, should be established and maintained. It is vital that all such access information be classified as confidential, and managed as such.

3.3.4 Remote Access Configuration

Protection system IEDs should be configured to afford remote access only where needed and approved, and then, only when proper authentication is provided.

3.3.5 Password

Most **protection system** IEDs offer multiple access levels, each with separate passwords. Normally, a "view" only level is provided which allows a user to extract and or view information only. An alternate access level is provided to allow trained and authorized users to "make" settings and configuration changes, and initiate breaker operations. It is this level of access that is susceptible to an intrusion which could cause the most damage to the power system. Only limited users should have access to this level by considering the followings:

- 3.3.5.1 Establish multi-tiered passwords with different privileges for different classes of users.
- 3.3.5.2 Default passwords should be changed when remote access is configured.
- 3.3.5.3 Make sure that all IEDs have "strong" passwords, i.e., passwords that are not dictionary words, not easily guessable, not blank, or have no password at all. It is recommended that all passwords contain a combination of letters and numbers, and should be at least six characters long.
- 3.3.6 Logging/Alarming

When remote connections are used to access the relay beyond "view-only" mode, this should be alarmed and/or logged where possible.

3.3.7 Controlling Authority Approval

For both local and remote communications, excluding viewing, notification and approval of the Controlling Authority should be required to access in-service **protection system** IEDs. Only authorized users, as per Sections 3.3.3 and 3.3.5 above, should have remote access capabilities.

3.3.8 Disable User Function

Often, **protection system** IEDs are put into service with functions that are not used. These functions can create vulnerabilities, and therefore, should be disabled if possible.

3.4 Other Available Higher Level Authentication Factors and Some General Good Practices

As stated in Section 3.3.1, a minimum of two factors of authentication should be used. However, the use of more factors will result in providing more secure authentication. This Section is intended to provide additional factors and practices that could be implemented where warranted, and where the technology allows.

- 3.4.1 For WAN based access systems, implement Virtual Private Network (VPN) technology. VPN technology is also applicable when using ISDN, DSL, and cable.
- 3.4.2 Limit, as far as possible, dependence on the public telephone network for substation communications to IEDs. Instead, use secure communications facilities whenever possible.
- 3.4.3 Call back (where the IED device or modem hangs up on the original caller and calls back on a second line to a preconfigured phone number) may be utilized as a portion of an IED's security to prevent unauthorized access. This security measure added to other security measures will improve the IEDs security. Security can be further enhanced by using a different telephone line for the return call.
- 3.4.4 For dial-up modem access, use a hardware lock and key dongle on the analog phone line at each modem and the lock and key combination will act as a gatekeeper. When a call is initiated, the lock at the called modem will verify the existence of a valid key at the calling modem Time.

3.4.5 Isolation from the Business/Corporate Network

Isolation of the substation **protection system** IEDs from the Corporate Network should be provided where possible. Data can be transferred from the substation IEDs to a server connected to a Corporate Network via appropriate firewalls. This practice is warranted because most Corporate Networks are Internet connected and therefore are exposed to external users.

4.0 Procedure for Reporting New and Revised **Protection Systems**

Paragraph 7.1 of this criteria states that **Protection system** owners shall provide the Task Force on System Protection (TFSP) with advance notification of any of their new **bulk power system protection** facilities, or significant changes in their existing **bulk power system protection** facilities. Paragraph 7.2 of this criteria states that **Protection system** owners shall also provide the TFSP with advance notification of non-member **protection** facilities as required per NPCC Bylaws . Notification will be made to the TFSP early in the engineering design stage.

- 4.1 Additional Requirements for Presentation and Review
 - 4.1.1 A presentation will be made to the TFSP on new facilities or a modification to an existing facility when requested by either a member entity or the TFSP.
 - 4.1.2 A presentation will be made to the TFSP when the design of the **protection** facility deviates from the criteria set forth in this Directory.
 - 4.1.3 A presentation will be made to the TFSP when a member entity is in doubt as to whether a design meets the **protection** criteria set forth in this Directory.
- 4.2 Data Required for Presentation and Review of Proposed Protection Facilities
 - 4.2.1 The **protection system** owner will advise the TFSP of the basic design of the proposed system. The data will be supplied on the "Protection System Review Forms" (formerly <u>C-22 forms</u>) as listed below, accompanied by a geographical map, a one-line diagram of all affected areas, and the associated **protection** and control function diagrams. A physical layout of **protection** panels and batteries for the purpose of illustrating physical separation will also be included.

This document, when downloaded or printed, becomes UNCONTROLLED. Users should check the NPCC website for the current CONTROLLED version of this document.

2012 ACE CI 41348 Attachment 3 Page 32 of 33 NPCC Reliability Reference Directory # 4 Bulk Power System Protection Criteria May 15, 2009

Appendix A

Protection System Details Line Relaying (Phase) Line Relaying (Ground) Transformer/Reactor Relaying Generator Relaying **Bus Relaying** Shunt Capacitors and Filters Relaying HVdc Converter Relaying **Special Protection Systems** Communication links **Equipment Details Current Transformers** Voltage Transformers Station Battery **Physical Separation** Breakers **Disturbance Monitoring Equipment** Transmission Relay Loadability **Exception Request**

- 4.2.2 The proposed **protection system** will be explained with due emphasis on any special conditions or design restrictions existing on the particular power system.
- 4.3 Procedure for Presentation
 - 4.3.1 The **protection system** owner will arrange to have a technical presentation made to the TFSP
 - 4.3.2 To facilitate scheduling, the chairman of the TFSP will be notified approximately four months prior to the desired date of presentation.
 - 4.3.3 Copies of materials to be presented will be distributed to TFSP members 30 days prior to the date of the presentation.
- 4.4 TFSP Procedures
 - 4.4.1 The TFSP will review the material presented and develop a position statement concerning the proposed **protection system**. This statement will indicate one of the following:
 - 4.4.1.1 The need for additional information to enable the TFSP to reach a decision.

- 4.4.1.2 Acceptance of the member statement of conformance to the Protection Criteria.
- 4.4.1.3 Acceptance of the submitted proposal
- 4.4.1.4 Conditional acceptance of the submitted proposal*.
- 4.4.1.5 Rejection of the submitted proposal*.
- * Position Statements 4.4.1.4 and 4.4.1.5 will include an indication of areas of departure from the intent of the **protection** criteria and suggestions for modifications to bring the **protection system** into conformance with the NPCC criteria.
- 4.4.2 The results of the TFSP review will be documented in the following manner:
 - 4.4.2.1 A position statement will be included in the minutes of the meeting at which the proposed **protection system** was reviewed.
 - 4.4.2.2 If necessary, a letter outlining areas of nonconformance with the **protection** criteria stipulated in this Directory and recommendations for correction will be submitted to the **protection system** owner. If necessary, the matter will be brought to the attention of the RCC.
 - 4.4.2.3 The Task Force will maintain a record of all the reviews it has conducted.

CI Number: 41430

Title:

2012 Substation Recloser Replacement

Start Date:	2012/02
Final Cost Date:	2012/12
Function:	Transmission
Forecast Amount:	\$2,120,686

DESCRIPTION:

This project provides for the costs associated with purchasing 45 substation reclosers for installation throughout the province.

Summary of Related CI's +/- 2 years: 2011 CI 40287 Substation Recloser Replacement \$3,764,921 2013 CI TBD Substation Recloser Replacement \$TBD

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Outage Performance

Why do this project?

In late 2010 and 2011, a number of substation recloser failures identified that some substation reclosers are reaching the end of their useful life raising a reliability and safety issue. In 2012 reclosers reaching the end of their useful life will be replaced based on their potential effects on reliability.

Why do this project now?

The average age of substation reclosers currently in service is 33 years, corresponding to 1978 manufacture. Life expectancy is in the range of 30 to 35 years. Recently, failures of substation reclosers have occurred at the following locations: 113H-Dartmouth East, 126H – Porters Lake, 131H-Lucasville, 129H-Kearney Lake Road, and 101H-Cobequid Road. The associated reliability implications make it necessary to mitigate the reliability issues with this equipment through removal and replacement.

Why do this project this way?

For those models and vintages of reclosers that have recently failed, removal from service and replacement with new equipment is the only option and improves the reliability of NSPI's system.

CI Number : 41430

- 2012 Substation Recloser Replacement

Parent Cl Number :

.

- 800-Services - Admin.

Project Number

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 800

، ہے <mark>ہ</mark> ے				,		
 ~ ~ ~	tv Account	Activity		Amount	Amount	Variance
c	092-Vehicle T&D Reg. Labour AO			134,603	0	134,603
4	092-Vehicle T&D OT Labour AO			19,217	0	19,217
94	094 - Interest Capitalized			64,700	0	64,700
95	095-Thermal Regular Labour AO			11,464	0	11,464
15	095-COPS Overtime Labour AO			29,274	0	29,274
15	095-COPS Regular Labour AO			205,052	0	205,052
5	095-COPS Contracts AO				0	
1 043	001 - T&D Regular Labour	043 - TP - Substn Dev.		233,246	0	233,246
2 043	002 - T&D Overtime Labour	043 - TP - Substn Dev.		75,850	0	75,850
1 043	011 - Travel Expense	043 - TP - Substn Dev.		8,000	0	8,000
2 043	012 - Materials	043 - TP - Substn Dev.		1,187,250	0	1,187,250
3 043	013 - COPS Contracts	043 - TP - Substn Dev.			0	
1 085	001 - THERMAL Regular Labour	085 Design		47,745	0	47,745
1 085	001 - Regular Labour (No AO)	085 Design		23,745	0	23,745
1 087	001 - T&D Regular Labour	087 Field Super.& Ops.		32,400	0	32,400
1 087	 011 - Travel Expense 	087 Field Super.& Ops.		6,750	0	6,750
1 087	041 - Meals & Entertainment	087 Field Super.& Ops.		2,500	0	2,500
			Total Cost:	2,120,686	0	2,120,686
			Original Cost:	608,095		

CI 41430 2012 Substation Recloser Replacement

The following is a breakdown of costs associated with the 2012 Substation Recloser Replacement project:

Administrative Overhead and Interest	
Materials	\$ 1,187,250
Contracts	
COPS Labour	\$ 412,986
Other	\$ 17,250
Total	\$ 2,120,686

The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day, along with some engineering design work. The materials forecast for this project provides estimates for the new reclosers and accessories based on the costs of the recloser replacement program in 2011. The contract forecast is associated with crane and boom truck services.

CI Number: 41426

Title:

2012 Transmission Switch & Breaker Upgrades

2012/03
2012/12
Transmission
\$2,000,849

DESCRIPTION:

This project provides for costs associated with reliability improvements on the NSPI transmission system through the replacement of 24 disconnect switches and 15 circuit breakers. The replacement scope and breaker age includes: 1C-688 (1968), 1C-684 (1968), 50N-508 (1968), 50N-511 (1956), 50N-521 (1973), 50N-522 (1956), 82V-411 (1971), 17V-502 (1953), 17V-504 (1955), 43V-501 (1953), 43V-503 (1958), 15V-505 (1959), 50W-503 (1952), 99H-507 (1966), and 3W-502 (1968).

A combination of service time, operating experience, ambient exposure, availability of spare parts and Original Equipment Manufacturer support were considered in determining the priority for replacement.

Summary of Related CI's +/- 2 years: 2010 CI 38027 2010 Trans Switch & Breaker Upgrades \$2,070,094 2011 CI 40280 2011 Trans Switch & Breaker Upgrade \$2,866,718 2013 CI TBD Transmission Switch & Breaker Upgrades \$TBD

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Equipment Replacement

Why do this project?

This project scope is being undertaken as part of the overall customer reliability improvement investment. This is year three of a five year (2010-2014) plan to improve reliability to NSPI's customers. This project will replace circuit breakers that are malfunctioning due to age and experienced service conditions. In addition, disconnect switch modifications/additions will result in improved customer reliability.

Why do this project now?

Doing this project now will result in mitigating transmission supply interruptions and provide reliability improvements for customers.

Why do this project this way?

In the majority of cases, the circuit breakers are being replaced for which spare parts are no longer available due to the age of the devices. Various switches are being modified or changed out due to either operational issues, or targeted at improving the capability of the switch. These modifications will result in improved customer reliability.

CI Number : 41426

- 2012 Transmission Switch & Breaker Upgrades

Parent CI Number :

.

- 800-Services - Admin.

Project Number

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 800

Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO			138,698	0	138,698
092		092-Vehicle T&D OT Labour AO			14,359	0	14,359
094		094 - Interest Capitalized			52,926	0	52,926
095		095-COPS Regular Labour AO			211,291	0	211,291
095		095-COPS Contracts AO				0	
095		095-COPS Overtime Labour AO			21,875	0	21,875
095		095-Thermal Regular Labour AO			14,406	0	14,406
001 (043	001 - T&D Regular Labour	043 - TP - Substn Dev.		218,728	0	218,728
002 (043	002 - T&D Overtime Labour	043 - TP - Substn Dev.		56,678	0	56,678
011 (043	011 - Travel Expense	043 - TP - Substn Dev.		16,800	0	16,800
012 (043	012 - Materials	043 - TP - Substn Dev.		1,017,900	0	1,017,900
013 (043	013 - COPS Contracts	043 - TP - Substn Dev.			0	
001 (385	001 - Regular Labour (No AO)	085 Design		23,102	0	23,102
001 (385	001 - THERMAL Regular Labour	085 Design		60,000	0	60,000
002 (385	002 - THERMAL Overtime Labour	085 Design		0	0	0
002 (385	002 - Overtime Labour (No AO)	085 Design		0	0	0
041 (385	041 - Meals & Entertainment	085 Design		750	0	750
001 (287	001 - T&D Regular Labour	087 Field Super.& Ops.		55,000	0	55,000
011 (287	011 - Travel Expense	087 Field Super.& Ops.		11,250	0	11,250
041 (087	041 - Meals & Entertainment	087 Field Super.& Ops.		3,750	0	3,750
				Total Cost:	2,000,849	0	2,000,849
				Original Cost:	259,448		

CI 41426 2012 Transmission Switch & Breaker Upgrades

The following is a breakdown of costs associated with the 2012 Transmission Switch & Breaker Upgrades project:

Administrative Overhead and Interest	
Materials	\$ 1,017,900
Contracts	
COPS Labour	\$ 413,508
Other	\$ 32,550
Total	\$ 2,000,849

The labour associated with this project is expected to be completed by NSPI resources at an approximate rate of **Solution** per person day along with engineering design work. The material forecasts provide for new circuit breakers and are based on costs from a similar project. The contract forecast is for boom truck and crane services.

CI Number: 41429

Title:

2012 Substation PCB Equipment Removal

2012/02
2012/12
Transmission
\$1,854,665

DESCRIPTION:

This project provides for the costs associated with the removal of substation devices with 500 mg/kg, or more of PCBs, to be in compliance with 2008 Federal Environmental PCB Regulations.

Summary of Related CI's +/- 2 years: 2010 CI 38122 2010 PCB Equipment Removal/Destruction \$ 1,487,135 2011 CI 40288 2011 Substation PCB Equipment Removal \$2,510,193 2013 CI TBD PCB Equipment Removal \$TBD 2014 CI TBD PCB Equipment Removal \$TBD

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Requirement to Serve

Why do this project?

This is year three of an agreed upon five year program with Environment Canada to remove PCB containing transmission equipment as per the federal regulatory requirement and associated timelines.

Why do this project now?

Regulations require that transmission substation equipment that does not meet federal PCB concentration limits must be removed from service prior to 2015.

Why do this project this way?

The sampling and possible replacement of equipment containing greater than 500 mg/kg concentration of PCBs must be planned over a period of several years to ensure bulk power system element outages are scheduled in a timely manner. Present Environment Canada regulations require completion by 2015.

CI Number : 41429

- 2012 Substation PCB Equipment Removal

Parent Cl Number :

.

- 800-Services - Admin.

Project Number

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 800

Variance	146,297	3,854	32,741	2,017	222,868	5,872		231,734	13,327	596,000		30,753	15,742	1,887	153,499	7,500	8,400	0	41,250	1,854,665	
Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Forecast Amount	146,297	3,854	32,741	2,017	222,868	5,872		231,734	13,327	596,000		30,753	15,742	1,887	153,499	7,500	8,400	0	41,250	1,854,665	295,291
																				Total Cost:	Original Cost:
Activity								043 - TP - Substn Dev.	043 - TP - Substn Dev.	043 - TP - Substn Dev.	043 - TP - Substn Dev.	043 - TP - Substn Dev.	044 - TP - Substn.Transf.	044 - TP - Substn.Transf.	044 - TP - Substn.Transf.	085 Design	085 Design	085 Design	087 Field Super.& Ops.		
Account	092-Vehicle T&D Reg. Labour AO	092-Vehicle T&D OT Labour AO	094 - Interest Capitalized	095-Thermal Regular Labour AO	095-COPS Regular Labour AO	095-COPS Overtime Labour AO	095-COPS Contracts AO	001 - T&D Regular Labour	002 - T&D Overtime Labour	012 - Materials	013 - COPS Contracts	066 - Other Goods & Services	001 - T&D Regular Labour	002 - T&D Overtime Labour	012 - Materials	001 - Regular Labour (No AO)	001 - THERMAL Regular Labour	002 - THERMAL Overtime Labour	001 - T&D Regular Labour		
Actv								043	043	043	043	043	044	044	044	085	085	085	087		
Acct	092	092	094	095	095	095	095	001	002	012	013	066	001	002	012	001	001	002	001		

CI 41429 - 2012 Substation PCB Equipment Removal

The following is a breakdown of costs associated with the 2012 Substation PCB Equipment Removal project:

Administrative Overhead and Interest	
Materials	\$ 749,499
Contracts	
COPS Labour	\$ 319,840
Other	\$ 30,753
Total	\$ 1,854,665

The labour associated with this project is expected to be completed by NSPI resources at an approximate rate spectral per person day along with engineering design work. The material forecast estimates are based on a similar projects in 2010/2011 to replace PCB contaminated bushings, instrument transformers, circuit breakers, and insulating oil. This project also includes contract costs for the disposal of PCB contaminated insulating oils and solid materials.

Vol. 142, nº 19

Vol. 142, No. 19

Canada Gazette Part II

Gazette du Canada Partie II

OTTAWA, WEDNESDAY, SEPTEMBER 17, 2008

Statutory Instruments 2008

SOR/2008-247 to 290 and SI/2008-93 to 107

Pages 1882 to 2241

NOTICE TO READERS

The *Canada Gazette* Part II is published under authority of the *Statutory Instruments Act* on January 9, 2008, and at least every second Wednesday thereafter.

Part II of the *Canada Gazette* contains all "regulations" as defined in the *Statutory Instruments Act* and certain other classes of statutory instruments and documents required to be published therein. However, certain regulations and classes of regulations are exempted from publication by section 15 of the *Statutory Instruments Regulations* made pursuant to section 20 of the *Statutory Instruments Act*.

The Canada Gazette Part II is available in most libraries for consultation.

For residents of Canada, the cost of an annual subscription to the *Canada Gazette* Part II is \$67.50, and single issues, \$3.50. For residents of other countries, the cost of a subscription is US\$67.50 and single issues, US\$3.50. Orders should be addressed to Government of Canada Publications, Public Works and Government Services Canada, Ottawa, Canada K1A 0S5.

The *Canada Gazette* is also available free of charge on the Internet at http://canadagazette.gc.ca. It is accessible in Portable Document Format (PDF) and in HyperText Mark-up Language (HTML) as the alternate format. The PDF format of Part I, Part II and Part III is official since April 1, 2003, and is published simultaneously with the printed copy.

Copies of Statutory Instruments that have been registered with the Clerk of the Privy Council are available, in both official languages, for inspection and sale at Room 418, Blackburn Building, 85 Sparks Street, Ottawa, Canada.

OTTAWA, LE MERCREDI 17 SEPTEMBRE 2008

Textes réglementaires 2008

DORS/2008-247 à 290 et TR/2008-93 à 107

Pages 1882 à 2241

AVIS AU LECTEUR

La Partie II de la *Gazette du Canada* est publiée en vertu de la *Loi sur les textes réglementaires* le 9 janvier 2008, et au moins tous les deux mercredis par la suite.

La Partie II de la *Gazette du Canada* est le recueil des « règlements » définis comme tels dans la loi précitée et de certaines autres catégories de textes réglementaires et de documents qu'il est prescrit d'y publier. Cependant, certains règlements et catégories de règlements sont soustraits à la publication par l'article 15 du *Règlement sur les textes réglementaires*, établi en vertu de l'article 20 de la *Loi sur les textes réglementaires*.

On peut consulter la Partie II de la *Gazette du Canada* dans la plupart des bibliothèques.

Pour les résidents du Canada, le prix de l'abonnement annuel à la Partie II de la *Gazette du Canada* est de 67,50 \$ et le prix d'un exemplaire, de 3,50 \$. Pour les résidents d'autres pays, le prix de l'abonnement est de 67,50 \$US et le prix d'un exemplaire, de 3,50 \$US. Veuillez adresser les commandes à : Publications du gouvernement du Canada, Travaux publics et Services gouvernementaux Canada, Ottawa, Canada K1A 0S5.

La *Gazette du Canada* est aussi disponible gratuitement sur Internet au http://gazetteducanada.gc.ca. La publication y est accessible en format de document portable (PDF) et en langage hypertexte (HTML) comme média substitut. Le format PDF en direct de la Partie I, de la Partie II et de la Partie III est officiel depuis le 1^{er} avril 2003 et est publié en même temps que la copie imprimée.

Des exemplaires des textes réglementaires enregistrés par le greffier du Conseil privé sont à la disposition du public, dans les deux langues officielles, pour examen et vente à la Pièce 418, Édifice Blackburn, 85, rue Sparks, Ottawa, Canada.

Gazette du Canada Partie II, Vol. 142, nº 19 SOR/DORS/2008-273 2008-09-17 Canada Gazette Part II, Vol. 142, No. 19

Registration SOR/2008-273 September 5, 2008

CANADIAN ENVIRONMENTAL PROTECTION ACT, 1999

PCB Regulations

P.C. 2008-1659 September 5, 2008

Whereas, pursuant to subsection 332(1)^a of the Canadian Environmental Protection Act, 1999^b, the Minister of the Environment published in the Canada Gazette, Part I, November 4, 2006, a copy of the proposed PCB Regulations, substantially in the annexed form, and persons were given an opportunity to file comments with respect to the proposed Regulations or to file a notice of objection requesting that a board of review be established and stating the reasons for the objection;

Whereas, pursuant to subsection 93(3) of that Act, the National Advisory Committee has been given an opportunity to provide its advice under section 6^{c} of that Act;

And whereas, in the opinion of the Governor in Council, pursuant to subsection 93(4) of that Act, the proposed Regulations do not regulate an aspect of a substance that is regulated by or under any other Act of Parliament in a manner that provides, in the opinion of the Governor in Council, sufficient protection to the environment and human health:

Therefore, Her Excellency the Governor General in Council, on the recommendation of the Minister of the Environment and the Minister of Health, pursuant to subsection 93(1) and section 97 of the Canadian Environmental Protection Act, 1999^b, hereby makes the annexed PCB Regulations.

TABLE OF CONTENTS

(This table is not part of the Regulations.)

PCB REGULATIONS

PART 1

GENERAL

- Definitions 1
- 2 Application
- 3 Sale of property
- Compliance 4

PART 2

PROHIBITIONS AND PERMITTED ACTIVITIES

PROHIBITIONS

- 5 Release into the environment
- 6 Prohibited activities
- ^a S.C. 2004, c. 15, s. 31 ^b S.C. 1999, c. 33

Enregistrement DORS/2008-273 Le 5 septembre 2008

LOI CANADIENNE SUR LA PROTECTION DE L'ENVIRONNEMENT (1999)

Règlement sur les BPC

C.P. 2008-1659 Le 5 septembre 2008

Attendu que, conformément au paragraphe 332(1)^a de la Loi canadienne sur la protection de l'environnement (1999)^b, le ministre de l'Environnement a fait publier dans la Gazette du Canada Partie I, le 4 novembre 2006, le projet de règlement intitulé Règlement sur les BPC, conforme en substance au texte ci-après, et que les intéressés ont ainsi eu la possibilité de présenter leurs observations à cet égard ou un avis d'opposition motivé demandant la constitution d'une commission de révision;

Attendu que, conformément au paragraphe 93(3) de cette loi, le comité consultatif national s'est vu accorder la possibilité de formuler ses conseils dans le cadre de l'article 6^c de celle-ci;

Attendu que la gouverneure en conseil est d'avis que, aux termes du paragraphe 93(4) de cette loi, le projet de règlement ne vise pas un point déjà réglementé sous le régime d'une autre loi fédérale de manière à offrir une protection suffisante pour l'environnement et la santé humaine,

À ces causes, sur recommandation du ministre de l'Environnement et du ministre de la Santé et en vertu du paragraphe 93(1) et de l'article 97 de la Loi canadienne sur la protection de l'environnement (1999)^b, Son Excellence la Gouverneure générale en conseil prend le Règlement sur les BPC, ci-après.

TABLE DES MATIÈRES

(La présente table ne fait pas partie du Règlement.)

RÈGLEMENT SUR LES BPC

PARTIE 1

GÉNÉRALITÉS

- Définitions 1
- 2 Application
- 3 Vente de biens
- 4 Conformité

PARTIE 2

INTERDICTIONS ET ACTIVITÉS PERMISES

INTERDICTIONS

- 5 Rejet dans l'environnement
- 6 Activités interdites

^c S.C. 2002, c. 7, s. 124

 $^{^{}a}\,$ L.C. 2004, ch. 15, art. 31 $^{b}\,$ L.C. 1999, ch. 33 $^{c}\,$ L.C. 2002, ch. 7, art. 124

2008-09-17 Canada Gazette Part II, Vol. 142, No. 19 Gazette du Canada Partie II, Vol. 142, nº 19 SOR/DORS/2008-273

PART 2 — Continued

PROHIBITIONS AND PERMITTED ACTIVITIES - Continued

PERMITTED ACTIVITIES

- 7 Laboratory analysis
- 8 Research
- 9 Electrical capacitor
- 10 Aircraft, ships, trains and other vehicles
- 11 Colouring pigment
- 12 Destruction
- 13 Solid products
- 14 Cables, pipelines, electrical capacitors and other equipment
- 15 Liquids for servicing concentration less than 2 mg/kg

END-OF-USE DATES AND EXTENSION

- 16 Equipment referred to in subparagraphs 14(1)(d)(i) to (iii)
- 17 Extension of end-of-use date

PART 3

STORAGE

18 Application — concentration of 50 mg/kg or more

- 19 Requirement to store
- 20 Prohibition against storage
- 21 Maximum storage periods
- 22 Exceptions to maximum storage periods
- 23 PCBs or products containing PCBs stored at the coming into force
- 24 PCB storage site
- 25 Storage requirements
- 26 Access to PCB storage site
- 27 Inspection and maintenance of a PCB storage site
- 28 Fire protection and emergency procedures

PART 4

LABELLING, REPORTS AND RECORDS

LABELLING

29	Equipment	and liquids	used for	their servicing	
----	-----------	-------------	----------	-----------------	--

- 30 Cables and pipelines
- 31 A facility other than transfer site or destruction facility
- 32 Retention of labels

PARTIE 2 (suite)

INTERDICTIONS ET ACTIVITÉS PERMISES (suite)

ACTIVITÉS PERMISES

7 Analyses de laboratoire 8 Recherches 9 Condensateurs électriques 10 Aéronefs, navires, trains et autres véhicules 11 Pigments pour la coloration 12 Destruction 13 Produits solides 14 Câbles, pipelines, condensateurs électriques et pièces d'équipements 15 Liquides pour entretien — concentration inférieure à 2 mg/kgUTILISATION - DATES LIMITES ET PROLONGATION 16 Pièces d'équipement visées aux sous-alinéas 14(1)d)(i) à (iii) 17 Prolongation de la date de fin d'utilisation

PARTIE 3

STOCKAGE

- 18 Application Concentration égale ou supérieure à 50 mg/kg
 19 Obligation de stocker
- 20 Interdiction de stocker
- 21 Périodes maximales de stockage
- 22 Périodes maximales de stockage exceptions
- 23 BPC et produits qui en contiennent stockés à l'entrée en vigueur
- 24 Dépôt de BPC
- 25 Exigences relatives au stockage
- 26 Accès au dépôt de BPC
- 27 Inspection et entretien des dépôts de BPC
- 28 Protection contre les incendies et mesures d'urgence

PARTIE 4

ÉTIQUETAGE, RAPPORTS ET DOSSIERS

ÉTIQUETAGE

- 29 Pièces d'équipement et liquides pour leur entretien
- 30 Câbles et pipelines
- 31 Installation autre qu'un centre de transfert ou de destruction
- 32 Conservation des étiquettes

	PART 4 — Continued
	LABELLING, REPORTS AND RECORDS — Continued
	Reports
33	End of use of equipment and liquids - 2009
34	Research
35	Colouring pigment
36	Solid products containing PCBs
37	Stored PCBs or products — PCB concentration of 50 mg/kg or more
38	Stored PCBs or products — transfer site or destruction facility
39	Date of submission of report
40	Release into the environment
41	Retention
42	Method of submission
	Records
43	Records for permitted activities
44	Inspection record
45	Retention of records
	PART 5
	REPEALS AND COMING INTO FORCE
	REPEALS
46	Repeal
47	Repeal

COMING INTO FORCE

Coming into force

48

PCB REGULATIONS

PART 1

GENERAL

Definitions	1. (1) The following definitions apply in these Regulations.	p
"Act " « Loi »	"Act" means the Canadian Environmental Protec- tion Act, 1999.	~
"authorized facility" « <i>installation</i> <i>agréée</i> »	"authorized facility" means a facility, including a transfer site, that is authorized by the authorities of the jurisdiction in which it is located to pro- cess PCBs or products containing PCBs or to conduct laboratory analysis or research with PCBs or products containing PCBs.	*
"National Fire Code" « Code national de prévention des incendies »	"National Fire Code" means the National Fire Code of Canada 2005, NRCC No. 47667, issued by the Canadian Commission on Building and Fire Codes, National Research Council of Canada, as amended from time to time.	~

PARTIE 4 (suite)

ÉTIQUETAGE, RAPPORTS ET DOSSIERS (suite)

RAPPORTS

33	Date de fin d'utilisation des pièces d'équipement et des liquides — 2009
34	Recherches
35	Pigments pour la coloration
36	Produits solides qui contiennent des BPC
37	BPC ou produits stockés — concentration de BPC de 50 mg/kg ou plus
38	BPC ou produits stockés — Centre de transfert ou de destruction
39	Date de présentation des rapports

- Date de présentation des rapports
- 40 Rejets dans l'environnement
- 41 Conservation 42
 - Méthode de présentation

DOCUMENTS ET REGISTRES

- 43 Documents concernant les activités permises
- 44 Registres d'inspections
- 45 Conservation des dossiers

PARTIE 5

ABROGATIONS ET ENTRÉE EN VIGUEUR

ABROGATION

- 46 Abrogation
- 47 Abrogation

ENTRÉE EN VIGUEUR

48 Entrée en vigueur

RÈGLEMENT SUR LES BPC

PARTIE 1

GÉNÉRALITÉS

1. (1) Les définitions qui suivent s'appliquent au Définitions présent règlement.

- « BPC » Tout biphényle chloré visé à l'article 1 de « BPC » la liste des substances toxiques de l'annexe 1 de "PCB" la Loi.
- Code national de prévention des incendies » Le « Code national Code national de prévention des incendies – de prévention Canada 2005, CNRC 47667F, avec ses modifi-"National Fire" cations successives, publié par la Commission Code" canadienne des codes du bâtiment et de prévention des incendies du Conseil national de recherches du Canada.
- installation agréée » Installation notamment un « installation centre de transfert — qui est autorisée par les au-toritée du tamiteire ail de set cituée à transforme *agréée* » *authorized* torités du territoire où elle est située à transformer facility"

Gazette du Canada Partie II, Vol. 142, nº 19 SOR/DORS/2008-273 2008-09-17 Canada Gazette Part II, Vol. 142, No. 19

"PCB" « <i>BPC</i> »	"PCB" means any chlorobiphenyl described in item 1 of the List of Toxic Substances in Sched-
	ule 1 to the Act.
"process"	"process" includes to mix with a product.

« transformer »

"product" "product" includes equipment. « produit »

Concentration (2) For the purposes of these Regulations, if a several solid or a liquid containing PCBs is composed of matrices several matrices, the concentration of PCBs is based on the mass of the matrix in which the PCBs are located.

Concentration and quantity

(3) For the purposes of these Regulations, the concentration and quantity of PCBs shall be determined

(a) by a laboratory

(i) accredited by the Standards Council of Canada (SCC), the Canadian Association for Environmental Analytical Laboratories Inc. (CAEAL), or any other accreditation body that is a signatory to the International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement, and the laboratory shall be accredited in accordance with the International Organization for Standardization standard ISO/IEC 17025:2005 entitled General Requirements for the Competence of Testing and Calibration Laboratories, as amended from time to time, and

(ii) for which the scope of accreditation shall include the analytical method used to determine the concentration of PCBs in the matrix in which the PCBs are located; or

(b) by a laboratory

(i) accredited in accordance with the Environmental Quality Act, R.S.Q., c. Q-2, as amended from time to time, and

(ii) for which the scope of accreditation shall include the analytical method used to determine the concentration of PCBs in the matrix in which the PCBs are located.

(4) For the purposes of these Regulations, other than section 13, the concentration of PCBs in a matrix is determined using a provincially, nationally or internationally recognized sampling method for PCBs in the matrix in which the PCBs are located.

(5) For the purposes of section 13, the concentration of PCBs is determined using a sampling method for bulk solid products, which is set out in either federal or provincial legislation, as amended from time to time, or approved by the United States Environmental Protection Agency for compliance with the Resource Conservation and Recovery Act or with the regulations made under that Act, as amended from time to time.

des BPC ou des produits qui en contiennent, ou à les utiliser pour des analyses de laboratoire ou des recherches.

- «Loi» La Loi canadienne sur la protection de «Loi» l'environnement (1999).
- « produit » S'entend notamment d'une pièce « produit » "product" d'équipement.
- « transformer » S'entend notamment du fait de « transformer » "process" mélanger avec tout produit.

plusieurs

(2) Pour l'application du présent règlement, lors- Concentration qu'un solide ou un liquide qui contient des BPC est — plusie matrices composé de plusieurs matrices, la concentration de BPC est basée sur la masse de la matrice dans laquelle les BPC se trouvent.

(3) Pour l'application du présent règlement, la Concentration concentration et la quantité de BPC sont et quantité déterminées :

a) soit par tout laboratoire :

(i) qui est accrédité à la norme de l'Organisation internationale de normalisation intitulée Exigences générales concernant la compétence des laboratoires d'étalonnages et d'essais (ISO/IEC 17025:2005), avec ses modifications successives, par le Conseil canadien des normes (CCN), l'Association canadienne des laboratoires d'analyse environnementale (ACLAE) ou tout autre organisme d'accréditation signataire de l'International Laboratory Accreditation Cooperation (ILAC) Mutual Recognition Arrangement,

(ii) dont la portée d'accréditation couvre la méthode d'analyse utilisée pour déterminer la concentration des BPC dans la matrice dans laquelle les BPC se trouvent;

b) soit par tout laboratoire :

(i) qui est accrédité conformément à la Loi sur la qualité de l'environnement, L.R.Q., ch. Q-2, avec ses modifications successives,

(ii) dont la portés d'accréditation couvre la méthode d'analyse utilisée pour déterminer la concentration des BPC dans la matrice dans laquelle se trouvent les BPC.

(4) Pour l'application du présent règlement, sauf Méthode l'article 13, la concentration de BPC se trouvant d'échantillondans une matrice est déterminée au moyen de toute méthode d'échantillonnage pour les BPC dans cette matrice qui est reconnue à l'échelle provinciale, nationale ou internationale.

ment fédéral ou provincial, avec ses modifications

successives, ou qui est approuvée par la United

States Environmental Protection Agency pour l'ap-

plication de la loi des États-Unis intitulée Resource

Conservation and Recovery Act ou de ses règlements avec leurs modifications successives.

nage

(5) Pour l'application de l'article 13, la concen- Méthode tration de BPC est déterminée au moyen de toute d'échantillonnage méthode d'échantillonnage pour les produits soliproduits solides des en vrac qui est prévue par une loi ou un règleen vrac

2081

Sampling method

Sampling method bulk solid products

Gazette du Canada Partie II, Vol. 142, nº 19 SOR/DORS/2008-273 2008-09-17 Canada Gazette Part II, Vol. 142, No. 19

- Application 2. (1) These Regulations apply to PCBs and to any products containing PCBs.
- Non-(2) These Regulations do not apply to the application following:

(a) the export and import of PCBs that are hazardous waste or hazardous recyclable material within the meaning of the Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations or the export of PCBs that are waste within the meaning of the PCB Waste Export Regulations, 1996;

(b) the sale, importation or advertising of liquids containing PCBs for use in microscopy, including immersion oils, but not including refractive index oils, which is prohibited under section 4 of the Hazardous Products Act; and

(c) the offer for sale, sale and use of land contaminated with PCBs or with products containing PCBs.

Sale of 3. Nothing in these Regulations shall be conproperty strued as preventing the sale of

> (a) personal property or movables that contain PCBs, or real property or immovables that have PCBs or products containing PCBs, and that form part of the sale of the whole or part of a business, including a manufacturing or a processing business;

> (b) real property or immovables that have products containing PCBs if the products continue to be used after the sale for the same purpose at the same place and are an integral part of the property or immovable; or

> (c) real property or immovables on which a PCB storage site is located.

Compliance 4. In addition to the persons who must comply with the requirements set out in these Regulations, a person who owns PCBs or products containing PCBs shall ensure that the requirements of these Regulations with respect to those PCBs or products are met.

PART 2

PROHIBITIONS AND PERMITTED ACTIVITIES

PROHIBITIONS

Release into the 5. (1) No person shall release PCBs into the enenvironment vironment, other than from the equipment referred to in subsection (2), in a concentration of

> (a) 2 mg/kg or more for a liquid containing PCBs; or

(b) 50 mg/kg or more for a solid containing PCBs.

Release from (2) No person shall release more than one gram equipment of PCBs into the environment from equipment

2. (1) Le présent règlement s'applique aux BPC Application et à tout produit qui en contient.

(2) Il ne s'applique toutefois pas aux activités Exclusion suivantes :

a) l'exportation et l'importation de BPC qui sont des déchets dangereux ou des matières recyclables dangereuses au sens du Règlement sur l'exportation et l'importation de déchets dangereux et de matières recyclables dangereuses et l'exportation de déchets contenant des BPC au sens du Règlement sur l'exportation de déchets contenant des BPC (1996);

b) la vente, l'importation ou la publicité des liquides pour usage en microscopie qui contiennent des BPC, y compris les huiles à immersion mais à l'exclusion des huiles à indice de réfraction, interdites par l'article 4 de la Loi sur les produits dangereux;

c) la mise en vente, la vente et l'utilisation de terrains contaminés par des BPC ou des produits qui en contiennent.

3. Le présent règlement n'a pas pour effet d'em- Vente de biens pêcher la vente des biens suivants :

a) tout bien meuble ou personnel qui contient des BPC ou tout bien immeuble ou réel où se trouvent des BPC ou des produits qui en contiennent, lesquels biens sont compris dans la vente de tout ou partie d'une entreprise, y compris une entreprise de fabrication ou de transformation;

b) tout bien immeuble ou réel dont font partie intégrante les produits qui contiennent des BPC qui s'y trouvent, si les produits continuent d'être utilisés aux mêmes fins et au même endroit après la vente:

c) tout bien immeuble ou réel où se trouve un dépôt de BPC.

4. En plus des personnes auxquelles il incombe Conformité des obligations en vertu du présent règlement, le propriétaire de BPC ou de produits qui en contiennent veille à ce que les exigences du présent règlement concernant ces BPC ou produits soient remplies.

PARTIE 2

INTERDICTIONS ET ACTIVITÉS PERMISES

INTERDICTIONS

5. (1) Il est interdit de rejeter dans l'environne- Rejet dans l'environnement ment, autrement qu'à partir d'une pièce d'équipement visée au paragraphe (2), des BPC de l'une ou l'autre des concentrations suivantes :

a) dans le cas d'un liquide qui contient des BPC, une concentration égale ou supérieure à 2 mg/kg; b) dans le cas d'un solide qui contient des BPC, une concentration égale ou supérieure à 50 mg/kg.

(2) Il est interdit de rejeter plus d'un gramme de Rejet à partir BPC dans l'environnement à partir d'une pièce

d'une pièce d'équipement
referred to in section 16 that is in use or from equipment in use for which an extension has been granted under section 17.

Prohibited activities

6. Except as provided in these Regulations, no person shall

(a) manufacture, export or import PCBs or a product containing PCBs in a concentration of 2 mg/kg or more;

(b) offer for sale or sell PCBs or a product containing PCBs in a concentration of 50 mg/kg or more; or

(c) process or use PCBs or a product containing PCBs.

PERMITTED ACTIVITIES

Laboratory 7. A person may manufacture, export, import, ofanalysis fer for sale, sell, process and use PCBs or products containing PCBs for the purpose of laboratory analysis if the analysis is conducted

> (a) in an authorized facility that is authorized for that purpose; or

> (b) in a facility that conforms to internationally recognized guidelines on best laboratory practices, if the authorities of the jurisdiction in which the facility is located do not have a mechanism in place to authorize the facility to conduct the analysis.

Research 8. (1) A person may offer for sale or sell PCBs or products containing PCBs to be processed or used for the purpose of research to determine the effects of those PCBs or products on human health or on the environment, if the facility in which they are processed or used is

> (a) an authorized facility that is authorized for that purpose; or

> (b) a facility that conforms to internationally recognized guidelines on best laboratory practices, if the authorities of the jurisdiction in which the facility is located do not have a mechanism in place to authorize the facility to conduct the research.

- Processing (2) A person may process and use the PCBs or and use products containing PCBs for the purpose of the research referred to in subsection (1) at a facility that meets the requirement set out in paragraph (1)(a) or (b).
- Electrical 9. A person may offer for sale, sell and use an capacitor electrical capacitor containing PCBs if the electrical capacitor

(a) is an integral part of a consumer product;

(b) is fusion sealed; and

(c) would be rendered inoperable and irreparable if the PCBs were removed from it.

Aircraft, ships, trains and other vehicles

10. A person may export, import, offer for sale, sell and use for transportation purposes aircraft, ships, trains and other vehicles that contain PCBs

d'équipement visée à l'article 16 qui est en usage ou d'une pièce d'équipement dont l'usage fait l'objet d'une prolongation en vertu de l'article 17 et qui est en usage.

6. Sauf dans la mesure prévue par le présent rè- Activités interdites glement, il est interdit :

a) de fabriquer, d'exporter ou d'importer des BPC ou tout produit qui en contient en une concentration égale ou supérieure à 2 mg/kg;

b) de mettre en vente ou de vendre des BPC ou tout produit qui en contient en une concentration égale ou supérieure à 50 mg/kg;

c) de transformer ou d'utiliser des BPC ou tout produit qui en contient.

ACTIVITÉS PERMISES

7. Il est permis de fabriquer, d'exporter, d'impor- Analyses de laboratoire ter, de mettre en vente, de vendre, de transformer et d'utiliser des BPC et des produits qui en contiennent pour des analyses de laboratoire, si celles-ci sont effectuées :

a) dans toute installation agréée à cette fin;

b) dans le cas où les autorités du territoire où elle est située ne disposent d'aucun mécanisme l'autorisant à les effectuer, dans toute installation qui est conforme à des lignes directrices, reconnues à l'échelle internationale, sur les pratiques exemplaires en laboratoire.

8. (1) Il est permis de mettre en vente ou de ven- Recherches dre des BPC ou des produits qui en contiennent pour qu'ils soient utilisés ou transformés à des fins de recherche visant à déterminer les effets des BPC ou des produits sur la santé humaine ou l'environnement, si l'installation où ils sont utilisés ou transformés se conforme à l'une ou l'autre des exigences suivantes :

a) elle est agréée à cette fin;

b) dans le cas où les autorités du territoire où elle est située ne disposent d'aucun mécanisme l'autorisant à effectuer des recherches, elle est conforme à des lignes directrices, reconnues à l'échelle internationale, sur les pratiques exemplaires en laboratoire.

(2) Il est permis de transformer et d'utiliser des Transformation BPC et des produits qui en contiennent pour effec- et utilisation tuer les recherches visées au paragraphe (1) dans une installation qui se conforme à l'une ou l'autre des exigences prévues à ce paragraphe.

9. Il est permis de mettre en vente, de vendre et Condensateurs d'utiliser tout condensateur électrique qui contient électriques des BPC, si les conditions suivantes sont réunies :

a) il fait partie intégrante d'un produit de consommation;

b) ses joints sont thermoscellés;

c) il ne fonctionnerait plus et serait irréparable si les BPC en étaient extraits.

10. Il est permis d'exporter, d'importer, de met- Aéronefs, tre en vente, de vendre et d'utiliser pour le transport, tout aéronef, navire, train ou autre véhicule véhicules

trains et autres

only in their communication, navigation or electronic control equipment or cables.

- Colouring 11. (1) A person may manufacture, export, impigment port, offer for sale, sell, process and use a colouring pigment containing PCBs produced incidentally if the concentration of the PCBs is less than 50 mg/kg.
- Annual average (2) Despite subsection (1), the annual average concentration concentration of PCBs produced incidentally in colouring pigment that a person may manufacture, export, import, offer for sale, sell, process and use shall not exceed 25 mg/kg.
- Destruction 12. A person may process PCBs or products containing PCBs for the purpose of destroying PCBs or recovering PCBs for the purpose of destroying them in an authorized facility that is authorized for that purpose.
- Solid products **13.** (1) A person may manufacture solid products containing PCBs in a concentration of less than 50 mg/kg using bulk solid products containing PCBs in a concentration of less than 50 mg/kg, and may use those solid products.
- Application (2) Subsection (1) only applies to the manufacture of the types of products that are manufactured before the day on which these Regulations come into force.
- Exception (3) No person shall offer for sale or sell the products manufactured in accordance with subsection (1) unless the products are used in the course of a commercial or industrial activity.

14. (1) A person may use the following products containing PCBs:

(a) cables, if they remain in place on the day on which these Regulations come into force;

(b) pipelines that transport natural gas, petroleum or petroleum products and any associated equipment that is in contact with the natural gas, petroleum or petroleum products if the pipelines and the equipment remain in place on the day on which these Regulations come into force;

(c) fusion sealed capacitors if they are used in relation to communication equipment or electronic control equipment; and

(d) the following equipment containing PCBs in a concentration of less than 50 mg/kg if the equipment is used for the purpose for which it was manufactured:

(i) electrical capacitors, other than light ballasts, and electrical transformers and their auxiliary electrical equipment, other than pole-top electrical transformers and their pole-top auxiliary electrical equipment,

(ii) electromagnets that are not used in the handling of food, feed or any additive to food or feed, and

dont seuls l'équipement de communication, de navigation ou de commande électronique ou les câbles contiennent des BPC.

11. (1) Il est permis de fabriquer, d'exporter, Pigments pour d'importer, de mettre en vente, de vendre, de transformer et d'utiliser des pigments pour la coloration qui contiennent des BPC produit par inadvertance en une concentration inférieure à 50 mg/kg.

(2) Toutefois, la concentration moyenne annuelle Moyenne de BPC produit par inadvertance dans les pigments annuelle maximale pour la coloration fabriqués, exportés, importés, mis en vente, vendus, transformés et utilisés par toute personne ne peut dépasser 25 mg/kg.

12. Il est permis, dans une installation agréée à Destruction cette fin, de transformer des BPC et des produits qui en contiennent pour les détruire ou pour les récupérer afin de les détruire.

13. (1) Il est permis de fabriquer des produits so- Produits solides lides qui contiennent des BPC en une concentration inférieure à 50 mg/kg à partir de produits solides en vrac qui eux-mêmes contiennent des BPC en une concentration inférieure à 50 mg/kg et d'utiliser ces produits solides.

(2) Le paragraphe (1) ne s'applique qu'aux types Application de produits qui sont fabriqués avant l'entrée en vigueur du présent règlement.

(3) Il est interdit de mettre en vente ou de vendre Exception des produits fabriqués conformément au paragraphe (1) pour tout usage en dehors d'une activité commerciale ou industrielle.

14. (1) Il est permis d'utiliser les produits ci- Câbles, après qui contiennent des BPC :

a) tout câble, s'il demeure à l'endroit où il se électriques et trouvait à l'entrée en vigueur du présent pièces règlement;

b) tout pipeline qui transporte du gaz naturel, du pétrole ou des produits pétroliers, ainsi que tout équipement connexe qui est en contact avec le gaz naturel, le pétrole ou les produits pétroliers, si le pipeline et l'équipement demeurent à l'endroit où ils se trouvaient à l'entrée en vigueur du présent règlement;

c) tout condensateur électrique dont les joints sont thermoscellés et qui est utilisé à des fins de communication ou de commande électronique;

d) les pièces d'équipement ci-après qui contiennent des BPC en une concentration inférieure à 50 mg/kg et qui sont utilisées aux fins auxquelles elles étaient destinées lors de leur fabrication :

(i) les condensateurs électriques, autres que les ballasts de lampes, et les transformateurs électriques et tout équipement électrique connexe, à l'exception des transformateurs sur poteaux et de tout équipement électrique connexe sur poteaux,

la coloration

pipelines, condensateurs d'équipements

Cables,

pipelines,

electrical

capacitors and other

equipment

(iii) heat transfer equipment, hydraulic equipment, vapour diffusion pumps and bridge bearings.

Electrical (2) A person may import fusion sealed capacitors capacitors containing PCBs for use in relation to communication tactical equipment or electronic control tactical equipment.

Liquids for 15. (1) A person may use liquids containing servicing -PCBs in a concentration of less than 2 mg/kg for concentration the purpose of servicing equipment containing PCBs.

> (2) A person may use liquids containing PCBs in a concentration of 500 mg/kg or more for the purpose of servicing equipment containing PCBs in a concentration of 500 mg/kg or more until December 31, 2009.

END-OF-USE DATES AND EXTENSION

Equipment 16. (1) A person may use the equipment referred referred to in to in subparagraphs 14(1)(d)(i) to (iii) until the folsubparagraphs lowing dates if the equipment is in use on the day 14(1)(*d*)(i) to on which these Regulations come into force:

> (a) in the case of equipment containing PCBs in a concentration of 500 mg/kg or more, December 31, 2009; and

> (b) in the case of equipment containing PCBs in a concentration of at least 50 mg/kg but less than 500 mg/kg,

(i) December 31, 2009, if the equipment is located at a drinking water treatment plant or food or feed processing plant, in a child care facility, preschool, primary school, secondary school, hospital or senior citizens' care facility or on the property on which the plant or facility is located and within 100 m of it, and

(ii) December 31, 2025, if the equipment is located at any other place.

Light ballasts (2) A person may use the following equipment and pole-top containing PCBs in a concentration of 50 mg/kg or electrical more until December 31, 2025, if the equipment is transformers in use on the day on which these Regulations come into force:

(a) light ballasts; and

(b) pole-top electrical transformers and their pole-top auxiliary electrical equipment.

Liquid concentration of 2 mg/kg or more

less than

2 mg/kg

Liquids for

servicing -

or more

(iii)

concentration

of 500 mg/kg

(3) A person may use a liquid containing 2 mg/kg or more of PCBs that is in equipment until the day on which the liquid is removed from the equipment. (ii) les électroaimants ne servant pas à la manutention des aliments destinés aux humains ou aux animaux, ou de tout additif à ces aliments.

(iii) l'équipement caloporteur, l'équipement hydraulique, les pompes à diffusion de vapeur et les appareils d'appui de pont.

(2) Il est permis d'importer tout condensateur Condensateurs électrique qui contient des BPC et dont les joints sont thermoscellés pour qu'il soit utilisé à des fins de communication tactique ou de commande électronique tactique.

15. (1) Il est permis d'utiliser tout liquide qui Liquides pour entretien contient des BPC en une concentration inférieure à concentration 2 mg/kg pour l'entretien de toute pièce d'équipeinférieure à ment qui contient des BPC. 2 mg/kg

(2) Il est également permis, jusqu'au 31 décem- Liquide pour bre 2009, d'utiliser tout liquide qui contient des entretien BPC en une concentration égale ou supérieure à de 500 mg/kg 500 mg/kg pour l'entretien de toute pièce d'équipe- ou plus ment qui elle-même contient des BPC en une concentration égale ou supérieure à 500 mg/kg.

UTILISATION - DATES LIMITES ET PROLONGATION

16. (1) Il est permis d'utiliser les pièces d'équipement visées aux sous-alinéas 14(1)d(i) à (iii) qui sont en usage à l'entrée en vigueur du présent règlement jusqu'aux dates suivantes :

Pièces d'équipement visées aux sous-alinéas 14(1)d)(i) à (iii)

concentration

électriques

a) si elles contiennent des BPC en une concentration égale ou supérieure à 500 mg/kg, jusqu'au 31 décembre 2009;

b) si elles contiennent des BPC en une concentration égale ou supérieure à 50 mg/kg mais inférieure à 500 mg/kg :

(i) jusqu'au 31 décembre 2009, si elles se trouvent dans une usine de traitement d'eau potable ou de transformation des aliments destinés aux humains ou aux animaux, dans une garderie, dans une école - de niveau préscolaire, primaire ou secondaire ---, dans un hôpital ou dans une résidence pour personnes âgées ou sur le terrain d'un tel établissement, à 100 m ou moins de celui-ci,

(ii) jusqu'au 31 décembre 2025, si elles se trouvent à tout autre endroit.

(2) Il est permis, jusqu'au 31 décembre 2025, Ballasts de d'utiliser les pièces d'équipement ci-après qui sont en usage à l'entrée en vigueur du présent règlement et qui contiennent des BPC en une concentration égale ou supérieure à 50 mg/kg :

a) les ballasts de lampes;

b) les transformateurs sur poteaux ainsi que tout équipement électrique connexe sur poteaux.

(3) Il est permis d'utiliser tout liquide qui con- Liquides tient des BPC en une concentration égale ou supérieure à 2 mg/kg dans une pièce d'équipement jusqu'à ce qu'il en soit extrait.

lampes et transformateurs sur poteaux

concentration de 2 mg/kg ou plus

d'utilisation

Gazette du Canada Partie II, Vol. 142, nº 19 SOR/DORS/2008-273 2008-09-17 Canada Gazette Part II, Vol. 142, No. 19

Extension of end-of-use date

17. (1) Despite subsection 15(2), paragraph 16(1)(a) and subparagraph 16(1)(b)(i), a person may use the equipment and the liquids used for servicing that equipment, referred to in those provisions, until the date set out in an extension granted by the Minister under subsection (2) for that equipment and those liquids.

Application

(2) The Minister shall, on receiving a written application containing the information set out in subsection (3), grant an extension up to the date applied for but no later than December 31, 2014, if either of the following conditions are met:

(a) the equipment is being replaced with equipment that is engineered to order, and

(i) it is not technically feasible to replace the equipment on or before December 31, 2009,

(ii) the applicant is taking all necessary measures to minimize or eliminate any harmful effect of the PCBs in the equipment on the environment and on human health,

(iii) a plan has been prepared, along with timelines, to end the use of the equipment by the date applied for,

(iv) a plan has been prepared for inspecting the equipment on a monthly basis for the period of the extension for damage that could lead to the release of PCBs, and

(v) the equipment bears the label required under section 29; or

(b) the equipment is located at a facility that is scheduled for permanent closure on or before December 31, 2014, and

(i) the applicant is taking all necessary measures to minimize or eliminate any harmful effect of the PCBs in the equipment on the environment and on human health,

(ii) a plan has been prepared, along with timelines, to end the use of the equipment by the date applied for,

(iii) a plan has been prepared for inspecting the equipment on a monthly basis, for the period of the extension, for damage that could lead to the release of PCBs, and

(iv) the equipment bears the label required under section 29.

Information (3) The application shall contain the following: (a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the applicant and of any per-

son authorized to act on the applicant's behalf;

(b) a technical description of the equipment which is the subject of the application, including

(i) the type and function of the equipment,

(ii) the quantity of liquid containing PCBs that is in the equipment and the quantity of liquid needed for servicing that equipment, expressed in litres,

17. (1) Malgré le paragraphe 15(2), l'alinéa 16(1)a) Prolongation de et le sous-alinéa $1\hat{6}(1)\tilde{b})(\hat{i})$, il est permis d'utiliser la date de fin les pièces d'équipement et les liquides utilisés pour leur entretien visés à ces dispositions jusqu'à l'expiration de toute prolongation accordée par le ministre en vertu du paragraphe (2) pour ces pièces d'équipement et ces liquides.

(2) Sur réception d'une demande écrite compor- Demande tant les renseignements prévus au paragraphe (3), le ministre accorde une prolongation jusqu'à la date prévue dans la demande mais au plus tard jusqu'au 31 décembre 2014, si l'une ou l'autre des conditions suivantes est remplie :

a) la pièce d'équipement doit être remplacée par une pièce d'équipement conçue et fabriquée sur mesure et :

(i) il est techniquement impossible de le faire le 31 décembre 2009 ou avant cette date,

(ii) le demandeur prend les mesures nécessaires pour éliminer ou atténuer tout effet nocif des BPC contenus dans la pièce sur l'environnement et la santé humaine,

(iii) un plan, incluant un échéancier, a été dressé afin que l'utilisation de la pièce cesse au plus tard à la date prévue dans la demande,

(iv) un plan a été dressé pour l'inspection de la pièce une fois par mois durant la prolongation afin que soit décelé tout dommage pouvant mener au rejet de BPC,

(v) la pièce porte l'étiquette exigée par l'article 29;

b) la pièce d'équipement se trouve dans une installation dont la fermeture permanente est prévue au plus tard pour le 31 décembre 2014 et :

(i) le demandeur prend les mesures nécessaires pour éliminer ou atténuer tout effet nocif des BPC contenus dans la pièce sur l'environnement et la santé humaine,

(ii) un plan, incluant un échéancier, a été dressé afin que l'utilisation de la pièce cesse au plus tard à la date prévue dans la demande,

(iii) un plan a été dressé pour l'inspection de la pièce une fois par mois durant la prolongation afin que soit décelé tout dommage pouvant mener au rejet de BPC;

(iv) la pièce porte l'étiquette exigée par l'article 29.

(3) La demande comporte :

Renseignements

a) les nom, adresses municipale et postale et numéro de téléphone du demandeur et de toute personne autorisée à agir en son nom et, le cas échéant, leurs numéro de télécopieur et adresse électronique;

b) les caractéristiques techniques de la pièce d'équipement qui fait l'objet de la demande, notamment :

(i) son type et sa fonction,

(ii) la quantité de liquide qui contient des BPC qui s'y trouve et la quantité de liquide nécessaire pour son entretien, exprimées en litres,

(iii) the concentration of PCBs in the liquid, expressed in milligrams of PCBs per kilogram of liquid,

(iv) the quantity of PCBs in the liquid that is in the equipment, expressed in kilograms, and

(v) the name-plate description, if any, and the manufacturer's serial number, if any;

(c) the unique identification number that is on the label required under section 29;

(d) the name, if any, and civic address of the facility where the equipment is located, or, if there is no civic address, the location using the owner's site identification system, and the function and technical description of the facility;

(e) information demonstrating that

(i) it is not technically feasible to replace the equipment on or before December 31, 2009, or (ii) the facility where the equipment is located is scheduled for permanent closure on or before December 31, 2014;

(f) information demonstrating that the applicant is taking all necessary measures to minimize or eliminate any harmful effect of the PCBs that are contained in the equipment on the environment and on human health;

(g) the plan, along with timelines, for ending the use of the equipment; and

(*h*) the plan for inspecting the equipment.

Notice of (4) The applicant shall notify the Minister in change to writing of any change to the information provided information under subsection (3) within 30 days after the day on which the change occurs.

False or (5) The Minister shall refuse to grant an extenmisleading sion if the Minister has reasonable grounds to beinformation lieve that the applicant has provided false or misleading information in support of its application.

Revocation (6) The Minister shall revoke the extension if

(a) the requirements set out in subsection (2) are no longer met during the period of the extension;

(b) the Minister has reasonable grounds to believe that the applicant has provided false or misleading information to the Minister in support of its application.

(7) The Minister shall not revoke the extension

Reasons for revocation

unless the Minister provides the applicant with (a) written reasons for the revocation; and

(b) an opportunity to be heard, by written representation, in respect of the revocation.

(iii) la concentration de BPC dans le liquide, exprimée en milligrammes de BPC par kilogramme de liquide,

(iv) la quantité de BPC dans le liquide qui s'y trouve, exprimée en kilogrammes,

(v) s'il y a lieu, l'information figurant sur la plaque d'identification et le numéro de série de son fabricant:

c) le numéro d'identification unique figurant sur l'étiquette en application de l'article 29;

d) le nom, s'il y a lieu, et l'adresse municipale de l'installation où se trouve la pièce d'équipement ou, à défaut, l'endroit où elle se trouve d'après le système d'identification de site du propriétaire, et la fonction et les caractéristiques techniques de l'installation;

e) les renseignements qui établissent :

(i) soit qu'il est techniquement impossible de remplacer la pièce d'équipement le 31 décembre 2009 ou avant cette date,

(ii) soit que la fermeture permanente de l'installation dans laquelle se trouve la pièce d'équipement est prévue au plus tard pour le 31 décembre 2014;

f) les renseignements qui établissent que les mesures nécessaires ont été prises par le demandeur pour éliminer ou atténuer tout effet nocif des BPC contenus dans la pièce d'équipement sur l'environnement et la santé humaine;

g) le plan et l'échéancier qui seront mis en œuvre afin que cesse l'utilisation de la pièce d'équipement;

h) le plan d'inspection de la pièce d'équipement.

(4) Le demandeur est tenu d'aviser le ministre Avis de par écrit de tout changement des renseignements changement fournis en application du paragraphe (3) dans les renseignements trente jours suivant la date du changement.

Révocation

Renseignements (5) Le ministre refuse d'accorder une prolongafaux ou tion s'il a des motifs raisonnables de croire que le trompeurs demandeur a fourni des renseignements faux ou trompeurs au soutien de sa demande.

(6) Il révoque la prolongation :

a) si, durant la prolongation, les conditions prévues au paragraphe (2), selon le cas, ne sont plus remplies;

b) s'il a des motifs raisonnables de croire que le demandeur lui a fourni des renseignements faux ou trompeurs au soutien de sa demande.

(7) Il ne peut toutefois révoquer la prolongation Motifs de révocation que si, à la fois :

a) il a avisé le titulaire par écrit des motifs de la révocation;

b) il lui a donné la possibilité de présenter des observations écrites au sujet de celle-ci.

PART 3

STORAGE

Application concentration of 50 mg/kg or more

18. (1) Subject to subsection (3), this Part applies to a solid or liquid product containing PCBs in a concentration of 50 mg/kg or more

> (a) that is in an amount equal to or greater than 100 L if the product is a liquid, or in an amount equal to or greater than 100 kg if the product is a solid; or

(b) that is in a lesser amount if the product contains 1 kg or more of PCBs.

Determination of amount

(2) For the purposes of subsection (1), the amount of PCBs or products containing PCBs is the aggregate of all amounts of PCBs and products that are located at a particular site.

Non-(3) This Part does not apply in respect of the folapplication lowing products containing PCBs:

> (a) solid or liquid products that are processed daily or used;

(b) pipelines that transport natural gas, petroleum or petroleum products, and any associated equipment that is in contact with the natural gas, petroleum or petroleum products, if they remain in place on the day on which these Regulations come into force; and

(c) cables, if they remain in place on the day on which these Regulations come into force.

Requirement to **19.** (1) A person who owns, controls or possesses store PCBs or products containing PCBs that are not processed daily or used shall, within 30 days after the day on which those PCBs or products are no longer processed or used or within 30 days after the day on which these Regulations come into force, whichever is later, either

> (a) send them for destruction to an authorized facility that is authorized for that purpose; or

> (b) store them at a PCB storage site for the period during which they are not processed daily or used.

Remote from or no access to roadway

(2) Despite subsection (1), if the PCBs or products containing PCBs are remote from a roadway system or if there is no access to a roadway system, the person who owns, controls or possesses the PCBs or products may store them at a PCB storage site as soon as feasible but no later than one year after the day on which they are not processed daily or used or one year after the day on which these Regulations come into force, whichever is later. That person shall use best management practices for them from the time that they cease to be processed daily or used until the time that they are stored at a PCB storage site.

Prohibition **20.** (1) Effective one year after the day on which against storage these Regulations come into force, no person shall store PCBs or products containing PCBs at the

PARTIE 3

STOCKAGE

18. (1) Sous réserve du paragraphe (3), la pré- Application sente partie s'applique aux produits liquides ou solides qui contiennent des BPC en une concentration égale ou supérieure à 50 mg/kg et :

a) dont la quantité est égale ou supérieure à 100 L, dans le cas d'un produit liquide, ou à 100 kg, dans le cas d'un produit solide;

b) dont la quantité est moindre, si ces produits renferment 1 kg ou plus de BPC.

(2) Pour l'application du paragraphe (1), la quantité Détermination de BPC ou de produits qui en contiennent correspond des quantités à la somme de toutes les quantités de BPC et de produits qui se trouvent dans un même emplacement.

(3) La présente partie ne s'applique pas aux pro- Exclusion duits ci-après qui contiennent des BPC :

a) les produits liquides ou solides qui sont transformés quotidiennement ou utilisés;

b) tout pipeline qui transporte du gaz naturel, du pétrole ou des produits pétroliers, ainsi que tout équipement connexe qui est en contact avec le gaz naturel, le pétrole ou les produits pétroliers, si le pipeline et l'équipement demeurent à l'endroit où ils se trouvaient à l'entrée en vigueur du présent règlement;

c) les câbles, s'ils demeurent à l'endroit où ils se trouvaient à l'entrée en vigueur du présent règlement.

19. (1) Le propriétaire de BPC ou de produits qui Obligation de en contiennent ou la personne qui en a la possession ou le contrôle est tenu, dans les trente jours suivant la date où ceux-ci cessent d'être transformés quotidiennement ou utilisés ou celle de l'entrée en vigueur du présent règlement, selon la plus tardive de ces dates :

a) soit de les expédier pour qu'ils soient détruits dans une installation agréée à cette fin;

b) soit de les stocker dans un dépôt de BPC pendant qu'ils ne sont pas transformés quotidiennement ou utilisés.

(2) Si les BPC ou les produits qui en contiennent Endroit éloigné sont éloignés de tout système routier ou se trouvent ou inaccessible à un endroit où il n'y a pas d'accès à un tel système, le propriétaire ou la personne peut les stocker dans un dépôt de BPC le plus tôt possible, sans toutefois dépasser un an à compter de la date où ils cessent d'être transformés quotidiennement ou utilisés ou celle de l'entrée en vigueur du présent règlement, selon la plus tardive de ces dates. Ils sont tenus d'appliquer des pratiques exemplaires de gestion pour les BPC et les produits dès qu'ils cessent d'être transformés quotidiennement ou utilisés, et ce, jusqu'à leur stockage dans un dépôt de BPC.

20. (1) À compter d'un an après la date d'entrée Interdiction en vigueur du présent règlement, il est interdit de stocker des BPC ou des produits qui en contiennent

Concentration égale ou supérieure à 50 mg/kg

stocker

following plants or facilities or on the land on which those plants or facilities are located and within 100 m of them:

(a) a drinking water treatment plant or a food or feed processing plant; or

(b) a child care facility, preschool, primary school, secondary school, hospital, or senior citizens' care facility.

Light ballasts (2) Subsection (1) does not apply to light ballasts.

Maximum 21. (1) Despite any other provision in these storage periods Regulations and subject to section 22, no person shall store PCBs or products containing PCBs, other than those referred to in section 23, beyond the following time limits:

> (a) one year, beginning on the day on which their use is no longer permitted under these Regulations or the day on which they are no longer processed daily or used, whichever is sooner, if the PCBs or products are stored at a facility that is not referred to in paragraph (1)(b) or (c);

> (b) one year, if the PCBs or products are stored at an authorized facility that is a transfer site; and (c) two years, if the PCBs or products are stored at an authorized facility that is authorized to destroy them.

- Transfer sites (2) If the PCBs or products containing PCBs are sent from one transfer site to another, the period referred to in paragraph (1)(b) begins when they are received at the first transfer site.
- Destruction (3) The owner or operator of the facility referred to in paragraph (1)(a) or (b) shall send the PCBs or products containing PCBs for destruction to an authorized facility that is authorized for that purpose within the time limit set out in those paragraphs.
- Exceptions to 22. (1) Section 21 does not apply to the storage maximum of storage periods

(a) liquids referred to in subsection 15(2) or for which an extension has been granted under subsection 17; or

(b) solids and liquids containing PCBs in a concentration of 50 mg/kg or more resulting from environmental restoration work and stored on site for the duration of the work, if the requirements set out in subsections (2) and (3) are complied with.

Information to (2) The owner of the land where the solids and be provided liquids referred to in paragraph (1)(b) are located shall submit to the Minister at least 30 days before the storage of the solids or liquids or within 30 days after the day on which these Regulations come into force, whichever is later, the following information:

> (a) the civic address of the restoration work site or if there is no civic address, the location using the Global Positioning System;

> (b) the date of commencement of the restoration work;

> (c) the anticipated date of completion of the restoration work; and

dans l'un des établissements ci-après ou sur le terrain d'un tel établissement, à 100 m ou moins de celui-ci :

a) une usine de traitement d'eau potable ou de transformation des aliments destinés aux humains ou aux animaux:

b) une garderie, une école — de niveau préscolaire, primaire ou secondaire ---, un hôpital ou une résidence pour personnes âgées.

(2) Le paragraphe (1) ne s'applique pas aux bal- Ballasts de lasts de lampes.

lampes

21. (1) Malgré toute autre disposition du présent Périodes règlement mais sous réserve de l'article 22, il est maximales de stockage interdit de stocker des BPC et des produits qui en contiennent, autres que ceux visés à l'article 23, audelà de la période applicable suivante :

a) un an à compter du jour où le présent règlement ne permet plus l'utilisation des BPC et des produits ou de celui, s'il est antérieur, où ils ont cessé d'être transformés quotidiennement ou utilisés, s'ils sont stockés à une installation qui n'est pas visée aux alinéas (1)b) ou c);

b) un an, s'ils sont stockés dans une installation agréée qui est un centre de transfert;

c) deux ans, s'ils sont stockés dans une installation agréée qui est autorisée à les détruire.

(2) Si les BPC et les produits qui en contiennent Centres de sont expédiés d'un centre de transfert à un autre, transfert la période prévue à l'alinéa (1)b) commence à courir le jour de leur réception au premier centre de transfert.

(3) Le propriétaire ou l'exploitant de l'installa- Destruction tion visée aux alinéas (1)a) ou b) est tenu d'expédier, dans le délai prévu à ces alinéas, les BPC ou les produits qui en contiennent pour qu'ils soient détruits dans une installation agréée à cette fin.

22. (1) L'article 21 ne s'applique pas au stockage : Périodes *a*) des liquides visés au paragraphe 15(2) ou pour maximate stockage lesquels une prolongation a été accordée en vertu exceptions de l'article 17;

b) des solides et des liquides qui contiennent des BPC en une concentration égale ou supérieure à 50 mg/kg et qui sont issus de travaux de restauration de l'environnement et stockés sur place pendant la durée des travaux, si les exigences prévues aux paragraphes (2) et (3) sont respectées.

(2) Le propriétaire du terrain où se trouvent les Renseignements solides ou les liquides visés à l'alinéa (1)b) fournit à fournir au ministre, au plus tard trente jours avant la date de leur stockage ou après celle de l'entrée en vigueur du présent règlement, selon la plus tardive de ces dates, les renseignements suivants :

a) l'adresse municipale de l'endroit où sont effectués les travaux de restauration ou, à défaut, sa localisation d'après le système mondial de localisation:

b) la date de début des travaux de restauration; c) la date prévue pour la fin des travaux de restauration;

maximales de

Gazette du Canada Partie II, Vol. 142, nº 19 SOR/DORS/2008-273 2008-09-17 Canada Gazette Part II, Vol. 142, No. 19

(d) the anticipated date of the end of storage of the solids or liquids.

(3) The person referred to in subsection (2) shall information notify the Minister in writing of the changes to be made at least 30 days before making any changes to the information provided under that subsection.

PCBs or products containing PCBs stored at the coming into force

site

Storage

requirements

Changes to

23. The person who owns PCBs or products containing PCBs, other than liquids for which an extension has been granted under section 17, that are stored on the day on which these Regulations come into force shall send them no later than December 31, 2009 for destruction to an authorized facility that is authorized for that purpose.

PCB storage 24. PCBs or products containing PCBs shall be stored at a site that is

> (a) a building, room, shipping container or other enclosed structure; or

> (b) an area that is enclosed by a woven mesh wire fence or any other fence or wall with similar security characteristics, and the fence or wall shall be at least 1.83 m high.

25. The owner or operator of a PCB storage site shall

(a) store all PCBs or products containing PCBs that are in liquid form in

(i) sealed containers, other than drums, that are made of steel or other metals that provide sufficient durability and strength to prevent those PCBs or products from being affected by the weather or released, or

(ii) drums that are

(A) of a capacity not greater than 205 L,

(B) a closed-head double-bung drum made

of steel having a gauge of 16 or heavier, and (C) painted or treated to prevent rusting;

(b) store all PCBs or products containing PCBs that are in solid form in

(i) containers, other than drums, that are made of steel or other materials that provide sufficient durability and strength to prevent those PCBs or products from being affected by the weather or released, or

(ii) drums that are

(A) of a capacity not greater than 205 L,

(B) made of steel having a gauge of 18 or heavier.

(C) equipped with a securely attached, removable steel lid and a gasket made of material that is resistant to the PCBs or the products containing PCBs that are stored in the drums, and

(D) painted or treated to prevent rusting;

(c) store equipment containing PCB liquids in

(i) containers, other than drums, that are made of steel or other materials that provide sufficient durability and strength to prevent the equipment from being affected by the weather and d) la date prévue pour la cessation du stockage des solides ou des liquides.

(3) Il avise également le ministre par écrit, au Modification moins trente jours à l'avance, de toute modification renseignements apportée aux renseignements fournis.

23. Le propriétaire de BPC ou de produits qui en BPC et contiennent, autres que des liquides pour lesquels produits qui en contiennent une prolongation a été accordée en vertu de l'artistockés à cle 17, qui sont stockés à l'entrée en vigueur du l'entrée en présent règlement est tenu de les expédier, au plus vigueur

24. Les BPC et les produits qui en contiennent Dépôt de BPC doivent être stockés dans un dépôt qui est :

tard le 31 décembre 2009, pour qu'ils soient détruits dans une installation agréée à cette fin.

a) soit un bâtiment, une pièce, un conteneur ou tout autre ouvrage fermé;

b) soit un endroit entouré d'une clôture grillagée ou d'un autre genre de clôture ou d'un mur présentant des caractéristiques similaires sur le plan de la sécurité, la clôture ou le mur ayant au moins 1,83 m de haut.

25. Le propriétaire ou l'exploitant d'un dépôt de Exigences BPC:

relatives au stockage

a) stocke les BPC et les produits en contenant qui sont des liquides dans :

(i) soit des contenants étanches, autres que des fûts, faits d'acier ou d'autres métaux offrant une durabilité et une solidité suffisantes pour que ces BPC et ces produits ne soient pas affectés par les conditions climatiques ni rejetés, (ii) soit des fûts qui, à la fois :

(A) ont une capacité d'au plus 205 L,

(B) sont faits d'acier d'épaisseur minimale 16, ont un dessus non amovible et sont munis de deux bondes,

(C) sont enduits d'une peinture ou d'un revêtement antirouille;

b) stocke les BPC et les produits en contenant qui sont des solides dans :

(i) soit des contenants, autres que des fûts, faits d'acier ou d'autres matériaux offrant une durabilité et une solidité suffisantes pour que ces BPC et ces produits ne soient pas affectés par les conditions climatiques ni rejetés,

(ii) soit des fûts qui, à la fois :

(A) ont une capacité d'au plus 205 L,

(B) sont faits d'acier d'épaisseur minimale 18, (C) sont dotés d'un couvercle d'acier amovible solidement fixé et d'un joint fait d'un matériau résistant aux BPC et aux produits en contenant qui y sont stockés,

(D) sont enduits d'une peinture ou d'un revêtement antirouille;

c) stocke les pièces d'équipement qui renferment des liquides contenant des BPC dans :

(i) soit des contenants, autres que des fûts, faits d'acier ou d'autres matériaux offrant une to prevent any PCB liquid that leaks from the equipment from being released, or

(ii) drums described in subparagraph (b)(ii);

(d) store all equipment that is not in a container, other than drained equipment, if that equipment contains PCB liquid, and all containers of PCB liquid, on a floor or surface that is made of steel, concrete or any other similar durable material and that is constructed with curbing or sides that are capable of containing

(i) if one piece of equipment or one container is being stored, 125% of the volume of the PCB liquid in the equipment or container, and

(ii) if more than one piece of equipment or more than one container is being stored, the greater of twice the volume of the PCB liquid in the largest piece of equipment or the largest container and 25% of the volume of all the PCB liquid stored on the floor or surface;

(e) if the material of the floor or surface or the curbing or sides referred to in paragraph (d) are capable of absorbing any PCB liquid or other product containing PCBs, seal the floor, surface, curbing or sides with an impervious, durable, PCB-resistant coating;

(f) ensure that all floor drains, sumps or other openings in the floor or surface referred to in paragraph (d) are

(i) closed and sealed to prevent the release of liquids, or

(ii) connected to a drainage system suitable for liquid dangerous goods that terminates at a location where any spilled liquids will be contained and recovered and where the spilled liquids will not create a fire hazard or a risk to public health or safety;

(g) place on skids or pallets all equipment containing PCBs and containers of PCBs or products containing PCBs that are not permanently secured to the floor or a surface;

(*h*) stack containers of PCBs and products containing PCBs, other than drums, only if the containers are designed for stacking, and stack containers of PCB liquid not more than two containers high;

(*i*) if drums containing PCBs or products containing PCBs are stacked, separate the drums from each other with pallets and, in the case of drums of PCB liquid, stack the drums not more than two drums high;

(*j*) store equipment containing PCBs, and containers of PCBs or products containing PCBs, in a manner that makes them accessible for inspection;

(*k*) store PCBs or products containing PCBs in a manner that prevents them from catching fire or being released;

(*l*) store PCBs or products containing PCBs together, and separate them from other stored materials; durabilité et une solidité suffisantes pour que les pièces d'équipement ne soient pas affectées par les conditions climatiques et que les liquides, s'ils fuient des pièces, ne soient pas rejetés,

(ii) soit des fûts visés au sous-alinéa b)(ii);

d) stocke les pièces d'équipement — autres que celles contenant des BPC qui ont été vidangées qui ne sont pas dans un contenant et qui renferment des liquides contenant des BPC, ainsi que tout contenant qui renferme de tels liquides, sur un plancher ou une surface fait d'acier, de béton ou d'un autre matériau durable semblable et entouré d'un rebord ou de côtés capables de retenir :

(i) si une seule pièce d'équipement ou un seul contenant est stocké, 125 % du volume des liquides contenant des BPC que renferme cette pièce d'équipement ou le contenant,

(ii) si plus d'une pièce d'équipement ou plus d'un contenant est stocké, le plus élevé des volumes suivants : le double du volume des liquides contenant des BPC que renferme la plus grosse pièce d'équipement ou le plus grand contenant ou 25 % du volume de l'ensemble des liquides contenant des BPC qui sont stockés sur le plancher ou la surface;

e) scelle, au moyen d'un revêtement étanche, durable et résistant aux BPC, le plancher, la surface, le rebord ou les côtés visés à l'alinéa *d*), lorsqu'ils peuvent absorber des liquides ou d'autres produits qui contiennent des BPC;

f) veille à ce que les drains de sol, puisards et autres ouvertures dans le plancher ou la surface visés à l'alinéa *d*) soient, selon le cas :

(i) obturés et scellés pour empêcher le rejet de liquides,

(ii) reliés à un réseau de drainage convenant aux marchandises dangereuses liquides, qui se jette dans un lieu où les liquides déversés seront confinés et récupérés et où ils ne constitueront pas un risque d'incendie ni un risque pour la santé et la sécurité publiques;

g) place sur des patins ou des palettes les pièces d'équipement contenant des BPC et les contenants renfermant des BPC ou des produits en contenant qui ne sont pas fixés de façon permanente à un plancher ou à une surface;

h) empile les contenants de BPC et de produits qui en contiennent, autres que les fûts, seulement s'ils sont conçus à cette fin et, dans le cas des contenants renfermant des liquides qui contiennent des BPC, ne les empile pas à plus de deux contenants de haut;

i) s'ils sont empilés, sépare les fûts de BPC et de produits qui en contiennent les uns des autres avec des palettes et, dans le cas des fûts renfermant des liquides qui contiennent des BPC, ne les empile pas à plus de deux fûts de haut;

(m) if reasonably practicable, equip any indoor PCB storage site having a mechanical exhaust system with heat or smoke sensory controls that stop the fan and close the intake and exhaust dampers in the event of a fire;

(*n*) if equipment or containers of PCB liquid are stored outdoors, cover all PCB equipment that is not in a container, other than drained equipment, if that equipment contains PCB liquid, and all containers of PCB liquid, with a weatherproof roof or barrier that protects the equipment and containers and prevents rain or snow from entering the curbing and the sides of the floor and the surface under them; and

(o) ensure that all drained PCB equipment and all containers of any PCB solid or PCB equipment are structurally sound and weatherproof if stored outdoors.

Access to PCB storage site

Inspection and

maintenance

storage site

of a PCB

26. The owner or operator of a PCB storage site shall keep all points of access to the PCB storage site locked or guarded.

27. The owner or operator of a PCB storage site shall

(a) inspect all floors, curbing, sides, drains, drainage systems, weatherproof roofs and barriers, fences and walls of the PCB storage site, any fire alarm system, fire extinguishers and fire suppression system and all equipment containing PCBs, containers used for the storage of PCBs or products containing PCBs and materials for clean-up at the PCB storage site

(i) each month,

(ii) at intervals of more than one month, if the Minister, on the written request of the owner or operator, determines that it is not reasonably practicable to inspect the site each month, due to its remote location, or

(iii) at intervals of less than one month, if more frequent inspections are necessary for the safe operation of the site; and

(b) keep in good condition and, if damaged, immediately repair or replace the floors, curbing, sides, drains, drainage systems, weatherproof roofs or barriers, fences, walls, fire alarm system, fire extinguishers, fire suppression system, equipment containing PCBs and containers and immediately clean up any contaminated area.

j) stocke les pièces d'équipement qui contiennent des BPC et les contenants renfermant des BPC ou des produits qui en contiennent de manière à ce qu'ils soient accessibles à des fins d'inspection; k) stocke les BPC et les produits qui en contiennent de façon à empêcher leur inflammation ou leur rejet;

l) stocke les BPC et les produits qui en contiennent ensemble, à l'écart des autres matériaux stockés;

m) dans la mesure du possible, munit tout dépôt de BPC intérieur ayant un dispositif mécanique de ventilation de commandes sensibles à la chaleur ou à la fumée qui, en cas d'incendie, arrêtent le ventilateur et ferment les registres d'admission et d'évacuation d'air;

n) s'ils sont stockés dehors, couvre les pièces d'équipement — autres que celles contenant des BPC qui ont été vidangées — qui ne sont pas dans un contenant et qui renferment des liquides contenant des BPC, ainsi que tout contenant qui renferme de tels liquides, d'une toiture ou d'un écran à l'épreuve des intempéries qui les protège et empêche la pluie et la neige de pénétrer à l'intérieur du rebord et des côtés du plancher et de la surface sur lesquels ils sont posés;

o) s'ils sont stockés dehors, veille à ce que les pièces d'équipement contenant des BPC qui ont été vidangées et tout contenant qui renferme des solides ou des pièces d'équipement contenant des BPC aient une structure en bon état et soient à l'épreuve des intempéries.

26. Le propriétaire ou l'exploitant d'un dépôt de Accès au dépôt BPC tient chaque point d'accès au dépôt verrouillé ou veille à ce qu'il soit gardé.

27. Le propriétaire ou l'exploitant d'un dépôt de Inspection et BPC :

de BPC

entretien des dépôts de BPC

a) en inspecte les planchers, les rebords, les côtés, les drains, les réseaux de drainage, les toitures et écrans à l'épreuve des intempéries, les clôtures, les murs, le système d'alarme-incendie, les extincteurs et le réseau d'extinction automatique, ainsi que les pièces d'équipement qui contiennent des BPC, les contenants servant au stockage des BPC ou des produits qui en contiennent et les agents de nettoyage qui s'y trouvent :

(i) tous les mois,

(ii) à des intervalles de plus d'un mois, si le ministre, à la demande écrite du propriétaire ou de l'exploitant, a déterminé qu'il est en pratique impossible d'inspecter le dépôt tous les mois en raison de son isolement,

(iii) à des intervalles de moins d'un mois, si l'exploitation du dépôt en toute sécurité exige des inspections plus fréquentes;

b) les garde en bon état et, en cas de dommage, les répare ou les remplace immédiatement et nettoie sur-le-champ les aires contaminées.

2008-09-17 Canada Gazette Part II, Vol. 142, No. 19 Gazette du Canada Partie II, Vol. 142, nº 19 SOR/DORS/2008-273

Fire protection and emergency procedures **28.** (1 site shall

28. (1) The owner or operator of a PCB storage site shall

(a) develop and implement at the PCB storage site a fire protection and emergency procedures plan and shall

(i) update and test the plan once per year,

(ii) keep a written copy of the latest plan at the PCB storage site and another at their principal place of business, and

(iii) make the latest plan readily available to persons who implement the plan and to the local fire department or to the local officer appointed by the provincial Fire Marshall if there is no local fire department or to any other local authority responsible for fire protection;

(*b*) ensure that all employees who are authorized to enter the PCB storage site are familiar with the contents of the latest plan;

(c) equip the indoor PCB storage site with a fully operative fire alarm system that is maintained, inspected and tested in accordance with articles 6.3.1.1 and 6.3.1.2 of the National Fire Code and with

(i) portable fire extinguishers that are selected and installed in accordance with article 2.1.5.1 of the National Fire Code and maintained, inspected and tested in accordance with article 6.2.1.1 of that Code, or

(ii) an automatic fire suppression system that meets the requirements of article 3.2.7.9 of the National Fire Code, if required;

(d) keep a copy of the records referred to in sections 43 and 44 at the PCB storage site and make a copy readily available to the local fire department and, if there is no local fire department, to the local officer appointed by the provincial Fire Marshall or to any other local authority responsible for fire protection;

(e) ensure that all employees who are authorized to enter the PCB storage site are made aware of the hazards of PCBs and are familiar with the use of protective equipment and clothing and the clean-up procedures referred to in the *Guidelines for the Management of Wastes Containing Polychlorinated Biphenyls (PCBs)*, CCME-TS/WM-TRE008, September 1989, as amended from time to time, issued by the Canadian Council of Ministers of the Environment; and

(*f*) store absorbent materials for clean-up near the PCB storage site.

Shipping containers

(2) Despite paragraph (1)(c), if the indoor PCB storage site is a shipping container, the owner or operator of the site does not have to equip that site with a fire alarm system.

28. (1) Le propriétaire ou l'exploitant d'un dépôt Protection contre les incendies et

a) élabore et met en œuvre un plan d'intervention mesures d'urgence et de lutte contre les incendies et : d'urgence

(i) le met à jour et le vérifie annuellement,

(ii) en conserve une copie écrite à jour au dépôt et à son établissement principal,

(iii) en met une copie à jour à la disposition de toute personne qui participe à sa mise en œuvre et au service d'incendie local ou, à défaut, au fonctionnaire local nommé par le commissaire provincial aux incendies ou à toute autre autorité locale chargée de la protection contre les incendies,

b) veille à ce que tous les employés autorisés à entrer dans le dépôt connaissent bien le contenu du plan à jour;

c) s'agissant d'un dépôt intérieur, le munit d'un système d'alarme-incendie en état de fonctionnement qui est entretenu, inspecté et mis à l'essai conformément aux exigences des articles 6.3.1.1 et 6.3.1.2 du Code national de prévention des incendies, ainsi que :

(i) soit d'extincteurs portatifs qui sont choisis et installés conformément à l'article 2.1.5.1 de ce code et qui sont entretenus, inspectés et mis à l'essai conformément aux exigences de l'article 6.2.1.1 de ce code,

(ii) soit d'un réseau d'extinction automatique conforme aux exigences de l'article 3.2.7.9 du même code, si celles-ci s'appliquent;

d) conserve au dépôt une copie des documents et registres visés aux articles 43 et 44 respectivement et en met une à la disposition du service d'incendie local ou, à défaut, au fonctionnaire local nommé par le commissaire provincial aux incendies ou à toute autre autorité locale chargée de la protection contre les incendies;

e) veille à ce que tous les employés autorisés à entrer dans le dépôt soient informés des dangers que présentent les BPC et connaissent bien l'utilisation du matériel et des vêtements de protection et les méthodes de nettoyage mentionnées dans le *Guide pour la gestion des déchets contenant des biphényles polychlorés (BPC)* CCME-TS/WM-TRE008, septembre 1989, avec ses modifications successives, publié par le Conseil canadien des ministres de l'environnement;

f) garde les matériaux absorbants servant au nettoyage près du dépôt.

(2) Malgré l'alinéa (1)c, le propriétaire ou l'ex- Conteneur ploitant d'un dépôt de BPC intérieur qui est un conteneur n'est pas tenu de le munir d'un système d'alarme-incendie.

PART 4

LABELLING, REPORTS AND RECORDS

LABELLING

Equipment and **29.** (1) The owner of equipment referred to in liquids used for section 16, other than equipment for which an extheir servicing tension has been applied for under section 17, or of a liquid used in its servicing referred to in subsection 15(2) shall affix a label in a readily visible location on the equipment or on the container of the liquid, no later than 30 days after the day on which it ceases to be used.

Equipment (2) The owner of equipment for which an extenfor which sion has been applied under section 17 shall affix a extension label in a readily visible location on the equipment. applied for

Exceptions (3) Subsection (1) does not apply to (a) equipment or containers of liquids that bear a label on the day on which these Regulations come into force that indicates the presence of PCBs; and

> (b) equipment that is too small, including light ballasts, to bear the label referred to in subsection (4), until the day on which they cease to be used and are placed in a container that bears the label.

Description (4) The label must

> (a) state "ATTENTION — contains 50 mg/kg or more of PCBs / contient 50 mg/kg ou plus de BPC" in black lettering on a white background, in a font size of no less than 36 points;

> (b) measure at least 150 mm by 150 mm or at least 76 mm by 76 mm in the case of capacitors; and

> (c) in the case of equipment for which an extension is applied for under section 17, state a unique identification number.

Cables and **30.** (1) The owner of a cable, a pipeline or equippipelines ment associated with a pipeline, referred to in paragraphs 14(1)(a) and (b), containing PCBs in a concentration of 50 mg/kg or more that is in a room, a tunnel or a facility shall either

> (a) affix the label in the form set out in subsection 29(4) in a readily visible location on a part of the cable, pipeline or associated equipment that is accessible; or

> (b) place a notice in a readily visible location at the entrance of the room, tunnel or facility that states the information set out in paragraph 29(4)(a) and measures at least 150 mm by 150 mm.

If dismantled (2) If a part of the cable, pipeline or associated equipment is dismantled, the owner of the cable, pipeline or associated equipment shall affix on each dismantled part the label in the form set out in

PARTIE 4

ÉTIQUETAGE, RAPPORTS ET DOSSIERS

ÉTIQUETAGE

29. (1) Le propriétaire d'une pièce d'équipement Pièces d'équipement visée à l'article 16, autre qu'une pièce d'équipement qui fait l'objet d'une demande de prolongaleur entretien tion en vertu de l'article 17, ou de tout liquide utilisé pour l'entretien visé au paragraphe 15(2) est tenu d'apposer une étiquette, à un endroit bien en vue sur la pièce d'équipement ou le contenant du liquide, au plus tard trente jours après que la pièce ou le contenant cesse d'être utilisé.

(2) Le propriétaire d'une pièce d'équipement qui Équipement fait l'objet d'une demande de prolongation en vertu de l'article 17 est tenu d'y apposer une étiquette à de prolongation un endroit bien en vue.

d'une demande

et liquides pour

Exceptions

(3) Le paragraphe (1) ne s'applique pas : a) aux pièces d'équipement et aux contenants de liquide qui portent, à l'entrée en vigueur du présent règlement, une étiquette qui indique la présence de BPC;

b) aux pièces d'équipement qui sont trop petites, y compris les ballasts de lampes, pour que l'étiquette visée au paragraphe (4) y soit apposée, jusqu'à ce qu'elles cessent d'être utilisées et qu'elles soient placées dans un contenant sur lequel l'étiquette est apposée.

(4) L'étiquette doit :

a) porter la mention « ATTENTION — contains 50 mg/kg or more of PCBs / contient 50 mg/kg ou plus de BPC », inscrite en caractères d'au moins 36 points, en noir sur fond blanc;

b) être d'une dimension minimale de 150 mm sur 150 mm ou, dans le cas d'un condensateur, 76 mm sur 76 mm;

c) dans le cas d'une pièce d'équipement qui fait l'objet d'une demande de prolongation en vertu de l'article 17, porter un numéro d'identification unique.

30. (1) Le propriétaire de câbles, de pipelines ou Câbles et d'équipement connexe visés aux alinéas $\hat{14}(1)(a)$ et ^{pipelines} (b) qui contiennent des BPC en une concentration égale ou supérieure à 50 mg/kg et se trouvent dans une pièce, un tunnel ou une installation est tenu :

a) soit d'apposer une étiquette conforme au paragraphe 29(4) à un endroit bien en vue sur toute partie accessible du câble, pipeline ou équipement connexe:

b) soit de placer à l'entrée de la pièce, du tunnel ou de l'installation à un endroit bien en vue une affiche d'une dimension minimale de 150 mm sur 150 mm portant la mention prévue à l'alinéa 29(4)a).

(2) En cas de désassemblage d'une partie du câ- Désassemblage ble, du pipeline ou de l'équipement connexe, le propriétaire de ceux-ci est tenu, dans les trente jours suivant le désassemblage, d'apposer une étiquette

Description

subsection 29(4), no later than 30 days after the day on which it is dismantled.

A facility other than transfer site or destruction facility

End of use of

equipment and

31. (1) The owner or operator of a PCB storage site, other than the PCB storage site of an authorized facility that is a transfer site or that is authorized to destroy PCBs, shall affix a label in a readily visible location on any product containing PCBs in a concentration of 50 mg/kg or more and that are stored at the PCB storage site, which

(a) is in the form referred to in subsection 29(4); and

(b) states "Date of Commencement of Storage" and the date on which the storage begins.

Transfer site (2) The owner or operator of the PCB storage or destruction site of an authorized facility that is a transfer site or facility that is authorized to destroy PCBs shall affix a label in the form set out in subsection 29(4) in a readily visible location on any container that is a fixed tank and that is used at the facility for the storage of PCBs or products containing PCBs in a concentration of 50 mg/kg or more.

Notice (3) The owner or operator of a PCB storage site shall place a notice in a readily visible location at the entrance of the site that states the information set out in paragraph 29(4)(a) and that measures at least 150 mm by 150 mm.

Exception (4) Subsections (1) and (2) do not apply if the product or the container bear a label on the day on which these Regulations come into force that indicates the presence of PCBs and that states "Date of Commencement of Storage" and the date on which the storage begins.

Retention **32.** The person who is required to affix a label on of labels a product or container in accordance with sections 29 to 31 shall ensure that it bears that label for the duration that the person possesses the product or container.

REPORTS

33. (1) The owner of the equipment referred to in paragraph 16(1)(a) and subparagraph 16(1)(b)(i), liquids -2009other than the equipment for which an extension is granted by the Minister in accordance with section 17, or the liquids referred to in subsection 15(2) shall prepare a report that is current to December 31 of each calendar year in which the person owns the equipment or the liquids and that contains the following information:

> (a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the owner and any person authorized to act on the owner's behalf;

> (b) the civic addresses of the facilities where the equipment and liquids are located or, if there is no civic address, their location using the owner's site identification system;

conforme au paragraphe 29(4) sur chaque partie désassemblée du câble, du pipeline ou de l'équipement connexe.

31. (1) Le propriétaire ou l'exploitant d'un dépôt Installation de BPC d'une installation autre qu'une installation autre qu'un agréée qui est un centre de transfert ou qui est autorisée à détruire des BPC est tenu d'apposer une de destruction étiquette à un endroit bien en vue sur tout produit en contenant qui y sont stockés et qui contiennent des BPC en une concentration égale ou supérieure à 50 mg/kg; l'étiquette

a) est conforme au paragraphe 29(4);

b) porte la mention « Date de début de stockage » et la date de début de stockage.

(2) Le propriétaire ou l'exploitant d'un dépôt de Centre de BPC d'une installation agréée qui est un centre de transfert ou transfert ou qui est autorisée à détruire des BPC est tenu d'apposer une étiquette conforme au paragraphe 29(4) à un endroit bien en vue sur tout contenant qui est un réservoir fixe utilisé pour stocker des BPC à l'installation ou des produits qui en contiennent en une concentration égale ou supérieure à 50 mg/kg.

(3) Le propriétaire ou l'exploitant d'un dépôt de Affiche BPC place à l'entrée du dépôt à un endroit bien en vue une affiche d'une dimension minimale de 150 mm sur 150 mm portant la mention prévue à l'alinéa 29(4)a).

(4) Les paragraphes (1) et (2) ne s'appliquent pas Exception si le produit ou le contenant porte, à l'entrée en vigueur du présent règlement, une étiquette qui indique la présence de BPC, qui porte la mention « Date de début de stockage » et indique la date de début de stockage.

32. La personne qui a l'obligation d'apposer une Conservation étiquette sur un produit ou un contenant en application des articles 29 à 31 veille à ce que le produit ou le contenant la porte en tout temps pendant qu'il est en sa possession.

RAPPORTS

33. (1) Le propriétaire des pièces d'équipement Date de fin visées à l'alinéa 16(1)a) ou au sous-alinéa 16(1)b)(i), autres que celles pour lesquelles une prolongation a d'équipement été accordée par le ministre en vertu de l'article 17, ou des liquides visés au paragraphe 15(2) est tenu de préparer un rapport, au 31 décembre de chaque année civile durant laquelle il en est propriétaire, comportant les renseignements suivants :

a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom:

b) l'adresse municipale des installations où se trouvent les pièces d'équipement et les liquides ou, à défaut, l'endroit où ils se trouvent d'après le système d'identification de site du propriétaire;

centre de transfert ou

de destruction

des étiquettes

d'utilisation des pièces et des liquides -2009

(c) the quantity of the liquids containing PCBs in the equipment and of the liquids, expressed in litres.

(i) that are in use on December 31,

(ii) that are stored on December 31 at the person's PCB storage site,

(iii) that are sent, in that calendar year, to an authorized facility that is a transfer site,

(iv) that are sent, in that calendar year, to an authorized facility that is authorized to destroy them, or

(v) that are destroyed in that calendar year; and

(d) a certification that the information is accurate and complete and that is dated and signed by the owner or by a person authorized to act on the owner's behalf.

Equipment and liquids for which extension granted

(2) The owner of the equipment referred to in paragraph 16(1)(a) and subparagraph 16(1)(b)(i) or the liquids referred to in subsection 15(2) for which an extension is granted by the Minister in accordance with section 17 shall prepare a report that is current to December 31 of each calendar year in which the person owns the equipment or the liquids and that contains the following information for each piece of equipment or container of liquid:

(a) the information required under paragraphs (1)(a) and (d);

(b) the unique identification number that is on the label referred to in paragraph 29(4)(c);

(c) the civic address, function and technical description of the facility where the equipment or container of liquid is located or, if there is no civic address, its location using the owner's site identification system;

(d) the progress on the plan's implementation and the timelines for ending the use of the equipment;

(e) the measures taken to minimize or eliminate any harmful effect of the PCBs in the equipment on the environment and on human health; and

(f) the findings of the inspections of the equipment.

End of use of equipment -2025

(3) The owner of the equipment referred to in subparagraph 16(1)(b)(ii) and subsection 16(2) shall prepare a report that is current to December 31 of each calendar year in which the person owns the equipment and that contains the following information:

(a) the information required under paragraphs (1)(*a*), (*b*) and (*d*); and

(b) the quantity, expressed in litres, of liquids containing PCBs in the equipment, and the concentration, expressed in mg/kg, of the PCBs

(i) that are stored on December 31 at the person's PCB storage site,

c) la quantité, exprimée en litres, de liquides qui contiennent des BPC dans les pièces d'équipement et de liquides :

(i) en usage le 31 décembre,

(ii) stockés à son dépôt le 31 décembre,

(iii) expédiés, au cours de l'année civile, à une installation agréée qui est un centre de transfert.

(iv) expédiés, au cours de l'année civile, à une installation agréée qui est autorisée à les détruire,

(v) détruits au cours de l'année civile;

d) une attestation, datée et signée par lui ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.

(2) Le propriétaire des pièces d'équipement vi- Pièces sées à l'alinéa 16(1)a) ou au sous-alinéa 16(1)b)(i) ou des liquides visés au paragraphe 15(2) pour lesquels une prolongation a été accordée par le ministre en vertu de l'article 17 est tenu de préparer un été accordée rapport, au 31 décembre de chaque année civile durant laquelle il en est propriétaire, comportant les renseignements suivants pour chaque pièce d'équipement et contenant de liquides :

d'équipement et liquides pour lesquels une prolongation a

a) les renseignements prévus aux alinéas (1)a) et d);

b) le numéro d'identification unique figurant sur l'étiquette conformément à l'alinéa 29(4)c;

c) l'adresse municipale. la fonction et les caractéristiques techniques de l'installation où se trouvent la pièce d'équipement ou le contenant des liquides ou, à défaut, l'endroit où il se trouvent d'après le système d'identification de site du propriétaire;

d) le progrès accompli dans la mise en œuvre du plan et de l'échéancier dressé en vue de la cessation de l'utilisation de la pièce d'équipement;

e) les mesures prises pour éliminer ou atténuer tout effet nocif des BPC contenus dans la pièce d'équipement sur l'environnement et la santé humaine;

f) les résultats des inspections de la pièce d'équipement.

(3) Le propriétaire des pièces d'équipement Date de fin d'utilisation visées au sous-alinéa 16(1)b)(ii) ou au paragrades pièces phe 16(2) est tenu de préparer un rapport, au d'équipement 31 décembre de chaque année civile durant laquelle il en est propriétaire, comportant les renseignements suivants :

a) les renseignements prévus aux alinéas (1)a), b) et d):

b) la quantité de liquides qui contiennent des BPC dans les pièces d'équipement, exprimée en litres, et la concentration de ces BPC dans les liquides, exprimée en mg/kg :

(i) stockés à son dépôt de BPC le 31 décembre,

- 2025

(ii) that are sent, in that calendar year, to an authorized facility that is a transfer site,

(iii) that are sent, in that calendar year, to an authorized facility that is authorized to destroy them, or

(iv) that are destroyed in that calendar year.

Research

34. The person who offers for sale, sells, processes or uses PCBs or products containing PCBs for the purpose of research in accordance with section 8 shall prepare a report that is current to December 31 in each calendar year in which the person offers for sale, sells, processes or uses those PCBs or products and that contains the following information:

(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the person and of any person authorized to act on that person's behalf;

(b) an indication of whether the person offers for sale, sells, processes or uses the PCBs or products; (c) the quantity of the PCBs or of the products containing PCBs that are offered for sale, sold, processed or used in that calendar year; and

(d) a certification that the information is accurate and complete and that is dated and signed by the person or by a person authorized to act on their behalf.

Colouring pigment

35. The person who manufactures, exports or imports colouring pigment in accordance with section 11 shall prepare a report that is current to December 31 in each calendar year in which the person manufactures, imports or exports the colouring pigment and that contains the following information:

(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the person and of any person authorized to act on that person's behalf;

(b) an indication of whether the person manufactures, exports or imports colouring pigment;

(c) the quantity of colouring pigment, expressed in kilograms, the maximum concentration of PCBs in the colouring pigment, expressed in mg/kg, and the average annual concentration of PCBs in the colouring pigment, expressed in mg/kg, that is manufactured, imported or exported in that calendar year;

(d) in the case of importing, the name, telephone number and civic and mailing addresses of the person from whom the colouring pigment is imported and, in the case of exporting, the name, telephone number and civic and mailing addresses of the person to whom the colouring pigment is exported; and

(e) a certification that the information is accurate and complete and that is dated and signed by the person or by a person authorized to act on their behalf.

(ii) expédiés, au cours de l'année civile, à une installation agréée qui est un centre de transfert.

(iii) expédiés, au cours de l'année civile, à une installation agréée qui est autorisée à les détruire.

(iv) détruits au cours de l'année civile.

la coloration

34. La personne qui met en vente, vend, trans- Recherches forme ou utilise des BPC ou des produits qui en contiennent en vue d'effectuer des recherches conformément à l'article 8 est tenue de préparer un rapport, au 31 décembre de chaque année civile durant laquelle elle les a mis en vente, vendus, utilisés ou transformés, comportant les renseignements suivants :

a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom;

b) une mention indiquant si elle les a mis en vente, vendus, transformés ou utilisés;

c) la quantité de BPC ou de produits qui ont été mis en vente, vendus, transformés ou utilisés durant l'année civile;

d) une attestation, datée et signée par elle ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.

35. La personne qui fabrique, exporte ou im- Pigments pour porte, conformément à l'article 11, des pigments pour la coloration est tenue de préparer un rapport, au 31 décembre de chaque année civile durant laquelle elle les fabrique, exporte ou importe, comportant les renseignements suivants :

a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom:

b) une mention indiquant si elle les a fabriqués, exportés ou importés;

c) la quantité, exprimée en kilogrammes, de pigments qui ont été fabriqués, exportés ou importés durant l'année civile ainsi que la concentration moyenne annuelle et la concentration maximale en BPC de ces pigments, exprimée en mg/kg;

d) les nom, adresses municipale et postal et numéro de téléphone de la personne de qui proviennent les pigments, dans le cas où ils sont importés, ou à qui ils sont expédiés, dans le cas où ils sont exportés:

e) une attestation, datée et signée par elle ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.

Gazette du Canada Partie II, Vol. 142, nº 19 SOR/DORS/2008-273 2008-09-17 Canada Gazette Part II, Vol. 142, No. 19

Solid products containing PCBs

36. The person who manufactures solid products containing PCBs in accordance with section 13 shall prepare a report that is current to December 31 in each calendar year in which the person manufactures the products and that contains the following information:

(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the person and of any person authorized to act on that person's behalf;

(b) the quantity of solid products manufactured in that calendar year, expressed in kilograms, and the maximum concentration and average concentration of PCBs in the solid products, expressed in mg/kg, for that calendar year;

(c) the name, telephone number and civic and mailing addresses of the person to whom the manufacturer sells the products; and

(d) a certification that the information is accurate and complete and that is dated and signed by the person or by a person authorized to act on their behalf.

Stored PCBs or products PCB concentration of 50 mg/kg or more

37. The person who owns and stores PCBs or products containing PCBs in a concentration of 50 mg/kg or more, other than the equipment and liquids referred to in section 33, shall prepare a report that is current to December 31 in each calendar year in which the person stores the PCBs or products at their PCB storage site and that contains the following information:

(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the owner and of any person authorized to act on the owner's behalf;

(b) the civic addresses of the PCB storage sites where the PCBs or products are located, or if there is no civic address, their location using the owner's site identification system;

(c) the quantity of liquids containing PCBs in the products, expressed in litres, and the quantity of solids containing PCBs in the products, expressed in kilograms, and the concentration of PCBs in the liquids and the solids, expressed in mg/kg

(i) that are stored on December 31 at the person's PCB storage site,

(ii) that are sent, in that calendar year, to an authorized facility that is a transfer site,

(iii) that are sent, in that calendar year, to an authorized facility that is authorized to destroy them, or

(iv) that are destroyed in that calendar year; and

(d) a certification that the information is accurate and complete and that is dated and signed by the owner of the PCBs or products containing PCBs or by a person authorized to act on the owner's behalf

36. La personne qui fabrique, conformément à Produits solides l'article 13, des produits solides qui contiennent des dui contiennent des BPC BPC est tenue de préparer un rapport, au 31 décembre de chaque année civile durant laquelle elle les fabrique, comportant les renseignements suivants :

a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom:

b) la quantité, exprimée en kilogrammes, de produits qui ont été fabriqués durant l'année civile ainsi que la concentration moyenne et la concentration maximale en BPC de ces produits, exprimée en mg/kg, pour cette année civile;

c) les nom, adresse municipale et postale et numéro de téléphone de la personne à qui elle a vendu les produits;

d) une attestation, datée et signée par elle ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.

37. Le propriétaire de BPC ou de produits qui en BPC ou contiennent en une concentration égale ou supé- produits rieure à 50 mg/kg, autres que les pièces d'équipement ou les liquides visés à l'article 33, qui les de BPC de stocke à son dépôt de BPC est tenu de préparer un 50 mg/kg ou rapport, au 31 décembre de chaque année civile plus durant laquelle il les stocke ainsi, comportant les renseignements suivants :

stockés concentration

a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom:

b) l'adresse municipale des dépôts où sont stockés les BPC et les produits ou, à défaut, l'endroit où ils se trouvent d'après le système d'identification de site du propriétaire;

c) la quantité de liquides qui contiennent des BPC dans les produits, exprimée en litres, la quantité de solides qui contiennent des BPC dans les produits, exprimée en kilogrammes, et la concentration de BPC dans les liquides ou les solides, exprimée en mg/kg :

(i) stockés à son dépôt de BPC le 31 décembre,

(ii) expédiés, au cours de l'année civile, à une installation agréée qui est un centre de transfert.

(iii) expédiés, au cours de l'année civile, à une installation agréée qui est autorisée à les détruire.

(iv) détruits au cours de l'année civile,

d) une attestation, datée et signée par lui ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.

Gazette du Canada Partie II, Vol. 142, nº 19 SOR/DORS/2008-273 2008-09-17 Canada Gazette Part II, Vol. 142, No. 19

Stored PCBs or products transfer site or destruction facility

38. The owner of an authorized facility that is a transfer site or that is authorized to destroy PCBs or products containing PCBs and who stores them at their PCB storage site, other than the owner referred to in section 37, shall prepare a report that is current to December 31 in each calendar year and that contains the following information:

(a) the name, civic and mailing addresses, telephone number, fax number, if any, and e-mail address, if any, of the owner and of any person authorized to act on the owner's behalf;

(b) the civic addresses of the sites where the PCBs or products containing PCBs are stored, or if there is no civic address, the location of the sites using the owner's site identification system; (c) the quantity of liquids containing PCBs in the products, expressed in litres, or the quantity of solids containing PCBs in the products, expressed in kilograms, and the concentration of the PCBs in the liquids and the solids, expressed in mg/kg

(i) that are stored on December 31 at the owner's PCB storage site,

(ii) that are sent, in that calendar year, to an authorized facility that is a transfer site,

(iii) that are sent, in that calendar year, to an authorized facility that is authorized to destroy them, or

(iv) that are destroyed in that calendar year; and

(d) a certification that the information is accurate and complete and that is dated and signed by the owner of the authorized facility or by a person authorized to act on the owner's behalf.

Date of 39. (1) The person who is required to prepare a submission report in accordance with subsection 33(1) or (2) of report and with any of sections 34 to 38 shall submit it to the Minister on or before March 31 of the year following the calendar year for which the report is made.

Report (2) The person who is required to prepare a remade under port in accordance with subsection 33(3) shall subsubsection 33(3) mit it to the Minister

> (a) on or before March 31, 2010 for reports that are current to December 31 of the year that these Regulations come into force up to the year 2009; (b) on or before March 31, 2014 for reports that are current to December 31 of each of the years

> 2010 to 2013; (c) on or before March 31, 2018 for reports that

> are current to December 31 of each of the years 2014 to 2017;

> (d) on or before March 31, 2022 for reports that are current to December 31 of each of the years 2018 to 2021;

> (e) on or before March 31, 2026 for reports that are current to December 31 of each of the years 2022 to 2025;

38. Le propriétaire d'une installation agréée qui BPC ou est un centre de transfert ou qui est autorisée à dé- produits truire des BPC et des produits qui en contiennent, Centre de autre que le propriétaire visé à l'article 37, et qui transfert ou les stocke à son dépôt de BPC est tenu de préparer de destruction un rapport, au 31 décembre de chaque année civile durant laquelle il les transforme ou les détruit, comportant les renseignements suivants :

stockés -

a) ses nom, adresses municipale et postale, numéro de téléphone et, le cas échéant, numéro de télécopieur et adresse électronique, ainsi que ceux de toute personne autorisée à agir en son nom:

b) l'adresse municipale des dépôts où sont stockés les BPC et les produits ou, à défaut, l'endroit où ils se trouvent d'après le système d'identification de site du propriétaire;

c) la quantité de liquides qui contiennent des BPC dans les produits, exprimée en litres, la quantité de solides qui contiennent des BPC dans les produits, exprimée en kilogrammes, et la concentration de BPC dans les liquides ou les solides, exprimée en mg/kg :

(i) stockés à son dépôt de BPC le 31 décembre,

(ii) expédiés, au cours de l'année civile, à une installation agréée qui est un centre de transfert.

(iii) expédiés, au cours de l'année civile, à une installation agréée qui est autorisée à les détruire,

(iv) détruits au cours de l'année civile,

d) une attestation, datée et signée par lui ou par toute personne autorisée à agir en son nom, portant que les renseignements sont complets et exacts.

39. (1) La personne qui est tenue de préparer tout Date de rapport visé aux paragraphes 33(1) ou (2) ou à l'un présentation des articles 34 à 38 le présente au ministre au plus tard le 31 mars de l'année civile qui suit celle pour laquelle il est établi.

des rapports

(2) Celle qui est tenue de préparer le rapport visé Rapport visé au paragraphe 33(3) le présente au ministre :

au paragraphe 33(3) a) au plus tard le 31 mars 2010, s'il porte sur toute année civile suivant l'entrée en vigueur du présent règlement jusqu'à l'année 2009;

b) au plus tard le 31 mars 2014, s'il porte sur l'une ou l'autre des années 2010 à 2013;

c) au plus tard le 31 mars 2018, s'il porte l'une ou l'autre des années 2014 à 2017;

d) au plus tard le 31 mars 2022, s'il porte sur l'une ou l'autre des années 2018 à 2021;

e) au plus tard le 31 mars 2026, s'il porte sur l'une ou l'autre des années 2022 à 2025;

f) au plus tard le 31 mars 2027, s'il porte sur l'année 2026:

g) au plus tard le 31 mars 2030, s'il porte sur l'une ou l'autre des années 2027 à 2029.

l'environnement

(f) on or before March 31, 2027 for reports that are current to December 31 of the year 2026; and (g) on or before March 31, 2030 for reports that are current to December 31 of each of the years 2027 to 2029.

Release into the **40.** (1) For the purposes of paragraph 95(1)(a) of environment the Act, where there occurs or is a likelihood of a release into the environment of PCBs in contravention of section 5, the person who is designated to be provided with a written report is the Manager of Inspection Program, Environmental Enforcement Division, Enforcement Branch of the Department of the Environment in the region where the release occurs or is likely to occur.

Contents

(2) The report shall include the following information:

(a) the name, civic and mailing addresses and telephone number of the person who owns or has the charge, management or control of the PCBs that are released into the environment;

(b) the date, time and location of the release;

(c) a description of the source of the release; and (d) the quantity of liquids containing PCBs released, expressed in litres, the quantity of solids containing PCBs released, expressed in kilograms, and the concentration of PCBs in the liquids and the solids that are released, expressed in mg/kg.

Retention 41. Any person who is required to submit a report under these Regulations shall keep a copy of the report at their principal place of business in Canada for at least five years after the day on which the report is submitted.

Method of submission

permitted

activities

42. Each report referred to in sections 33 to 38 shall be submitted electronically in the format provided by the Department of the Environment, but the report shall be submitted in writing if

(a) no such format is provided; or

(b) it is, owing to circumstances beyond the control of the person required to submit the report, impracticable to submit the report electronically in the format provided.

RECORDS

Records for **43.** The following persons shall maintain records that demonstrate that they manufacture, process, use, sell, offer for sale, store, import or export PCBs or products containing PCBs in accordance with the Act and these Regulations:

> (a) the owner of PCBs or products containing PCBs:

> (b) the person who is engaged in any of these activities; and

(c) the owner or operator of a PCB storage site.

Inspection 44. (1) The owner or operator of a PCB storage record site shall maintain a record of all inspections conducted at the PCB storage site under paragraph 27(a)

(a) listing all items that are inspected;

(b) describing any deficiency found;

40. (1) Pour l'application de l'alinéa 95(1)(a) de Rejets dans la Loi, en cas de rejet dans l'environnement ---effectif ou probable - de BPC en violation de l'article 5, la personne désignée pour recevoir le rapport écrit est le Gestionnaire du programme d'inspection, Direction de l'application de la loi en environnement, Direction générale de l'application de la loi du ministère de l'Environnement, dans la région où a lieu le rejet — effectif ou probable.

(2) Le rapport comporte les renseignements Contenu suivants :

a) les nom, adresses municipale et postale et numéro de téléphone de la personne qui a toute autorité sur les BPC qui ont été rejetés dans l'environnement ou qui en est propriétaire;

b) les date, heure et lieu du rejet;

c) une description de la source du rejet;

d) la quantité de liquides qui contiennent des BPC rejetés, exprimée en litres, la quantité de solides qui contiennent des BPC rejetés, exprimée kilogrammes, et la concentration de BPC dans les liquides ou les solides rejetés, exprimée en mg/kg.

41. Toute personne qui est tenue de présenter un Conservation rapport en application du présent règlement en conserve une copie à son établissement principal au Canada pendant au moins cinq ans après la date de sa présentation.

42. Les rapports visés aux articles 33 à 38 sont Méthode de présentés sous forme électronique selon le modèle présentation établi par le ministère de l'Environnement. Ils sont toutefois présentés par écrit dans les cas suivants :

a) aucun modèle n'a été établi par le ministère;

b) il est pratiquement impossible, pour des raisons indépendantes de la volonté de la personne tenue de les présenter, de le faire sous forme électronique selon le modèle établi.

DOCUMENTS ET REGISTRES

43. Les personnes ci-après conservent les docu- Documents ments établissant que des BPC ou des produits qui en contiennent ont été fabriqués, transformés, utilisés, mis en vente, vendus, stockés, importés ou exportés conformément à la Loi et au présent règlement :

a) le propriétaire des BPC ou des produits;

b) la personne qui exerce l'activité;

c) le propriétaire ou l'exploitant du dépôt de BPC.

44. (1) Le propriétaire ou l'exploitant d'un dépôt Registres de BPC tient un registre de toutes les inspections d'inspections effectuées au dépôt de BPC en application de l'alinéa 27*a*), lequel fait état :

a) de tous les points inspectés;

concernant les

activités permises

Gazette du Canada Partie II, Vol. 142, nº 19 SOR/DORS/2008-273 2008-09-17 Canada Gazette Part II, Vol. 142, No. 19

(c) setting out the measures taken to remedy the deficiency; and

(d) specifying the dates of the inspections and the names of the inspectors.

Owner of equipment extension

Repeal

(2) The owner of equipment for which an extension of the end-of-use date is applied under section 17 shall maintain a record of all inspections conducted on the equipment that contains the information set out in paragraphs (1)(a) to (d).

Retention of 45. The person who is required to maintain a rerecords cord under sections 43 and 44 shall retain it at their principal place of business in Canada or at the place where they conduct the activity for at least five years

> (a) after the destruction of the PCBs or the products containing PCBs that are the subject of the record, in the case of the owner of PCBs or products containing PCBs or the owner or operator of the PCB storage site where the PCBs or products containing PCBs are stored; or

> (b) after the completion of an activity referred to in section 43, in the case of the person who is engaged in that activity.

PART 5

REPEALS AND COMING INTO FORCE

REPEALS

- Repeal 46. The Chlorobiphenyls Regulations¹ are repealed.
 - 47. The Storage of PCB Material Regulations² are repealed.

COMING INTO FORCE

Coming into 48. These Regulations come into force on the force day on which they are registered.

b) de toutes les lacunes relevées;

c) des mesures à prendre pour y remédier;

d) de la date de l'inspection et du nom de l'inspecteur.

(2) Le propriétaire d'une pièce d'équipement Propriétaire dont l'utilisation fait l'objet d'une prolongation en vertu de l'article 17 tient un registre de toutes les ment inspections de la pièce d'équipement qui ont été prolongation effectuées, lequel fait état des renseignements prévus aux alinéas (1)a à d).

son établissement principal au Canada ou à l'établissement où l'activité est exercée pendant au

d'une pièce d'équipe-

45. Toute personne qui est tenue de conserver Conservation des dossiers des documents ou de tenir un registre en application des articles 43 et 44 respectivement les conserve à

moins cinq ans après : a) dans le cas du propriétaire de BPC ou de produits qui en contiennent ou du propriétaire ou de l'exploitant d'un dépôt de BPC où sont stockés des BPC ou des produits qui en contiennent, la date de destruction des BPC ou des produits qui en contiennent visés par le document ou le registre; b) dans le cas de la personne qui exerce une activité visée à l'article 43, la date de la fin de l'activité.

PARTIE 5

ABROGATIONS ET ENTRÉE EN VIGUEUR

ABROGATION

46. Le Règlement sur les biphényles chlorés¹ est Abrogation abrogé.

47. Le Règlement sur le stockage des matériels Abrogation contenant des BPC² est abrogé.

Entrée en vigueur

48. Le présent règlement entre en vigueur à la Entrée en date de son enregistrement.

vigueur

SOR/91-152

² DORS/92-507; DORS/2000-102, a. 15

² SOR/92-507; SOR/2000-102, s. 15

CI Number: 41535

Title:

2012 Steel Tower Protective Painting System

Start Date:	2012/05
Final Cost Date:	2012/11
Function:	Transmission
Forecast Amount:	\$1,270,605

DESCRIPTION:

This project provides for the cost to re-apply anti-corrosive paint to lattice steel towers in order to extend the life of the structures. It is planned that 4 towers be painted on the Canso Crossing and 5 towers be painted on the Halifax/Dartmouth Harbour Crossing.

The cost includes the removal and collection of the existing loose lead paint, the proper disposal of the lead paint, working at heights up to 300 feet and in close proximity to energized lines as well as material costs.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Maintenance

Why do this project?

The environmental ambient conditions that these towers are exposed to have deteriorated the protective coating on the structures and they are beginning to show signs of corrosion.

Why do this project now?

Towers require repainting in order to minimize the loss of metal through corrosion, which will shorten the remaining life of the towers if left unchecked. The towers will be prioritized based on the age of the structures and the latest field inspection data.

Why do this project this way?

The most cost effective approach is to repaint the steel towers prior to the corrosion penetrating the existing paint protective system and contacting the metal after which painting is no longer an effective mitigation solution.

CI Number : 41535

.

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

Budget Version 2012 ACE Plan

Capital Item Accounts

Variance	20,775	8,941	15,184	31,648		50,000		63,240	1,000	0	0	2,000	41,000	0	1,270,605	
Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Forecast Amount	20,775	8,941	15,184	31,648		50,000		63,240	1,000	0	0	2,000	41,000	0	1,270,605	
															Total Cost:	Original Cost:
Activity						037 - DP - Steel Towers	037 - DP - Steel Towers	085 Design	085 Design	085 Design	085 Design	085 Design	087 Field Super.& Ops.	087 Field Super.& Ops.		
Account	092-Vehicle T&D Reg. Labour AO	094 - Interest Capitalized	095-Thermal Regular Labour AO	095-COPS Regular Labour AO	095-COPS Contracts AO	012 - Materials	013 - COPS Contracts	001 - THERMAL Regular Labour	001 - Regular Labour (No AO)	002 - THERMAL Overtime Labour	002 - Overtime Labour (No AO)	011 - Travel Expense	001 - T&D Regular Labour	002 - T&D Overtime Labour		
Actv						037	037	085	085	085	085	085	087	087		
Acct	092	094	095	095	095	012	013	001	001	002	002	011	001	002		

CI 41535 2012 Steel Tower Life Extension project

The following is a breakdown of costs associated with the 2012 Steel Tower Life Extension project:

Administrative Overhead and Interest
Materials
Contracts
COPS Labour
Other
Total

This work is expected to be completed by an external contractor with NSPI supervision. Estimates were based on discussions with those who perform this type of work. The COPS labour portion includes supervision and engineering design for completion of this work.

CI Number: 41844

Title:

Reinsulate Transmission Lines L8004 & L7005

Start Date:	2012/05
Final Cost Date:	2012/07
Function:	Transmission
Forecast Amount:	\$1,139,264

DESCRIPTION:

This project scope includes the replacement of air spoilers, link assemblies and insulators on the Canso Strait crossing for transmission lines 7005 and 8004. The spans on either side of the crossing leading to the dead end structures will also receive new air spoilers. The main span insulator replacements will be completed with the use of a helicopter.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Transmission Plant

Why do this project?

This is a critical transmission crossing and it requires the air spoilers, insulators and link assemblies be replaced as a result of identified component conditions. A climbing inspection revealed deterioration in these components.

Why do this project now?

The air spoilers are breaking free from the conductors, there is excessive wear on components and this will reduce the risk of failure of the conductors.

Why do this project this way?

The Canso Strait crossing is a special design requiring air spoilers to prevent galloping on the main span across the water crossing. This main span, which consists of a critical 345 kV and 230 kV circuit, is required to be completed under live line conditions such that generation is not curtailed on Cape Breton Island. Equipment that requires replacement at the dead end towers will be scheduled one circuit at a time.

The labour for this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

CI Number : 41844

.

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

Budget Version 2012 ACE Plan

Capital Item Accounts

מסונמו ונכווו						
sct Actv	Account	Activity		Forecast Amount	Amount	Variance
2	092-Vehicle T&D Reg. Labour AO			11,316	0	11,316
4	094 - Interest Capitalized			2,018	0	2,018
5	095-COPS Regular Labour AO			17,239	0	17,239
5	095-Thermal Regular Labour AO			1,351	0	1,351
5	095-COPS Contracts AO			178,883	0	178,883
2 038	012 - Materials	038 - TP - Insulators		138,000	0	138,000
3 038	013 - COPS Contracts	038 - TP - Insulators		762,500	0	762,500
1 085	001 - THERMAL Regular Labour	085 Design		5,625	0	5,625
1 087	001 - T&D Regular Labour	087 Field Super.& Ops.		22,333	0	22,333
			Total Cost:	1,139,264	0	1,139,264
			Original Cost:	407,811		

CI 41844 L8004 & L7005 Reinsulate

The following is a breakdown of costs associated with the L8004 & L7005 Reinsulate project:

Administrative Overhead and Interest	\$210,805
Materials	\$138,000
Contracts	\$762,500
COPS Labour	\$27,958
Total	\$1,139,264

The work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services, at a rate of approximately per compatible unit hour. Internal technicians, electrician, and linemen will carry out the COPS labor at a rate of approximately per person day along with engineering design work.

CI Number: 41434

Title:

Procure Additional 42 MVA Spare Transformer

Start Date:	2012/08
Final Cost Date:	2012/12
Function:	Transmission
Forecast Amount:	\$1,043,984

DESCRIPTION:

This project scope provides for the procurement of one transformer with a top-end rating of 42 MVA, including a 138 kV primary winding and dual secondary windings at 69 kV and 25 kV. This transformer is intended to fill a gap in the NSPI spare transformer inventory as described in NSPI's updated Spare Transformer Study.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Requirement to Serve

Why do this project?

The purchase of this transformer was identified by an updated internal NSPI study to be a necessary supplement to the existing inventory of spare transformers. While there is currently a spare of similar MVA capacity, it has a unique winding configuration that prevents it from being compatible with the NSPI system without supplemental engineering effort being undertaken every time it needs to be deployed. A spare with compatible windings will avoid the need for extraneous engineering and the additional cost and time delay associated with it.

Why do this project now?

Several recent power transformer failures caused NSPI to update its internal study on NSPI spare transformer inventory which resulted in identifying several additions to NSPI's spare transformer inventory are necessary to bring backup capability to an acceptable level.

Why do this project this way?

The procurement of an additional spare transformer with the specified configuration is the only way to supplement the NSPI inventory. NSPI has attempted on numerous occasions to locate compatible transformers from other utilities and/or equipment suppliers without success.

CI Number : ⁴¹⁴³⁴

- Purchase New 42 MVA Spare Transformer

Parent CI Number :

ï

Project Number

2012 ACE Plan

Budget Version

Capital Item Accounts

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Capita		ACCOUNTS					
092 092-Vehicle T&D Reg. Labour AO 2,995 0 2,995 094 094 - Interest Capitalized 0 4,562 0 095 095-COPS Regular Labour AO 4,562 0 4,562 001 044 001 - T&D Regular Labour AO 0 4,562 0 001 044 001 - T&D Regular Labour AO 0 0 0 011 044 001 - T&D Regular Labour AO 0 0 0 012 044 02 - T&D Overtime Labour 044 - TP - Substn. Transf. 0 0 0 0 013 044 012 - Materials 044 - TP - Substn. Transf. 0 0 0 0 0 013 044 012 - Materials 044 - TP - Substn. Transf. 0	Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
094 094 - Interest Capitalized 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 <td>092</td> <td></td> <td>092-Vehicle T&D Reg. Labour AO</td> <td></td> <td></td> <td>2,995</td> <td>0</td> <td>2,995</td>	092		092-Vehicle T&D Reg. Labour AO			2,995	0	2,995
095 095-COPS Regular Labour AO 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0 4,562 0	094		094 - Interest Capitalized				0	
095 095-COPS Contracts AO 0 095-COPS Contracts AO 0 0 0 001 044 001 - T&D Regular Labour 044 - TP - Substn.Transf. 5,910 0 0 5,910 002 044 002 - T&D Overtime Labour 044 - TP - Substn.Transf. 0 0 0 0 0 0 0 012 044 012 - Materials 044 - TP - Substn.Transf. 0 1,043,984 0 1,043,984 0 1,043,984 0 1,043,984 0 1,043,984 0 1,043,984 0 1,043,984 0 1,043,984 0 1,043,984 0 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984	095		095-COPS Regular Labour AO			4,562	0	4,562
001 044 001 - T&D Regular Labour 044 - TP - Substn.Transf. 5,910 0 5,910 0 5,910 0 5,910 0 5,910 0 5,910 0 5,910 0 5,910 0 5,910 0 5,910 0 5,910 0 5,910 0 5,910 0 5,910 1,043,984 0 1,043,984 0 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 0 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984 1,043,984	095		095-COPS Contracts AO				0	
002 044 002 1% 0 1,043,984 0 0 1,043,984 0 1,043,984 0 1,043,984 0 1,043,984 0 1,043,984 0 1,043,984 0 1,043,984	001	044	001 - T&D Regular Labour	044 - TP - Substn.Transf.		5,910	0	5,910
012 044 012 - Materials 044 - TP - Substn.Transf. 0 0 013 044 013 - COPS Contracts 044 - TP - Substn.Transf. 0 0 0 012 086 012 - Materials 086 Commissioning 1,043,984 0 0 1,043,984 012 086 012 - Materials 0 0 1,043,984 0 1,043,984	002	044	002 - T&D Overtime Labour	044 - TP - Substn.Transf.		0	0	0
013 044 013 - COPS Contracts 044 - TP - Substru Transf. 0 0 13 - 00 0012 086 012 - Materials 086 Commissioning Total Cost: 1,043,984 0 10 1,043,984 0 1,043,984 0 1,043,984	012	044	012 - Materials	044 - TP - Substn.Transf.			0	
012 086 012 - Materials 086 Commissioning Total Cost: 1,043,984 0 0 1,043,984	013	044	013 - COPS Contracts	044 - TP - Substn.Transf.			0	
Total Cost: 1,043,984 0 1,043,984 Original Cost: Original Cost: 0 1,043,984	012	086	012 - Materials	086 Commissioning			0	
Original Cost:					Total Cost:	1,043,984	0	1,043,984
					Original Cost:			

CI 41434 Purchase New 42 MVA Spare Transformer

The following is a breakdown of costs associated with the Purchase New 42 MVA Spare Transformer project:

Administrative Overhead and Interest Materials Contracts COPS Labour Total

The labour associated with this project is expected to be completed by NSPI resources at an approximate rate **Society** per person day. Material forecast provides for the purchase of the transformer along with oil, bushings, rads, and other dressings necessary to have the transformer ready to be deployed when needed. The contract forecasts include the crane rental to place the transformer on timbers at the Onslow Spares Yard, as well as any necessary shifting of existing spares in order to accommodate the new unit.

CI Number: 41399

Title:

2012 Substation Insulator & Cutout Replacements

Start Date:	2012/01
Final Cost Date:	2012/12
Function:	Transmission
Forecast Amount:	\$800,013

DESCRIPTION:

This project scope provides for the replacement of porcelain cutouts on select equipment in transmission substations.

Summary of Related CI's +/- 2 years: 2010 CI 38878 2010 Subs Cutout and Insul. Replacement \$1,506,414

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Equipment Replacement

Why do this project?

This work is being undertaken as part of the overall customer reliability improvement investment. This is year three of a five year (2010-2014) plan to improve reliability to NSPI's customers. Porcelain cutouts have been failing resulting in customer outages. These failures come as a result of moisture in hairline cracks which have developed in the porcelain insulator. Transmission outages generally affect a large number of customers as these failures typically interrupt supply to one or more substations.

Why do this project now?

Program cutout replacement on a prioritized substation basis is required to improve customer reliability. Cutout failures contribute to customer outages. Furthermore, preventing device failures at 3C substation (bulk power system) reduces this risk of widespread, multi-substation outages.

Why do this project this way?

The best approach to reduce outages caused by cutout failures is to focus on specific substations and replace the cutouts in kind.

CI Number : 41399

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

.

Budget Version 2012 ACE Plan

Capital Item Accounts

Actv	Account	Activity	Fore	cast ount	Amount	Variance
	092-Vehicle T&D Reg. Labour AO		109	,725	0	109,725
	094 - Interest Capitalized		21,	,053	0	21,053
	095-COPS Regular Labour AO		167,	,153	0	167,153
	095-COPS Contracts AO		21,	,080	0	21,080
89	001 - T&D Regular Labour	038 - TP - Insulators	21,	,607	0	21,607
80	002 - T&D Overtime Labour	038 - TP - Insulators		0	0	0
88	012 - Materials	038 - TP - Insulators	35	,876	0	35,876
88	013 - COPS Contracts	038 - TP - Insulators	89	,857	0	89,857
6	001 - T&D Regular Labour	039 - TP - O/H Cond.	150	,606	0	150,606
6	002 - T&D Overtime Labour	039 - TP - O/H Cond.		0	0	0
6	011 - Travel Expense	039 - TP - O/H Cond.	56	,448	0	56,448
o O	014 - Overtime Meals	039 - TP - O/H Cond.	19	,800	0	19,800
0	012 - Materials	040 - TP - O/H Cond.Devices	23	,100	0	23,100
5	001 - Regular Labour (No AO)	085 Design	£	,225	0	1,225
2	002 - T&D Overtime Labour	085 Design		0	0	0
2	028 - Consulting	085 Design		0	0	0
7	001 - T&D Regular Labour	087 Field Super.& Ops.	44,	,335	0	44,335
7	011 - Travel Expense	087 Field Super.& Ops.	20	,630	0	20,630
2	041 - Meals & Entertainment	087 Field Super.& Ops.	N	,880	0	2,880
7	066 - Other Goods & Services	087 Field Super.& Ops.	14,	,638	0	14,638
		Total C	ost: 800),013	0	800,013
		Original C	ost: 244	1,131		

CI 41399 2012 Substation Insulator & Cutout Replacements

The following is a breakdown of costs associated with the 2012 Substation Insulator & Cutout Replacements:

Administrative Overhead and Interest \$3	319,011
Materials \$	58,976
Contracts \$3	39,857
COPS Labour \$2	217,773
Other \$1	114,396
Total \$2	800,013

Materials - The material associated with this item will be standard materials, insulators, epoxy cut-outs, conductor, and connectors. Where required, poles and wooden supporting timbers will be replaced.

Contracts – The contract estimate is for services to transport material, crane services, and the disposal of removed material. This work will be completed by outside contractors.

COPS Labour – The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day

CI Number: 41437

Title:

104H-T62 Kempt Road Transformer Rewind

Start Date:	2012/03
Final Cost Date:	2012/12
Function:	Transmission
Forecast Amount:	\$790,201

DESCRIPTION:

This project provides for the costs associated with the rewind of transformer 104H-T62 at Kempt Road.

Summary of Related CI's +/- 2 years: 2011 CI 39723 104H- T63 Transformer Refurbishment \$753,177 2011 CI 40185 104H- T61 Transformer Refurbishment \$946,675

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Requirement to Serve

Why do this project?

104H-T62 is a Canadian General Electric transformer built in 1976. Two other identical transformers (104H-T61, 104H-T63) of the same design have recently experienced mechanical failures that resulted in failure of the windings. The failure mode is due to insufficient coil blocking. Due to the identical design of 104H-T62 to the failed units, there is a high probability that 104H-T62 will fail in a similar mode to the other two identical units.

Why do this project now?

Due to the number of high current "through faults" that 104H-T62 has sustained over its service life, it is highly probable that this transformer will fail in service during a through fault incident. If this transformer were to fail during peak loading periods, there would not be sufficient transformation capacity at Kempt Rd. to carry the entire customer load, and either load would have to be shifted to other adjacent substations, assuming the capability is present, or a mobile transformer would have to be installed for an extended period of time to carry the customer load.

Why do this project this way?

By proactively rewinding this transformer, NSPI will avoid an extended customer outage that would result from the loss of this transformer supply.

CI Number : 41437

10H-T62 Kempt Road Transformer Rewind

Project Number

mber

Parent Cl Number :

- 800-Services - Admin.

.

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 800

Variance	13,310	1,664	20,720	20,276		934	2,535	26,267	0	6,567			3,890	10,580	0	5,000	25,000	1,000	790,201	
Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Forecast Amount	13,310	1,664	20,720	20,276		934	2,535	26,267	0	6,567			3,890	10,580	0	5,000	25,000	1,000	790,201	171,647
																			Total Cost:	Original Cost:
Activity								044 - DP - Substn.Transf.	044 - DP - Substn.Transf.	044 - DP - Substn.Transf.	044 - DP - Substn.Transf.	044 - DP - Substn.Transf.	085 Design	085 Design	085 Design	085 Design	085 Design	085 Design		
Account	092-Vehicle T&D Reg. Labour AO	092-Vehicle T&D OT Labour AO	094 - Interest Capitalized	095-COPS Regular Labour AO	095-COPS Contracts AO	095-Thermal Regular Labour AO	095-COPS Overtime Labour AO	001 - T&D Regular Labour	002 - Overtime Labour (No AO)	002 - T&D Overtime Labour	012 - Materials	013 - COPS Contracts	001 - THERMAL Regular Labour	001 - Regular Labour (No AO)	002 - THERMAL Overtime Labour	011 - Travel Expense	028 - Consulting	041 - Meals & Entertainment		
Actv								044	044	044	044	044	085	085	085	085	085	085		
Acct	092	092	094	095	095	095	095	001	002	002	012	013	001	001	002	011	028	041		

CI 41437 104H-T62 Kempt Rd Transformer Rewind

The following is a breakdown of costs associated with the 104H-T62 rewind project:

Administrative Overhead and Interest Materials Contract COPS Labour Other Total

The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day. The materials forecast includes the cost to rewind the transformer as well as new bushings and new transformer oil. The contract costs include crane lifts, rail shipment and transformer inspection services. The other forecast includes engineering labour and travel.

CI Number: 41589

Title:

22C-Church St Replace 25 kV Bus and Feeder Exit

Start Date:	2012/04
Final Cost Date:	2012/07
Function:	Transmission
Forecast Amount:	\$734,302

DESCRIPTION:

This project provides for the removal and replacement of the existing 25kV distribution bus at the 22N-Church St. Substation. The 25kV distribution feeder exit cables will be replaced also with overhead wire exits.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Maintenance

Why do this project?

This substation was initially constructed in 1972, additional distribution feeder supply bays were added in 1983 and in 1991 and the transmission supply voltage was upgraded from 69kV to 138kV. The distribution bus and wood pole support structures are 40 years old. The site has a high water table and the wood poles have weathered frost heaving (amounts averaging 300mm). Different amounts of frost heave have also caused considerable bending in the 25kV pipe bus with resultant damage to the 25kV exit cables necessitating replacement.

Why do this project now?

In early 2011, an insulation failure occurred in one of the feeder reclosers. This fault caused considerable damage to other pieces of equipment, as the fault current sought out all possible routes to ground. The accumulation of ongoing deterioration problems, particularly with the 25kV cables, and the recent fault damage has reduced the reliability of the 25kV portion of the substation.

Why do this project this way?

Pro-actively replacing the 40 year old, frost heaved poles, the distorted 25kV tubular bus conductors and eliminating the partially damaged and deteriorated 25kV power cables will avoid further in-service failures and the subsequent loss of supply to the distribution customers supplied from the 22N, 25kV bus.

A portion of the labour associated with this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

CI Number : 41589

Parent CI Number :

2012 ACE Plan

Budget Version

Cost Centre : 800 - 800-Services - Admin.

.

Capital Item Accounts

Actv	Account	Activity	Forecast Amount	Amount	Variance
	092-Vehicle T&D Reg. Labour AO		10,115	0	10,115
	094 - Interest Capitalized		4,807	0	4,807
	095-Thermal Regular Labour AO		3,936	0	3,936
	095-COPS Contracts AO		44,828	0	44,828
	095-COPS Regular Labour AO		15,409	0	15,409
003	012 - Materials	003 - TP - Bldg., Struct. Grnd.	118,784	0	118,784
003	013 - COPS Contracts	003 - TP - Bldg., Struct. Grnd.	137,476	0	137,476
003	066 - Other Goods & Services	003 - TP - Bldg., Struct. Grnd.	17,595	0	17,595
023	001 - T&D Regular Labour	023 - TP - Power EquipStation S	2,013	0	2,013
023	002 - T&D Overtime Labour	023 - TP - Power EquipStation S	0	0	0
023	012 - Materials	023 - TP - Power EquipStation S	11,040	0	11,040
035	012 - Materials	035 - TP - Wood Poles	27,600	0	27,600
035	013 - COPS Contracts	035 - TP - Wood Poles	18,547	0	18,547
038	012 - Materials	038 - TP - Insulators	1,610	0	1,610
038	013 - COPS Contracts	038 - TP - Insulators	773	0	773
039	012 - Materials	039 - TP - O/H Cond.	1,380	0	1,380
039	013 - COPS Contracts	039 - TP - O/H Cond.	21,638	0	21,638
043	001 - T&D Regular Labour	043 - TP - Substn Dev.	16,607	0	16,607
043	002 - T&D Overtime Labour	043 - TP - Substn Dev.	0	0	0
043	012 - Materials	043 - TP - Substn Dev.	157,013	0	157,013
043	066 - Other Goods & Services	043 - TP - Substn Dev.	7,360	0	7,360
085	001 - THERMAL Regular Labour	085 Design	16,392	0	16,392
085	002 - THERMAL Overtime Labour	085 Design	0	0	0
086	001 - T&D Regular Labour	086 Commissioning	1,342	0	1,342
086	002 - T&D Overtime Labour	086 Commissioning	0	0	0
087	013 - COPS Contracts	087 Field Super.& Ops.	12,650	0	12,650
088	066 - Other Goods & Services	088 Survey/Mapping	85,388	0	85,388
		Total Cost:	734,302	0	734,302
		Original Cost:			
CI 41589 22 Church St. Replace 25kV Bus and Feeder Exit

The following is a breakdown of costs associated with the 22 Church St. project:

Administrative Overhead and Interest	\$79,095
Materials	\$317,427
Contracts	\$191,084
COPS Labour	\$36,354
Other	\$110,343
Total	\$734,302

The work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services, at a rate of approximately per compatible unit hour. NSPI personnel, electrician, and linemen will carry out the COPS labor at a rate of approximately per person day along with engineering design work.

Title:

2012 Pole Retreatment

Start Date:	2012/05
Final Cost Date:	2012/12
Function:	Transmission
Forecast Amount:	\$556,017

DESCRIPTION:

This project provides for the cost of re-treatment of approximately 5000 transmission poles. This is a multi-year program that will continue beyond 2012.

Summary of Related CI's +/- 2 years: 2010 CI 38860 2010 Pole Retreatment \$495,505 2011 CI 40279 2011 Pole Retreatment \$516,341 2013 CI TBD Pole Retreatment \$TBD

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Maintenance

Why do this project?

Pole re-treatment is a proven and accepted cost effective approach to extend the life of the pole.

Why do this project now?

NSPI re-instated the pole re-treatment program in 2006, a decision supported by the UARB following the November, 2004 Storm Hearing.

Why do this project this way?

Cycle based pole re-treatment is a cost effective way to extend the life of treated wood poles.

Parent Cl Number :

- 800-Services - Admin.

.

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 800

	Variance	11,147	12,519		120	16,982			7,600	500	0	22,000	0	8,000	556,017	
	Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Forecast	Amount	11,147	12,519		120	16,982			7,600	500	0	22,000	0	8,000	556,017	
															Total Cost:	Original Cost:
	Activity						035 - TP - Wood Poles	035 - TP - Wood Poles	085 Design	085 Design	085 Design	087 Field Super.& Ops.	087 Field Super.& Ops.	087 Field Super.& Ops.		
	Account	092-Vehicle T&D Reg. Labour AO	094 - Interest Capitalized	095-COPS Contracts AO	095-Thermal Regular Labour AO	095-COPS Regular Labour AO	012 - Materials	013 - COPS Contracts	001 - Regular Labour (No AO)	001 - THERMAL Regular Labour	002 - T&D Overtime Labour	001 - T&D Regular Labour	002 - T&D Overtime Labour	011 - Travel Expense		
	Actv						035	035	085	085	085	087	087	087		
	Acct	092	094	095	095	095	012	013	001	001	002	001	002	011		

CI 41386 - 2012 Pole Retreatment

The following is a breakdown of costs associated with the 2012 Pole Retreatment project:

Administrative Overhead and Interest Materials Contracts COPS Labour Other Total

This work is expected to be completed by an external contractor with NSPI supervision. Estimates of contracts and materials are based on actual costs incurred in this program in previous years. The COPS labour portion includes NSPI supervision for completion of this work. The list of lines to be completed in 2012 is as follows:

LINES SCHEDULED	OPERATING SECTION NUMBER AND NAME	APPROX. POLE QUANITY
5003	Farrell St (99H) to Sackville (90H)	216
5010	Imperial Oil (58H) to Imperial Oil Res. (111H)	10
5016	St. Croix (9V) to Five Points (20V)	329
5029	Maccan (30N) to Springhill (74N)	360
5501	Trenton (50N) to Stellarton (62N)	126
5502	Trenton (50N) to Abercrombie Pt. (54N)	86
5503	Port Hastings (2C) to Cleveland (22C)	115
5537	Tusket (9W) to Tusket (102W)	44
5551	Lunenburg (79W) to Riverport (Indian Path (80W)	130
6004	Sackville (90H) to Canaan Road (43V)	780
6511	Trenton (50N) to Antigonish (4C) Lochaber Rd.	585
6514	Maccan (30N) to Springhill (74N)	265
6518	Port Hastings (2C) to Stora (47C)	115
7002	Onslow (67N) to Brushy Hill (120H)	703
7018	Onslow (67N) to Brushy Hill (120H)	672
8001	Onslow (67N) to NB Border (L3006)	50
8002	Lakeside (103H) to Onslow (67N)	770
TOTALS		5356

Title:

Glentosh Substation Footing Remediation

Start Date:	2012/06
Final Cost Date:	2012/12
Function:	Transmission
Forecast Amount:	\$552,201

DESCRIPTION:

This project will provide for the installation of steel piles and concrete to remediate the concrete support footings at the Glentosh Substation.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Maintenance

Why do this project?

Ongoing differential settlement of the substation footings due to bedrock of poor quality gypsum deposits has created misalignment and twisting of substation steel structures (bus supports) and steel bus.

Why do this project now?

This project must be completed as further settlement will cause more damage to existing substation bus and structures and result in more extensive repair/replacement scope.

Why do this project this way?

A review and assessment by civil engineering has recommended the installation of steel piles to secure the footings.

- Glentosh Substation Footing Remediation

Parent CI Number :

.

- 800-Services - Admin.

Project Number

2012 ACE Plan
Budget Version

Canital Item Accounts

Cost Centre : 800

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Capita		ICCOULDS				
092 092-Vehicle T&D Reg. Labour AO 30,402 0 30,402 094 094 - Interest Capitalized 6,504 0 6,504 095 095-Thermal Regular Labour AO 3,602 0 3,602 095 095-COPS Regular Labour AO 3,602 0 3,602 095 095-COPS Regular Labour AO 3,602 0 3,602 096 095-COPS Regular Labour AO 3,602 0 3,602 095 095-COPS Regular Labour AO 003 - TP - Bldg.,Struct.Gmd. 0 0 46,314 001 003 001 - T&D Regular Labour 003 - TP - Bldg.,Struct.Gmd. 0 0 60,000 011 003 001 - T&D Regular Labour 003 - TP - Bldg.,Struct.Gmd. 0 0 60,000 011 003 012 - Materials 003 - TP - Bldg.,Struct.Gmd. 0 0 60,000 012 013 013 - COPS Contracts 003 - TP - Bldg.,Struct.Gmd. 0 15,000 0 013 013 013 - COPS Contracts 003 - TP - Bldg.,Struct.Gmd. 0 0 15,000 0 013 <th>Acct</th> <th>Actv</th> <th>Account</th> <th>Activity</th> <th>Forecast Amount</th> <th>Amount</th> <th>Variance</th>	Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094 094 - Interest Capitalized 6,504 0 6,504 095 095 - Thermal Regular Labour AO 3,602 0 3,602 095 095-COPS Regular Labour AO 3,602 0 46,314 0 46,314 095 095-COPS Regular Labour AO 003 - TP - Bldg.,Struct.Grnd. 46,314 0 0 46,314 001 003 001 - T&D Regular Labour 003 - TP - Bldg.,Struct.Grnd. 0 0 46,304 012 003 001 - T&D Regular Labour 003 - TP - Bldg.,Struct.Grnd. 0 0 0 0 60,000 0 60,000 0 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 60,000 0 0 60,000 0 0 0 0 0 0 0 0	092		092-Vehicle T&D Reg. Labour AO		30,402	0	30,402
095 095-Thermal Regular Labour AO 3,602 0 3,602 3,602 095 095-COPS Regular Labour AO 46,314 0 46,314 095 095-COPS Regular Labour AO 003-TP - Bldg.,Struct Grud. 0 0 001 003 001 - T&B Regular Labour 003 - TP - Bldg.,Struct Grud. 0 0 012 003 012 - Materials 003 - TP - Bldg.,Struct Grud. 0 0 0 013 003 012 - Materials 003 - TP - Bldg.,Struct Grud. 0 0 0 013 003 012 - Materials 003 - TP - Bldg.,Struct Grud. 0 0 0 0 013 003 012 - Materials 003 - TP - Bldg.,Struct Grud. 0 0 0 0 013 003 013 - COPS Contracts 003 - TP - Bldg.,Struct Grud. 0	094		094 - Interest Capitalized		6,504	0	6,504
095 095-COPS Regular Labour AO 46,314 0 46,314 095 095-COPS Contracts AO 0 96 46,314 001 003 001 - T&D Regular Labour 003 - TP - Bldg.,Struct.Grnd. 60,000 0 60,000 012 003 012 - Materials 003 - TP - Bldg.,Struct.Grnd. 60,000 0 60,000 013 003 013 - COPS Contracts 003 - TP - Bldg.,Struct.Grnd. 60,000 0 0 60,000 013 003 013 - COPS Contracts 003 - TP - Bldg.,Struct.Grnd. 60,000 0 15,000 0 013 003 013 - COPS Contracts 003 - TP - Bldg.,Struct.Grnd. 652,201 0 0 15,000 014 085 Design Total Cost: 552,201 0 0 552,201	095		095-Thermal Regular Labour AO		3,602	0	3,602
095 095-COPS Contracts AO 0 095-COPS Contracts AO 0 0 0 00	095		095-COPS Regular Labour AO		46,314	0	46,314
001 003 001 - T&D Regular Labour 003 - TP - Bldg.,Struct.Grnd. 60,000 0 60,000 012 003 012 - Materials 003 - TP - Bldg.,Struct.Grnd. 0 0 60,000 013 003 013 - COPS Contracts 003 - TP - Bldg.,Struct.Grnd. 0 0 0 013 003 013 - COPS Contracts 003 - TP - Bldg.,Struct.Grnd. 0 0 0 013 003 013 - COPS Contracts 003 - TP - Bldg.,Struct.Grnd. 0 0 0 0 013 003 013 - COPS Contracts 003 - TP - Bldg.,Struct.Grnd. 0 0 0 15,000 014 085 001 - THERMAL Regular Labour 085 Design Total Cost: 552,201 0 0 552,201 014 Total Cost: 552,201 0 0 552,201 0 552,201	095		095-COPS Contracts AO			0	
012 003 012 - Materials 003 - TP - Bldg.,Struct.Grnd. 0 0 013 003 013 - COPS Contracts 003 - TP - Bldg.,Struct.Grnd. 0 0 15,000 001 085 001 - THERMAL Regular Labour 085 Design Total Cost: 552,201 0 552,201 001 003 Total Cost: 552,201 0 552,201 0 552,201	001	003	001 - T&D Regular Labour	003 - TP - Bldg., Struct. Grnd.	60,000	0	60,000
013 003 013 - COPS Contracts 003 - TP - Bldg.,Struct.Grnd. 0 15,000 085 001 - THERMAL Regular Labour 085 Design 15,000 0 552,201 0 552,201 0 552,201 0 552,201 0 0 552,201	012	003	012 - Materials	003 - TP - Bldg., Struct. Grnd.		0	
001 085 001 - THERMAL Regular Labour 085 Design 15,000 0 0 15,000 0 15,000 Total Cost: 552,201 0 552,201 Original Cost:	013	003	013 - COPS Contracts	003 - TP - Bldg., Struct. Grnd.		0	
Total Cost: 552,201 0 552,201 Original Cost: Original Cost: 0 552,201	001	085	001 - THERMAL Regular Labour	085 Design	15,000	0	15,000
Original Cost:				Total Cost:	552,201	0	552,201
				Original Cost:			

CI 41551 Glentosh Substation Footing Remediation

The following is a breakdown of costs associated with the Glentosh Substation Footing Remediation project:

Administrative Overhead and Interest Materials Contracts COPS Labour Total

The contract portion of this project is proposed to be completed by a contractor and is associated with the civil work required to remediate the footings. The labour associated with this project will be performed by internal personnel at a rate of approximately per person day, along with some NSPI design labour. The material forecast consists of poles, guys and conductor required to rearrange circuits in the substation.

Title:

L6025 Spar Arm Reinforcement

Start Date:	2012/06
Final Cost Date:	2012/11
Function:	Transmission
Forecast Amount:	\$489,925

DESCRIPTION:

This project will provide for the installation of reinforcement bracing to support spar arms on 149 structures on L6025 from Bridgewater to Milton.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Outage Performance

Why do this project?

L6025 was built in 1989 and NSPI's transmission line inspection program has identified a number of spar arms which are drooping. This work will reinforce the spar arms to prevent further spar arm movement and failures. This work will increase the life expectancy of the spar arms.

Why do this project now?

Reinforcement of the arms will prevent unplanned outages on the transmission system.

Why do this project this way?

NSPI has deployed this method of reinforcement on several transmission lines which has proven to be an effective way to address the premature failure of the spar arms.

The labour for this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

- L6025 Spar Arm Reinforcement

Parent CI Number :

,

Project Number

2012 ACE Plan

Budget Version

· 800-Services - Admin.
~
ğ
ω
••
¢
Ę
en
Ű
st
8
0

Canital Item Accounts

cct Actv	Account	Activity		Forecast Amount	Amount	Variance
32	092-Vehicle T&D Reg. Labour AO			17,268	0	17,268
14	094 - Interest Capitalized			3,199	0	3,199
15	095-COPS Contracts AO			55,133	0	55,133
15	095-COPS Regular Labour AO			26,306	0	26,306
2 035	012 - Materials	035 - TP - Wood Poles		116,600	0	116,600
3 035	013 - COPS Contracts	035 - TP - Wood Poles		235,007	0	235,007
11 085	001 - Regular Labour (No AO)	085 Design		2,332	0	2,332
1 087	001 - T&D Regular Labour	087 Field Super.& Ops.		34,080	0	34,080
12 087	002 - THERMAL Overtime Labour	087 Field Super.& Ops.		0	0	0
			Total Cost:	489,925	0	489,925
			Original Cost:			

CI 41391 L6025 Spar Arm Reinforcement

The following is a breakdown of costs associated with the L6025 Spar Arm Reinforcement project:

Administrative Overhead and Interest	\$ 101,906
Materials	\$ 116,600
Contracts	\$ 235,007
COPS Labour	\$ 36,412
Total	\$ 489,925

The materials forecast for this project provides for additional bracing to support the spar arms. The work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services, at a rate of approximately per compatible unit hour.

Title:

Onslow Spares Storage Upgrades

Start Date:	2012/06
Final Cost Date:	2012/08
Function:	Transmission
Forecast Amount:	\$415,661

DESCRIPTION:

This project will serve to upgrade the spare transformer storage space at the Onslow Spares Yard with two objectives:

- (1) Provide more space to accommodate additions to the current spare transformer inventory; and
- (2) Provide improved storage area for spare current transformers (CT).

The gated fence leading into the spares yard will be relocated back 80 feet to provide additional room, and the gravel will be upgraded and slightly elevated to provide improved water drainage. In addition, wooden platforms that are holding a variety of CT's and other equipment will be removed and replaced with concrete pads.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Buildings

Why do this project?

There are presently 10 spare system transformers in storage at 67N Onslow. The majority of the storage space is utilized by these 10 units. NSPI plans to increase its spare inventory to 15 transformers in total over the next 2 years and additional storage space is required to accommodate this additional inventory.

The upgrades to the gravel will improve water drainage in the yard, which will slow the decomposition of the timbers used to support the spare transformers.

The two wooden platforms used to store CTs and other electrical equipment have experienced normal deterioration from exposure to the ambient conditions and replacement with concrete pads will provide a permanent solution.

Why do this project now?

The Onslow spare transformer storage yard is located in a geographically-central location with adequate clearances necessary to move and transport the physically large transformers and provides suitable access to the highway system, supporting the timely deployment of a spare transformer in the event of an operating transformer incident. Having the additional capacity prepared at the Onslow storage yard preceding or concurrent to the arrival of new spares would avoid the need to find an alternate storage location.

Why do this project this way?

This project allows for an increase in the storage capacity of the yard while maintaining the flexibility to keep the present equipment stored on-site during the project.

- Onslow Spares Storage Upgrades

Parent Cl Number :

.

- 800-Services - Admin.

Project Number

Budget Version 2012 ACE Plan

Cost Centre : 800

Capital Item Accounts

	Variance	6,080	2,292	1,308	9,263	59,055	12,000	0	67,150	251,725	5,446	1,343	0	0	415,661	
	lount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	ist int Arr	30	92	38	53	55	00	0	50	25	46	43	0	0	61	c
	Foreca Amou	6,08	2,29	1,3(9,2(59,05	12,00		67,15	251,72	5,4	1,3,			t: 415,6	÷
	Activity						003 - TP - Bldg., Struct. Grnd.	003 - TP - Bldg., Struct. Grnd.	003 - TP - Bldg., Struct. Grnd.	003 - TP - Bldg., Struct. Grnd.	085 Design	085 Design	085 Design	085 Design	Total Cos	
	Account	092-Vehicle T&D Reg. Labour AO	094 - Interest Capitalized	095-Thermal Regular Labour AO	095-COPS Regular Labour AO	095-COPS Contracts AO	001 - T&D Regular Labour	002 - T&D Overtime Labour	012 - Materials	013 - COPS Contracts	001 - THERMAL Regular Labour	001 - Regular Labour (No AO)	002 - Overtime Labour (No AO)	002 - THERMAL Overtime Labour		
	Actv						003	003	003	003	085	085	085	085		
•	Acct	092	094	095	095	095	001	002	012	013	001	001	002	002		

CI 41422 Onslow Spares Storage Upgrades

The following is a breakdown of costs associated with the Onslow Spares Storage Upgrades project:

Administrative Overhead and Interest	\$ 77,998
Materials	\$ 67,150
Contracts	\$ 251,725
COPS Labour	\$ 18,789
Total	\$ 415,662

The material forecasts for this project provide for the concrete necessary to place new pads for current transformer (CT) storage, new gravel, new timbers for transformers, new fencing, and modifications to the existing security system to cover the expanded yard.

The contract forecasts consist of the crane/float rental, demolition of the existing storage building and construction of the new one, as well as a contractor to pour the new concrete pads and place the new gravel.

The NSPI labour forecast provides for contractor supervision.

Title:

Mobile Refurbishments 5P & 6P

Start Date:	2012/04
Final Cost Date:	2012/12
Function:	Transmission
Forecast Amount:	\$367,409

DESCRIPTION:

This project provides for the costs associated with the upgrade of the 5P and 6P Mobile Substations.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Equipment Replacement

Why do this project?

Maintenance and Emergency Restoration work is highly dependent on the operational condition of these two mobile substations. The required upgrades to be performed on these mobile substations will increase their long term availability.

Why do this project now?

The 6P-MS mobile substation recent Motor Vehicle Inspection (MVI) identified deteriorated undercarriage and air ride systems. These systems must be replaced to make the vehicle road worthy. The low voltage circuit breaker on 6P-MS is deteriorated from usage and will be replaced with a vacuum circuit breaker which is a key component in the operation of this mobile unit. A new vacuum circuit breaker will be added to 5P-MS to replace the existing manual switch on this unit which will improve the flexibility during operation. High voltage side circuit switchers on both mobile substations have recently experienced pole failures, and one pole of each switcher had to be replaced in 2011. Delivery of replacement poles is typically twelve weeks or more. Replacing the remaining two switcher poles on each mobile will avoid future unavailability of these mobile substations.

Why do this project this way?

It is necessary to complete this project in this manner to maintain availability and road worthiness, and increase interconnection flexibility.

Parent Cl Number :

Cost Centre : 800 -

.

- 800-Services - Admin.

Budget Version 2012 ACE Plan

Capital Item Accounts

ance	5,724	3,634	1,401	9,187	5,968	0	3,000	0,000	5,835	2,860	0	4,800	0	7,409	
Vari	3		-	Ř	4		14;	6						36	
Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Forecast Amount	25,724	8,634	1,401	39,187	45,968	0	143,000	90,000	5,835	2,860	0	4,800	0	367,409	220.068
														Total Cost:	Original Cost:
Activity					043 - DP - Substn Dev.	043 - DP - Substn Dev.	043 - DP - Substn Dev.	043 - DP - Substn Dev.	085 Design	085 Design	085 Design	087 Field Super.& Ops.	087 Field Super.& Ops.		
Account	092-Vehicle T&D Reg. Labour AO	094 - Interest Capitalized	095-Thermal Regular Labour AO	095-COPS Regular Labour AO	001 - T&D Regular Labour	002 - T&D Overtime Labour	012 - Materials	066 - Other Goods & Services	001 - THERMAL Regular Labour	001 - Regular Labour (No AO)	002 - THERMAL Overtime Labour	001 - T&D Regular Labour	002 - T&D Overtime Labour		
Actv					043	043	043	043	085	085	085	087	087		
Acct	092	094	095	095	001	002	012	066	001	001	002	001	002		

CI 41439 5P & 6P Mobile Substation Upgrades

The following is a breakdown of costs associated with the 5P & 6P Mobile Substation Upgrades project:

Administrative Overhead and Interest	\$74,946
Materials	\$143,000
COPS Labour	\$59,463
Other	\$90,000
Total	\$367,409

The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day, along with some engineering labour associated with the procurement of equipment and redesign of the mobile layout. The materials component of this project will account for the purchase of the new LV circuit breakers, as well as the purchase of new interrupter poles for the circuit switchers which have deteriorated. This will also provide for the purchase of a new LV switch for 5P-MS. The other forecast is associated with the new suspension and undercarriage work.

Title:

85S-Wreck Cove Cable Termination Replacement

Start Date:	2012/04
Final Cost Date:	2012/12
Function:	Transmission
Forecast Amount:	\$291,194

DESCRIPTION:

This project provides for the replacement of 138KV cable pothead terminations at 85S-Wreck Cove.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Equipment Replacement

Why do this project?

The Wreck Cove Hydro Generation facility power cables are used to connect the generator transformer to the interconnection substation. The pothead terminations have deteriorated and are reaching the end of their useful life.

Why do this project now?

A failure of one of these pothead terminations would result in a loss of connection between the Hydro Facility and the Substation resulting in the generators being unavailable for an extended period. Wreck Cove Hydro generating units provide critical bulk power system support as on-peak capacity during winter months and is increasingly important in wind generation regulation.

Why do this project this way?

The replacement of this equipment will minimize the unavailability of Wreck Cove generators and avoids possible damage to other substation equipment as a result of a failure.

2012 ACE Plan

Budget Version

Parent CI Number :

Cost Centre : 800 - 800-Services - Admin.

.

Capital Item Accounts

t Actv	Account	Activity		Forecast Amount	Amount	Variance
	092-Vehicle T&D Reg. Labour AO			13,463	0	13,463
	094 - Interest Capitalized			7,051	0	7,051
	095-COPS Regular Labour AO			20,510	0	20,510
043	001 - T&D Regular Labour	043 - DP - Substn Dev.		24,626	0	24,626
043	002 - T&D Overtime Labour	043 - DP - Substn Dev.		0	0	0
043	012 - Materials	043 - DP - Substn Dev.			0	
043	066 - Other Goods & Services	043 - DP - Substn Dev.			0	
085	001 - T&D Regular Labour	085 Design		1,945	0	1,945
085	001 - Regular Labour (No AO)	085 Design		3,600	0	3,600
085	002 - Overtime Labour (No AO)	085 Design		0	0	0
085	002 - T&D Overtime Labour	085 Design		0	0	0
			Total Cost:	291,194	0	291,194
			Original Cost:			

CI 41438 85S Cable Termination Replacement – Wreck Cove

The following is a breakdown of costs associated with the Street Light & Area Management:

Administrative Overhead and Interest Materials COPS Labour Other Total

The materials portion of this estimate is for the purchase of 12 new termination kits – one for each end of the six cable runs. A boom truck will be required to lift the terminations into place for installation.

COPS labor will be required to assist the installer in the installation of the terminations. A contractor who specializes in the installation of these terminations will be brought in to install the terminations as NSPI does not have the expertise in HV oil filled cable terminations. These costs are included in the Other account.

NSPI engineering labor will be required in the procurement of the termination kits as well as project supervision.

Title:

7H Beaufort Switchgear Retirement

Start Date:	2012/05
Final Cost Date:	2012/07
Function:	Transmission
Forecast Amount:	\$278,071

DESCRIPTION:

This project will cover the replacement of the 4 kV switchgear at 7H Beaufort substation with new reclosers and concrete pads to support them. In addition, new aerial feeder exit cables will be installed to replace the underground cables that are currently in place.

Summary of Related CI's +/- 2 years: 2012 CI 41388 7H Beaufort Conversion \$174,253

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Equipment Replacement

Why do this project?

The 4 kV switchgear at Beaufort substation, along with the underground feeder exit cabling, is approaching the end of its useful life. Manufacturer support for maintenance or replacement components for the switchgear is no longer available. The switchgear and cabling is deteriorated due to its age and replacing it will reduce maintenance requirements at the substation as well as improve reliability.

Why do this project now?

The switchgear is over 50 years old and would be very difficult to repair and result in an extended outage, should it fail in-service, due to the lack of available parts and general condition of the equipment.

Replacing the equipment will:

A) Decrease the likelihood of an equipment failure.

B) Shorten the duration of any outages in the event of a failure, due to the availability of manufacturer support and parts for newer equipment.

Why do this project this way?

The condition and the age of the switchgear preclude any benefit from overhauling or refurbishment; replacement will provide greater benefit at equal or lesser cost.

The terrain surrounding the substation is composed of several sections of solid rock, which will make digging new conduits for underground feeder cables complex and expensive. Aerial cabling serves the same function while delivering a cost effective solution.

Replacing the retired switchgear will serve as an interim solution to keep the substation in operation until the 4 kV feeders can be converted to a higher voltage. After conversion, the new equipment will be removed and placed in stores for use in future projects.

- 7H Beaufort Switchgear Retirement

Project Number

Parent CI Number :

.

- 800-Services - Admin. Cost Centre : 800

2012 ACE Plan **Budget Version**

Capital Item Accounts

Actv	Account	Activity		⁻ orecast Amount	Amount	Variance
	092-Vehicle T&D Reg. Labour AO			13,591	0	13,591
	094 - Interest Capitalized			533	0	533
	095-COPS Contracts AO				0	
	095-COPS Regular Labour AO			20,704	0	20,704
	095-Thermal Regular Labour AO			1,589	0	1,589
	012 - Materials	003 - TP - Bldg., Struct. Grnd.		1,500	0	1,500
	013 - COPS Contracts	003 - TP - Bldg., Struct. Grnd.			0	
	001 - T&D Regular Labour	035 - TP - Wood Poles		669	0	699
	012 - Materials	035 - TP - Wood Poles		12,000	0	12,000
	012 - Materials	039 - TP - O/H Cond.		50,000	0	50,000
	001 - T&D Regular Labour	043 - TP - Substn Dev.		24,954	0	24,954
	012 - Materials	043 - TP - Substn Dev.		71,000	0	71,000
	012 - Materials	043 - DP - Substn Dev.		55,589	0	55,589
	013 - COPS Contracts	043 - TP - Substn Dev.			0	
	001 - Regular Labour (No AO)	085 Design		2,690	0	2,690
	001 - THERMAL Regular Labour	085 Design		6,620	0	6,620
	001 - T&D Regular Labour	086 Commissioning		1,200	0	1,200
		Tot	al Cost:	278,071	0	278,071
		Origir	al Cost:	22,402		

CI 41362 7H Beaufort Switchgear Retirement

The following is a breakdown of costs associated with the 7H Beaufort Switchgear Replacement project:

Administrative Overhead and Interest	\$39,350
Materials	\$190,089
Contracts	\$12,500
COPS Labour	\$39,222
Total	\$278,071

The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day. The work for this project includes the installation, connection and commissioning of new reclosers. The material budgets include new reclosers, new cabling from low-side of 7H-T1 inside PVC conduit, poles and aerial conductor to tie into existing feeders, new concrete pads, and a tie installed between 7H-291 and 7H-292 to allow recloser maintenance without affecting customers' service. The contract forecast provides for a crane rental which is required to installing new poles. A contractor will also perform pouring of new concrete pads for reclosers.

Title:

7V Methals Hydro Transformer Replacement

Start Date:	2012/06
Final Cost Date:	2012/11
Function:	Transmission
Forecast Amount:	\$258,506

DESCRIPTION:

This project will proactively replace 7V-GT1 which has exceeded its design life before it experiencing an inservice failure. A new transformer of the same rating will be ordered and installed in place of the current one, which will be permanently retired.

Summary of Related CI's +/- 2 years: No projects for 2010, 2011, 2012, 2013 & 2014

JUSTIFICATION:

Justification Criteria: Transmission Plant

Sub Criteria: Equipment Replacement

Why do this project?

7V-GT1 is a 1949 vintage Westinghouse transformer. The most recent tests performed on its insulating oil show elevated and increasing levels of carbon monoxide and carbon dioxide. The presence of these two compounds in the oil indicates cellulose breakdown, which is a strong indicator that the paper insulation protecting the transformer windings is deteriorating. The oil itself is in such condition that it no longer complies with NSPI standards or IEEE standards for insulating oil.

Why do this project now?

The combination of the transformer's 60+ year age, and the evidence of paper insulation breakdown, suggest that this transformer is rapidly approaching the end of its useful life. If the paper is allowed to continue to deteriorate, it will lose its ability to withstand the turn-to-turn voltages inside the transformer and cause a flashover, likely resulting in a failure. Removing this equipment from the system will avoid an unplanned outage.

Why do this project this way?

Evidence suggests an insulating paper breakdown. Replacing, reclaiming, filtering, or otherwise treating the oil will not provide an effective means of extending the life of the transformer.

- 7V Methals Hydro Transformer Replacement

- 800-Services - Admin.

Cost Centre : 800

Parent CI Number

2012 ACE Plan

Budget Version

6,258 825 9,533

Variance

392 9,850

Capit	tal Item /	Accounts			
Acct	Actv	Account	Activity	Forecast Amount	Amount
092		092-Vehicle T&D Reg. Labour AO		6,258	0
094		094 - Interest Capitalized		825	0
095		095-COPS Regular Labour AO		9,533	0
095		095-COPS Contracts AO			0
095		095-Thermal Regular Labour AO		392	0
001	044	001 - T&D Regular Labour	044 - TP - Substn.Transf.	9,850	0
002	044	002 - T&D Overtime Labour	044 - TP - Substn.Transf.	0	0
012	044	012 - Materials	044 - TP - Substn.Transf.		0
013	044	013 - COPS Contracts	044 - TP - Substn.Transf.		0
001	085	001 - Regular Labour (No AO)	085 Design	4,340	0
001	085	001 - THERMAL Regular Labour	085 Design	1,635	0

258,506

0

00

258,506

24,046

Original Cost: Total Cost:

0

2,500

086 Commissioning 086 Commissioning

085 Design

085 086

001 001 002

002 - T&D Overtime Labour 001 - T&D Regular Labour

086

0

1,635

1,635 2,500

4,340

CI 41390 7V Methals Hydro Transformer Replace

The following is a breakdown of costs associated with the 7V Methals Hydro Replacement Transformer project:

Administrative Overhead and Interest Materials Contracts COPS Labour Total

The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day. The material budgets include the transformer along with oil, bushings, radiators, and other dressings necessary to prep the transformer for energization. The contract forecast provides for the crane rental to offload and place the transformer.

6 Distribution

(Millions of Dollars)

6.1 Distribution – Five-year Plan and Highlights

The focus for Distribution capital investments in 2012 continues to reflect growth in the customer base and customer reliability. The \$72.5M Distribution capital investment plan for 2012 is comprised of the following:

vii	Request for ACE approval (Items i + v)	\$59.9M
vi	Total 2012 Distribution capital investment plan	\$72.5M
v	Routine capital spending	\$48
iv	Carry-over capital spending	\$0.1
iii	New capital spending for projects with total estimated spend less than \$250K for which approval is not sought	\$1.7
ii	New 2012 capital spending for projects with total estimated project spend greater than \$250K for subsequent approval	\$10.7
i	New 2012 capital spending for projects with total estimated project spend greater than \$250K and for which approval is sought	\$11.9

6.2 Distribution – Carry-over Capital spending Summary

Table 6.2 Distribution Carry-over Capital Spending

Project Number	CI#	Project Title	Start Date	Final Date	Previous Expenditure	2012 Budget	Subsequent Spending	Total Estimate
Distributi	on Plant							
D348	40211	2011 3H/6H Replacement Program	2012/09	\$231,508	\$110,711	\$0	\$342,219	
Total Distribution Plant					\$231,508	\$110,711	\$0	\$342,219
Total Distribution Carry Over Spending					\$231,508	\$110,711	\$0	\$342,219

6.3 Distribution – New 2012 Capital Items for ACE Approval

Table 6.3 Distribution – New 2012 Capital items For ACE Approval

Tab #	CI#	Project Title	2012 Budget	Project Total
	Distributi	on Plant		
D01	41392	2012 Distribution Cutout Replacements	\$2,596,796	\$2,596,796
D02	41349	2012 Off Road To Roadside	884,869	884,869
D03	41398	2012 Padmount Transformer Replacements	827,340	827,340
D04	41359	79V-402 Feeder Load Reduction	797,378	797,378
D05	41383	2012 Halifax Underground Feeder Replacement	596,760	596,760
D06	41351	2012 Distribution Automation	553,965	553,965
D07	41353	2012 Downline Recloser Additions	543,284	543,284
D08	41355	2012 Remote Communication on Reclosers	536,258	536,258
D09	41339	2012 Distribution Feeder Ties	492,873	492,873
D10	41325	Replacement of 3H and 6H Reclosers	465,327	465,327
D11	41360	82V-423 Hardwood Lands Deteriorated Plant Replacement	437,192	437,192
D12	41389	8H Fairview Conversion	417,695	417,695
D13	41384	2012 Feeder Exit Cable Replacement 374,54		374,542
D14	41338	20H-301 Targeted Feeder Replacement 371,361		371,361
D15	41333	16N-301 Stewiacke Reconductor	353,467	353,467
D16	41327	103W-311 Gold River Reconductor Phase 2	310,296	310,296
D17	41393	2012 Automatic Sleeve Replacements	287,831	287,831
D18	41337	1N-405 Targeted Feeder Replacement	283,892	283,892
D19	41341	1H-Water Street New Feeder	280,657	280,657
D20	41363	88W New Feeder	269,616	269,616
D21	41356	35V-312 Windsor Causeway	252,137	252,137
		Total Distribution Plant	\$11,933,535	\$11,933,535
	Total Dis	tribution New Spending	\$11,933,535	\$11,933,535

Distribution Cls 1 – 21

Title:

2012 Distribution Cutout Replacements

Start Date:	2012/01
Final Cost Date:	2012/12
Function:	Distribution
Forecast Amount:	\$2,596,796

DESCRIPTION:

This project provides for the replacement of porcelain cutouts on selected feeders. Feeder sections targeted for 2012 include:

103H-432G, 104H-423G, 18V-413, 3S-303, 82V-422, 103H-434, 113H-434G, 1H-427, 50W-412G, 87W-311, 103H-434G, 113H-443G

Summary of Related CI's +/- 2 years: 2010 38024 Distribution Cutout Replacements \$2,000,606 2011 39270 Distribution Cutout Replacements \$2,916,035 2013, 2014 CI TBD Distribution Cutout Replacements \$TBD

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Equipment Replacement

Why do this project?

This work is being undertaken as part of the overall customer reliability improvement investment. The program entails cutout replacements on a prioritized feeder basis, as required, to improve customer reliability. Porcelain cutout insulators develop hairline cracks with age. Moisture present further expands the cracks during the freeze/thaw cycle, eventually causing device failures. Cut-out failures account for the majority of all device failure outages, accounting for an average of 64,000 customer interruptions and 130,000 customer hours of interruption annually.

Why do this project now?

Cut-out replacements performed to date have resulted in improved reliability and reduced failure rates, which can be further reduced by continued replacements. Approximately 28,500 customer hours of interruption are expected to be saved on an annual basis from the feeders targeted in 2012.

Why do this project this way?

It has been determined that the best approach to reduce outages, caused by cutout failures, is to prioritize feeders as opposed to targeting specific cutout replacements across a number of feeders.

A portion of the labour for this project is being sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

				11202
CI	Num	hor		41002
U	INUII	INEL	-	

- 2012 Distribution Cutout Replacements

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		53,966	0	53,966
094		094 - Interest Capitalized		56,245	0	56,245
095		095-COPS Regular Labour AO		82,212	0	82,212
095		095-COPS Contracts AO		363,266	0	363,266
001	040	001 - T&D Regular Labour	040 - DP - O/H Cond.Devices	36,435	0	36,435
002	040	002 - T&D Overtime Labour	040 - DP - O/H Cond.Devices	0	0	0
012	040	012 - Materials	040 - DP - O/H Cond.Devices	386,152	0	386,152
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices	1,548,450	0	1,548,450
001	085	001 - T&D Regular Labour	085 Design	70,070	0	70,070
002	085	002 - T&D Overtime Labour	085 Design	0	0	0
			Total Cost:	2,596,796	0	2,596,796
			Original Cost:	835,570		

CI 41392 2012 Distribution Cutout Replacement

The following is a breakdown of costs associated with the 2012 Distribution Cutout Replacements project:

Administrative Overhead and Interest	\$ 555,689
Materials	\$ 386,152
Contracts	\$ 1,548,450
COPS Labour	\$ 106,505
Total	\$ 2,596,796

The Materials forecast amounts are for polymer cutouts and fuses and were estimated based on similar projects. The majority of the work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services, at a rate of approximately per compatible unit hour. The COPS Labour forecast provides for fuse coordination studies associated with the cutout replacements and internal power line technician labour budgeted at approximately per person day.

2012 Distribution Cutout Replacements

Assumptions:

i ii iii iv

ę	.50% Percent of customers affected by average cutout failure. Based on 2007 to 2010 cutout failure outages	
	3.75 Average number of annual cutout failures per feeder. Based on 2007 to 2009 cutout failure outages	
	2.83 Average duration of cutout failures outages. Based on 2007 to 2010 cutout failure outages	

75% Percent improvement realised through cutout replacement

		а	b	С	d	е
Vaar	Fooder Section	Down-Line	Average CI	Annual Cl	Annual CHI	ACHI
fear	Feeder Section	Customers	(a x i)	(b x ii)	(c x iii)	(d x iv)
2012	103H-432G	2,016	111	416	1,177	883
2012	103H-434	3,421	188	706	1,997	1,498
2012	103H-434G	3,411	188	704	1,991	1,493
2012	104H-412	2,189	120	451	1,278	958
2012	104H-413G	2,272	125	469	1,326	995
2012	104H-421	2,885	159	595	1,684	1,263
2012	104H-423G	2,807	154	579	1,638	1,229
2012	113H-434G	2,997	165	618	1,749	1,312
2012	113H-443G	2,131	117	440	1,244	933
2012	113H-444	3,001	165	619	1,752	1,314
2012	137H-412	2,614	144	539	1,526	1,144
2012	16W-301	1,836	101	379	1,072	804
2012	18V-413	1,679	92	346	980	735
2012	1H-427	2,344	129	483	1,368	1,026
2012	22N-402G	2,344	129	483	1,368	1,026
2012	23H-302G	2,661	146	549	1,553	1,165
2012	2H-411	2,400	132	495	1,401	1,051
2012	3S-303	1,745	96	360	1,019	764
2012	50W-412G	2,916	160	601	1,702	1,277
2012	50W-412GA	2,016	111	416	1,177	883
2012	58C-405	1,495	82	308	873	654
2012	67C-412	1,431	79	295	835	626
2012	73W-411G	2,733	150	564	1,595	1,196
2012	82V-422	2,133	117	440	1,245	934
2012	87W-311	1,684	93	347	983	737
2012	88H-401	1,596	88	329	932	699
2012	88H-402	1,497	82	309	874	655
2012	88W-312	1,919	106	396	1,120	840
2012	93V-311	1,134	62	234	662	496
	•	65.307	3.592	13.470	38.119	28.589

Title:

2012 Off Road To Roadside

Start Date:	2012/04
Final Cost Date:	2012/12
Function:	Distribution
Forecast Amount:	\$884,869

DESCRIPTION:

This project is planned to relocate approximately 25 km of distribution line from off road to the roadside in various locations throughout the province. The following locations are included in the scope for this project:

607N- 301 G Advocate Hospital - 750m 73W-41 1 Upper Branch Rd/Wagner Rd - 3.15 km 57C-426 Country Harbour Phase 3 - 1.5 km 58C-405 Margaree Forks - 4.5 km 100C- 21 Cape Porcupine Phase 2 - 3 km 590C-300 Route 4 - 5 km 57C-426 Goldboro Phase 4 - 5 km 4C-432 St. Andrews - 2 km

Summary of Related CI's +/- 2 years: 2010 Off Road to Roadside CI# 38062 - \$1,000,119 2011 Off Road to Roadside CI# 40227 - \$2,500,000 2013, 2014 CI TBD Off Road to Roadside \$TBD

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Outage Performance

Why do this project?

This project will provide improved access to distribution circuits which are currently located in off road right of ways. Providing easier access to the distribution lines will reduce the time to identify the location of the fault during outage events improving the reliability of these feeder sections. Having the distribution line road side also makes the regular maintenance activities more cost effective.

Why do this project now?

Moving lines to the roadside will increase the reliability of the system.

Why do this project this way?

Relocating off road sections to the road side improves access to the distribution plant and reduces the restoration time during outage events.

The labour portion for this project is being sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		11,431	0	11,431
094		094 - Interest Capitalized		12,778	0	12,778
095		095-COPS Regular Labour AO		17,414	0	17,414
095		095-COPS Contracts AO		129,443	0	129,443
095		095-Thermal Regular Labour AO		565	0	565
013	002	013 - COPS Contracts	002 - DP - Land Rights		0	
012	035	012 - Materials	035 - DP - Wood Poles	130,666	0	130,666
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
012	040	012 - Materials	040 - DP - O/H Cond.Devices	3,221	0	3,221
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	
001	085	001 - Regular Labour (No AO)	085 Design	2,678	0	2,678
001	085	001 - THERMAL Regular Labour	085 Design	2,352	0	2,352
001	087	001 - T&D Regular Labour	087 Field Super.& Ops.	22,560	0	22,560
			Total Cost:	884,869	0	884,869
			Original Cost:	93,123		

CI 41349 Off Road to Roadside

The following is a breakdown of costs associated with the Off Road to Roadside project:

Administrative Overhead and Interest	\$ 171,631
Materials	\$ 133,887
Contracts	\$ 551,761
COPS Labour	\$ 27,590
Total	\$ 884,869

The work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services, at a rate of approximately per compatible unit hour. Other contract costs include the use of backhoe and traffic control. Easements and tree trimming required for this project are obtained on a per site basis. Materials for this job are standard stock items with no special orders or long lead items required. NSPI resources will be required for site supervision.
CI Number: 41398

Title:

2012 Padmount Transformer Replacements

Start Date:	2012/02
Final Cost Date:	2012/12
Function:	Distribution
Forecast Amount:	\$827,340

DESCRIPTION:

This project is required to replace 37 to 40 padmounted transformers across the province. Regular inspections have identified padmounted transformers which are deteriorating such that they require replacement. These transformers will be replaced in a planned manner to avoid environmental incidents associated with transformer oil tank failure.

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Environment

Sub Criteria: Equipment Replacement

Why do this project?

The failure of a padmounted transformer typically results in an environmental oil spill which can be very costly to clean up. Environmental regulations prohibit the release of mineral oil into the environment. Padmount transformer inspections have identified transformers that need to be replaced next year due to deterioration.

Why do this project now?

These transformers were identified and prioritized as part of the padmount inspection process. They will be replaced in a planned manner as part of NSPI's environmental due diligence.

Why do this project this way?

The replacement of these transformers will minimize customer outages and remove the environmental risk posed by these transformers. The removed transformers will be evaluated for refurbishment. Starting in 2012 all padmount units will be made of stainless steel which is estimated to increase their operating life from 25-30 to greater than 40 years.

CI Number : 41398

- 2012 Padmount Transformer Replacements

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		21,341	0	21,341
094		094 - Interest Capitalized		25,618	0	25,618
095		095-COPS Regular Labour AO		32,511	0	32,511
095		095-Thermal Regular Labour AO		4,017	0	4,017
095		095-COPS Contracts AO		5,478	0	5,478
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
001	046	001 - T&D Regular Labour	046 - DP - U/G Conductor	3,343	0	3,343
012	046	012 - Materials	046 - DP - U/G Conductor	13,000	0	13,000
001	047	001 - T&D Regular Labour	047 - DP - U/G Conductor Devices	1,671	0	1,671
002	047	002 - T&D Overtime Labour	047 - DP - U/G Conductor Devices	0	0	0
012	047	012 - Materials	047 - DP - U/G Conductor Devices	5,000	0	5,000
001	048	001 - T&D Regular Labour	048 - DP - U/G Line Transf.	37,104	0	37,104
002	048	002 - T&D Overtime Labour	048 - DP - U/G Line Transf.	0	0	0
012	048	012 - Materials	048 - DP - U/G Line Transf.	638,176	0	638,176
013	048	013 - COPS Contracts	048 - DP - U/G Line Transf.		0	
001	085	001 - THERMAL Regular Labour	085 Design	16,731	0	16,731
002	085	002 - T&D Overtime Labour	085 Design	0	0	0
			Total Cost:	827,340	0	827,340
			Original Cost:	417,246		

CI 41398 Padmount Transformer Replacement

The following is a breakdown of costs associated with the padmount transformer replacement project.

Administrative Overhead and Interest	\$ 88,965
Materials	\$ 656,176
Contracts	\$ 23,350
COPS Labour	\$ 58,849
Total	\$ 827,340

The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day. The material costs are budgeted based on estimated perunit costs from previous projects. Traffic control and crane usage forecasted costs are reflected in the Contracts account.

CI Number: 41359

Title:

79V-402 Feeder Load Reduction

Start Date:	2012/02
Final Cost Date:	2012/09
Function:	Distribution
Forecast Amount:	\$797,378

DESCRIPTION:

This project provides for the addition of two phases of 336 ASC conductor for 1600 m on the Sangster Bridge Rd and the installation of three 500 kVA stepdown transformers at Sangster Bridge in order to offload 35V-312 and 79V-402. Also included is the double-circuiting of 800 m of three phase 25 kV distribution line along King St in Windsor in order to transfer additional load from 79V-402 to 79V-403 feeder.

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Overloaded Equipment

Why do this project?

This project is required to relieve an existing overload condition on feeder 79V-402. The load on feeder 79V-402 exceeds NSPI's 325 amp feeder overload criteria. Load relief is required to maintain service voltage levels and to maintain reliability.

Why do this project now?

The load on 79V-402 exceeded NSPI's 325 amp feeder overload criteria in January 2011. There are no anticipated reductions in customer loads on feeder 79V-402 and currently there is no availability to transfer some load to another source, given the existing feeder configuration. Load relief is required as soon as practicable.

Why do this project this way?

Installation of a new stepdown transformer and construction of double circuit line on King St is the least cost alternative, as detailed in the attached Distribution Planning Study 280-0611-H47. The new configuration will also result in a reduction in distribution system losses of approximately170 kW.

The labour for this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

Cl Number : 41359

- 79V-402 Feeder Load Reduction

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		24,041	0	24,041
094		094 - Interest Capitalized		4,749	0	4,749
095		095-COPS Contracts AO		104,081	0	104,081
095		095-COPS Regular Labour AO		36,624	0	36,624
012	035	012 - Materials	035 - DP - Wood Poles	69,000	0	69,000
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
012	039	012 - Materials	039 - DP - O/H Cond.	16,100	0	16,100
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
012	040	012 - Materials	040 - DP - O/H Cond.Devices	4,000	0	4,000
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
012	044	012 - Materials	044 - DP - Substn.Transf.	45,000	0	45,000
013	044	013 - COPS Contracts	044 - DP - Substn.Transf.		0	
013	050	013 - COPS Contracts	050 - DP - Street Lights		0	
013	052	013 - COPS Contracts	052 - DP - Services		0	
001	085	001 - Regular Labour (No AO)	085 Design	2,682	0	2,682
001	087	001 - T&D Regular Labour	087 Field Super.& Ops.	47,446	0	47,446
			Total Cost:	797,378	0	797,378
			Original Cost	: 98,257		

CI 41359 79V-402 Feeder Load Reduction

The following is a breakdown of costs associated with the 79V-402 Load Reduction project:

Administrative Overhead and Interest	\$ 169,496
Materials	\$ 134,100
Contracts	\$ 443,654
COPS Labour	\$ 50,128
Total	\$ 797,378

The work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services, at a rate of approximately per compatible unit hour. NSPI resources will be required for site supervision.

The materials forecast for this project include new stepdown transformers, poles, cutouts, switches conductor and insulators.

This item provides for the removal of 21 poles and the installation of 21 new double-circuit poles and 336 ASC conductor along King St in Windsor so that 79V-403 can pick up some of the load currently supplied by 79V-402. In addition, 25 spans of two-phase 336 ASC conductor will be installed along the Sangster Bridge Rd and a 3x500 kVA platform-mounted stepdown transformer will be installed at the Sangster Bridge in order to transfer load at the end of feeder 35V-312 to 79V-403, further offloading 79V-402.

CI Number: 41383

Title:

2012 Halifax Underground Feeder Replacement

2012/02
2012/11
Distribution
\$596,760

DESCRIPTION:

This project is required to replace 2.9 km of 3 phase, 25kV underground cable between 1 H Water Street Substation and Art Gallery Vault (feeder 1H-431) and a section of underground cable between Art Gallery Vault and Sheraton Hotel Vault (feeder 1H-419).

Summary of Related CI's +/- 2 years: 2010 38903 Halifax UG Cable Replacement 1H-403 & 405 - \$473,599 2011 40220 Halifax Underground Cable Replacement - \$418,861 2013 CI TBD Halifax Underground Cable Replacement \$TBD

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Deteriorated Conductor

Why do this project?

This work is being undertaken as part of the overall customer reliability improvement investment. This is year three of a five year (2010-2014) plan to improve reliability to NSPI's customers. This project is required to replace deteriorated underground 25 kV cables and accessories in downtown Halifax.

Why do this project now?

This project is part of a plan to begin replacing cables installed 35 years ago, which have now reached the end of their useful life. The 1H-431 feeder services a number of large customers in the downtown core area of Halifax such as Maritime Center, Ralston Building, Summit Place, Radisson Hotel, Bedford Row, Public Works Canada, Bank of NS, Maritime Museum as well as a number of large residential buildings.

Why do this project this way?

Due to the age of the underground cables, a five year (2010-2014) replacement plan (Attachment 1) was developed and is being implemented. This is the most cost effective option to replace these assets.

- 2012 Halifax Underground Feeder Replacement

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		76,262	0	76,262
094		094 - Interest Capitalized		10,731	0	10,731
095		095-COPS Regular Labour AO		116,177	0	116,177
095		095-Thermal Regular Labour AO		642	0	642
095		095-COPS Contracts AO		6,334	0	6,334
001	046	001 - T&D Regular Labour	046 - DP - U/G Conductor	132,037	0	132,037
002	046	002 - T&D Overtime Labour	046 - DP - U/G Conductor	0	0	0
012	046	012 - Materials	046 - DP - U/G Conductor	190,000	0	190,000
013	046	013 - COPS Contracts	046 - DP - U/G Conductor	27,000	0	27,000
001	047	001 - T&D Regular Labour	047 - DP - U/G Conductor Devices	1,671	0	1,671
012	047	012 - Materials	047 - DP - U/G Conductor Devices	12,383	0	12,383
001	085	001 - THERMAL Regular Labour	085 Design	2,674	0	2,674
001	085	001 - Regular Labour (No AO)	085 Design	4,048	0	4,048
002	085	002 - T&D Overtime Labour	085 Design	0	0	0
001	087	001 - T&D Regular Labour	087 Field Super.& Ops.	16,800	0	16,800
002	087	002 - T&D Overtime Labour	087 Field Super.& Ops.	0	0	0
			Total Cost:	596,760	0	596,760
			Original Cost:	118,260		

CI 41383 - 2012 Halifax UG Feeder Cable Replacement

The following is a breakdown of costs associated with the 2012 Halifax UG feeder cable Replacement project, year:

Administrative Overhead and Interest	\$ 210,146
Labour	\$ 157,230
Materials	\$ 202,383
Contracts	\$ 27,000
Total	\$ 596,759

This project will be completed by NSPI personnel at a rate of approximately per person day. The material costs are based on estimated per-unit costs of the previous year's projects. Contract costs include traffic control and crane usage.

PROJECT DESCRIPTION

Halifax Feeder Cable Replacement 2012

Year 3 of 5

Table of Contents

- 1.0 Summary
- 2.0 Overview of the Five Year Plan
- 3.0 2012 Plan
- 4.0 Labor
- 5.0 Materials

1.0 Summary

This project is a part of the five year plan to replace deteriorated underground 25kV cables and accessories in the Halifax Underground System. Cables installed in the early 1970's have now reached the end of their useful life estimated to be 35 years.

The Halifax underground system has been inventoried and studied in detail in the "Distribution Capital Investment Report Halifax 25 kV Underground System" by

This report recommends that the replacement project be carried out over the next 5 years and the required expenditures have been prioritized. This report has considered the age of plant, the loading of the system from PI data and the reliability to customers connected to the underground system. Consideration has been given to prolonging cable life by injection of chemicals into existing cables.

2.0 Overview of the Five Year Plan

Year 1, 2 and 3 – replace radial sections of the feeders 1H-403, 405, 419 and 431 Year 4 and 5 – replace loops and ties of the feeders 1H-403, 405 and 419

2010 Section A: Section F: Old cable rem	1H-403 – radial section between 1H and 28H-416 Scotia Square (1,400 m) 1H-405 – radial section between 1H and 28H-417 Scotia Square (1,440 m) ovals: Three out of service feeders 1H-243, 1H-246 and 1H-247 are to be removed between 1H and MH46 on Granville St (1000 m)
2011	
Section H: Section I:	1H-419 - radial section between 1H and L431-401 Proctor St. (2,140 m) 1H-419 – first half of the radial section between L431-404 and L431-211 Art Gallery Vault (645 m)
2012	
Section L: Section I:	1H-431 – radial section between 1H and Art Gallery Vault (2,230 m) 1H-419 – second half of the radial section between L431-404 and L431-211 Art Gallery Vault (645 m)
2013	
Section B: Section C:	1H-403 – North Loop from 28H-410 to L431-229 Metro Center (2,240 m) 1H-403 – Metro Center Loop from L431-230 to L431-232 (1,700 m)
2014	
Section D:	1H-403 – Scotia Square 28H-415 to Grand Parade Vault (380 m)
Section E:	1H-403 – Scotia Square 28H-411 to Metro Center L431-230 (410 m)
Section G:	1H-405 – 23kV loop (1,900 m)
Section K:	1H-419 – Tie to Scotia Square (240 m)

3.0 2012 Plan

Step 1 – Replace feeder 1H-431 between 1H and Art Gallery Vault (Section L) – 2,230 meters.

This feeder section will include the following route: 1H, MH2, MH3, MH60, Riser on Hollis/Morris St Riser on Hollis St (btw Morris&Bishop), MH59, MH58, MH57, MH148, Ralston vault, MH57, MH7, Keith's Brewery vault, MH7, Harbour Walk vault, MH7, MH8, Summit Place vault, MH89, MH49, MH51, Founder's Square vault, MH51, MH52, Bedford Row vault, MH52, MH53, Public Works Canada building vault, MH53, MH12, MH88, Maritime Museum vault, MH88, MH12, MH13, MH56, Art Gallery Vault.

Step 2 – 1H-419 – second half (645m) of the radial section between Proctor Street and Art Gallery Vault (Section I) - 1,290m.

The feeder will be replaced between switches L431-258 and L431-211 Art Gallery Vault The route will include: Sheraton vault, MH19, MH18, MH22, MH18, MH16, MH14, 1801 Hollis St vault,

MH14, MH13, MH56, Art Gallery vault.

4.0 Labor

5.0 Materials

Table 5.1

Per unit cost of materials:

#	Description	NSPI Code	\$\$
1	Primary cable 750 kcmil AI, 28 kV	113418	\$20/m
2	Basic Shielded Elbow 25 kV	114627	\$76.87/ea
3	Cable Adapter #750, Compact	137137	\$15.84/ea
4	Connecting Plug 25 kV	116390	\$79.26/ea
5	Basic Insulating Plug	122317	\$46.29/ea
6	Conductor Contact, #750 Compact	156260	\$33.17/ea
7	Constant Force Spring	114624	\$13.56/ea
8	Braid Flexible Tinned	124141	\$7.98 /ft
9	Arm, Cable support 10"	157934	\$23/ea
10	Arm, Cable support 14"	157935	\$26/ea
11	Termination Kit. (above items 2, 3, 5, 6)	N/A	\$132/ea
12	Grounding Kit for LC shield cable	N/A	\$46/ea

Table 5.2

Schedule of materials for one three phase separable deadfront cable-to-cable connection:

#	Description	NSPI Code	QTY
1	Termination Kit (see Table 5.1 for details)	N/A	6
2	Connecting Plug 25 kV	116390	3
3	Grounding Kit for LC shield cable	N/A	6

Table 5.3

Schedule of materials for one three phase deadfront switch-to-cable connection:

#	Description	NSPI Code	QTY
1	Termination Kit (see Table 5.1 for details)	N/A	3
2	Grounding Kit for LC shield cable	N/A	3

The materials for this project will be ordered based on the following considerations:

a. Ten percent is added to known cable length for making terminations and waste.

b. Sixteen (16) three phase cable-to-cable splices are required

c. Fourteen (14) three phase cable-to-equipment connections are required

d. Each underground manhole or vault will require two cable support brackets per feeder. There are two bracket sizes: 10 inches and 14 inches. A 10 inch bracket will hold 3 cables; 14 inch bracket will hold either three cables or three T-splices.

Table 5.4

Materials to be ordered in October - November 2011

#	Description	NSPI Code	QTY
1	Cable XLPE, LC shield, #750, aluminum	113418	9,500 m
2	Termination Kit (see Table 5.1 for details)	N/A	138
3	Connecting Plug 25 kV	116390	48
4	Grounding Kit for LC shield cable	N/A	138
5	Multi-mount cable support bracket,	157935	56
	Underground Devices Inc, 14 inch, MM14		

DISTRIBUTION CAPITAL INVESTMENT REPORT HALIFAX 25 kV UNDERGROUND SYSTEM

Draft October 05, 2009

TABLE OF CONTENTS

1.0 SUMMARY

2.0 PRESENT SYSTEM CONFIGURATION

2.1 Feeder Profiles

2.2 Load Check Summary

3.0 FEEDER CONTINGENCIES

- 3.1 Contingency Definitions
- 3.2 Contingency Options
- 3.3 Observations

4.0 REQUIRED SYSTEM IMPROVEMENTS

- 4.1 Art Gallery Tie
- 4.2 Scotia Square Tie
- 4.3 Other System Improvement Options

5.0 CABLE REPLACEMENT

- 5.1 Cable Lengths
- 5.2 Cable Accessories
- 5.3 Cable Sections
 - 5.3.1 Feeder 1H-403
 - 5.3.2 Feeder 1H-405
 - 5.3.3 Feeder 1H-419
 - 5.3.4 Feeder 1H-431

5.4 Budgeting for Cable Replacement

- 5.4.1 Estimates and Assumptions
- 5.4.2 Feeder Replacement Estimates
- 5.4.3 Service Replacement Estimates
- 5.5 Salvage

6.0 CABLE INJECTION

6.1 Description

6.2 Scope

- 6.3 Cable Replacement Part of the Cable Injection Option
- 6.4 Injection Estimates

7.0 CABLE REPLACEMENT vs. CABLE INJECTION

8.0 BUDGETARY TIMELINES

8.1 Cable Replacement Option

APPENDIX A - Cable Lengths and Available Ducts

APPENDIX B – Primary Service Cables APPENDIX C – Splices and Terminations APPENDIX D – Art Gallery Tie (Details) APPENDIX E – Deadfront Splice Specifications for 750 kcmil Cable

1.0 SUMMARY

Objective

The purpose of this report is to identify the requirements necessary to perform the cable replacement program in Downtown Halifax.

Scope

The scope of the report is limited to 25 kV feeders interconnected around the pole-free area of Downtown Halifax. The main components of the report are: overview of the present system configuration, review of the historic load check, cable inventory and categorization, review of manhole configurations and availability of spare ducts, basic feeder contingency assessment, system improvement proposals, budgeting and timelines. The existing 4 kV underground distribution system, substation contingencies and justifications for new feeder(s) are not covered in the report.

Recommendations

This report recommends that the replacement project be carried out over the next 5 years. The required expenditures have been prioritized. This report has considered the age of plant, the loading of the system from PI data and the reliability to customers connected to the underground system. Consideration has been given to prolonging cable life by injection of chemicals into existing cables.

Also, the report recommends two system improvement options that are necessary to improve the existing switching flexibility by establishing two new tie links. These changes should be made prior to the cable replacement program.

2.0 PRESENT SYSTEM CONFIGURATION

The diagram on Fig. 2.1 is a simplified combination of an electrical single line diagram and a geographical layout of the Halifax UD system. For simplicity, only open points are shown (except for the one at Scotia Square).

2.1 UNDERGROUND FEEDER PROFILES

The feeder profiles below describe each of the six underground feeders in a uniform format that will allow for easy comparison and quick reference further in the report. The underground feeders are: 1H-403, 1H-405, 1H-419, 1H-424, 1H-429 and 1H-431

			1 of 6				
1H-403 FEEDER PROFILE							
	Scotia Square	Metro Center					
Total feeder length	7.8 km	A.	2				
(including services)							
Built	1970's						
Route	Water, Sackville	e, Granville, Duke, 28F	I, Barrington, Agryle,				
	Grafton, Market	, Brunswick, Cogswell	•				
Installed MVA	23						
Interties with feeders	1H-405, 1H-419	9, 104H-432, 104H-431					
Loops	Two						
Stepdowns	689H						
Primary services	CS431-048, 170, 139, 197, 184, 185, 198, 487, 510, 428,						
	036, 429, 637, 531, 430, 150, 227, 211, 162, 154, 001, 182,						
	270, 426, 046, 144, 143, 265, 216, 244, 573, 402						
Load profile for the	1H_403						
last 3 years ending June 1,							
2008.	300 250 1 1 1 1 1	and a later .					
	200	and the second second					
	100						
	0	2007 2007					
		2007 20	<u> </u>				
		F					
Underground Cable	Part of feeder	Conductor size	Length, 3ph				
		[kcmil],[AWG]	[m]				
	Main radial	750	1780				
	Loops	750	2240				
	1	500	180				
		350	1550				
	Ties	750	230				
<u><u></u></u>		500	180				
	Primary	750	90				
	services	350	100				
		3/0	1110				
		1/0	470				
		#1	100				

1H-405 FEEDER PROFILE							
	Scotia	Square					
Total feeder length	3.8 km						
(including services)							
Built	1970's	k	1				
Route	Water, Sackville	e, Granville, Duke, So	otia Square, Market,				
	Cogswell						
Installed MVA	14 (approx.)						
Interties with feeders	1H-403, 1H-424	1					
Loops	One						
Stepdowns	28H-T26						
Primary services	CS431-007, 427	7, 005, 012, 507, 508,	481, 506				
Load profile for the		1H-405					
last 3 years ending June 1,							
2008.	350 300 250	and the second s					
5 N	150 100 50						
. · · ·	0 2005 2	006 2007	2003				
Underground Cable	Part of feeder	Conductor size	Length, 3ph				
		[kcmil],[AWG]	[m] ·				
	Main radial	750	1470				
	23 kV loop	750	160				
		350	1380				
	4/0 180						
		#1	340				
	Primary	3/0	170				
	services	#1	10				

1H-419 FEEDER PROFILE								
Joseph Howe Bldg./ Proctor Street								
Total feeder length	5.4 km	4 12						
(including services)								
Built	1970's							
Route	Water, Sackville,	Granville, Duke, 28H	, Hollis, 6H, Upper					
	Water							
Installed MVA	14							
Interties with feeders	1H-403, 1H-431,	104H-422, 104H-442						
Loops	One							
Stepdowns	622H							
Primary services	CS431-351, 138,	196, 053, 268, 183, 27	72, 140, 004, 142,					
	047, 279, 011, 14	1, 169	A					
Load profile for the	1H-419							
last 3 years ending June 1,								
2008.	300 250	and a set of the second						
	200	and the second sec						
	100							
	0 2006 200	2007 20	í Ine					
	2005 200							
Underground Cable	Part of feeder	Conductor size	Length, 3ph					
		[kcmil],[AWG]	[m]					
	Main radial	750	2140					
	Loop	750	1290					
		4/0	490					
		3/0	640					
	Tie	750	240					
	Primary	750	30					
	services <u>3/0</u> 100							
	*	#1	50					

1H-424 FEEDER PROFILE								
	Water Street/	Scotia Square						
Total feeder length	2.0 km							
(including services)								
Built	2003							
Route	Water, Granvill	e, Duke, 28H						
Installed MVA	3.9							
Interties with feeders	1H-405							
Loops	N/A	Airi	à.					
Stepdowns	N/A	<u> </u>						
Primary services	CS431-516, 493	3, 247, 485, 566, 567						
Load profile	No Load Profile	e Available 🥢	2.					
Underground Cable	Part of feeder	Conductor size	Length, 3ph					
		[kcmil],[AWG]	[m]					
	Main radial	750	1600					
	Primary	350	270					
	services	3/0	350					
·		#1	150					

		5 of 6					
1H-429 FEEDER PROFILE							
	V.G. Hospital						
Total feeder length	2.2 km						
(including services)							
Built	1990's						
Route	Water, Morris, 10H						
Installed MVA	11.2						
Interties with feeders	2H-412						
Loops	N/A						
Stepdowns	10H-T1 VG - North Bus						
Primary services	N/A						
Load profile for the last 3 years ending June 1, 2008.	1H-429						
Underground Cable	Part of feederConductor sizeLength, 3[kcmil],[AWG][m]	ph					
	Main radial 750 2200						
		un anuar un destate de la la la la la la la la la la la la la					

			6 of 6					
1H-431 FEEDER PROFILE								
	Downto	wn U/G						
Total feeder length	3.9 km							
(including services)								
Built	1970's							
Route	Morris, Hollis, S	Salter, Water, Bedfor	d Row, Prince					
Installed MVA	17.5							
Interties with feeders	1H-419, 1H-415	(o/h), 1H-427(o/h)						
Loops	N/A		A					
Stepdowns	610H Bedford R	low						
Primary services	CS431-205, 345, 554, 002, 497, 498, 148, 580, 674, 165,							
	049, 261, 217, 2	20, 271, 401, 608, 45	50, 054					
Load profile for the		1H-431						
ast 5 years ending june 1,	300							
2008.	250 200	And a star shall some						
	150							
	50							
st:	2005 20	006 2007	2008					
Underground Cable	Part of feeder	Conductor size	Length 3nh					
Chaoigicuna Caolo	r uit of feeder	[kcmil] [AWG]	[m]					
	Main radial	750	2130					
	Primary	3/0	280					
	services	350	270					

Page 971 of 1189

2.2 LOAD CHECK SUMMARY

FEEDER PEAK LOAD HISTORY 2004 - 2008											
Halifax peninsular feeders		20	2008* 2007		2006		2005		2004		
of interest		PI	Load Check	PI	Load Check	PI Load Check		PI	Load Check	Pl	Load Check
Underground [,]	1H- 431	230	213	250	223	270	298	240	286	240	303
feeders	1H-419	220	-	250	196	260	230	260	240	290	258
	1H-403	220	203	240	222	260	273	270	227	270	250
	1H-405	220	210	250	220	270	275	270	283	255	230
	1H-424**	-	60	-	70	-	70		70	I	80
	1H-429	180		270	184	270	257	280	261	260	247
Overhead	1H-415	360	-	375	283	340	326	390	320	350	240
Feeders	1H-427	230	230	260	238	260	267	260	220	250	220
intertied with	104H-413	250	253	250	330	280	330	250	360	340	350
u/g feeders	104H-431	350	350	260	243	270	271	280	250	340	330
	104H-432	280	343	275	365	280	288	350	351	160	271
	104H-422	230	206	300	253	275	277	275	280	230	267
	104-442	280	284	290	309	240	287	270	253	310	309
	2H-412	350	331	350	345	350	334	350	357	330	332
	2H-413	300	295	300	336	290	242	260	379	300	255
	* - Period e ** - Evaluat	nding . ed bas	June 1, ed on ir	2008 Istalle	d kVA						

3.0 FEEDER CONTINGENCIES

The purpose of this contingency categorization is to help identify feeders with switching limitations and to help draw the line between "Possible" and "Practical" as applied to a planned power outage to a part of the system. In other words even if the power can be restored after a system failure, the same technique may not always be justifiable for a planned outage.

3.1 CONTINGENCY DEFINITIONS

Contingency A – Transferring open point(s) in the loop of the same feeder. This is the preferred way of managing planned and unplanned outages.

Contingency \mathbf{B} – Simple switching by transferring open point between two adjacent feeders of the same source (substation). Backup feeder loading is a possible limiting factor.

Contingency C – Transferring open point between two feeders from two independent substations. Limiting factors: feeder loading, substation capacity, temporary abnormal configuration of the backup feeder, possible issues with paralleling, more complicated switching procedures.

Contingency D – Cascade offloading. (a) Same as Contingency B or C but the backup feeder needs to be offloaded first to a third feeder. (b) Splitting load between two adjacent feeders.

3.2 CONTINGENCY OPTIONS

The following summaries are to give an overview of the available switching options. Contingency A options are only available for feeders with loops and only for the loop part of the feeder. This option is not shown in the summaries.

Contingency D options are only shown for the feeders with limited switching options B and C.

Not all of the D- options can be shown due to a high number of open/closed switch combinations.

1 of 6							
	1H-403 CONTING	ENCY OP	TIONS	1	and the second		
Backup feeder	1H-405		1H-403 &	1H-405			
Total load [A]	490/440				5		
Switching device	L431-412		بالمعاقلة السردي	na di kalun di			
Contingency type	В	400 - 300 -			the second		
Comment	This option can be	200 - 100 -					
	marginal during summer	0 -	00.00				
	peaks	2005	2006	2007	2008		
Backup feeder	1H-419		11-403 8	1H-419	A COMPTO		
Total load [A]	490/420		111 4 00 u				
Switching device	28H-413	600 500	-				
Contingency type	В	400		a designed and	(Second		
Comment	Very similar to 1H-405	200					
		0					
		2005	2006	2007	2008		
Backup feeder	104H-431		11 403 8 44	101 101	1		
Total load [A]	500/465		11-403 & IV	AHU-HAI			
Switching device	L431-233 Metro Center	700		1			
Contingency type	С	500	and the second second		- Inter		
Comment	Combined load can be	300 200		S. serve			
	close to 500 A -load	100	Color Color				
	check is recommended	2005	2006	2007	2008		
D 1 C 1	1.0.1	2					
Backup teeder	104H-432						
Total load [A]	104H-432 575/570		1H-403 & 1	D4 H-432			
Total load [A] Switching device	104H-432 575/570 D4A15364	600	111-403 & 11	D4H-432			
Total load [A] Switching device	104H-432 575/570 D4A15364 C	600 500 400	1H-403 & 11	D4H-432			
Backup feeder Total load [A] Switching device Contingency type Comment	104H-432 575/570 D4A15364 C Available but load check	600 500 400 300 200	111.403 & 11	04H-432	(h		
Backup feeder Total load [A] Switching device Contingency type Comment	104H-432 575/570 D4A15364 C Available but load check is recommended	600 500 400 300 200 100 0	11,403 & 11	04H-432			
Backup feeder Total load [A] Switching device Contingency type Comment	104H-432 575/570 D4A15364 C Available but load check is recommended	600 500 400 300 200 100 0 2005	1H-403 & 10 2006	04 H-432 2007	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H-	600 500 400 300 200 100 0 2005	1H 403 & 10 2006	04H-432 2007	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H-431 sw# I 431-177	600 500 400 200 100 0 2005	1H 403 & 10 2006	04 H-432 2007	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A]	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated	600 500 400 300 200 100 0 2005	1H-403 & 10 2006	04H-432 2007 Available	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated 28H-413	600 500 400 300 200 100 0 2005	1H 403 & 10 2006	D4H-432 2007 Available	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated 28H-413 D	600 500 400 200 100 0 2005	1H-403 & 10 2006	D4H-432 2007 Available	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type Comment	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated 28H-413 D Limiting factor:	600 500 400 200 100 0 2005	1H 403 & 11 2006	D4H-432 2007 Available	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type Comment	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated 28H-413 D Limiting factor: 1H-431 peaks at 430/380	600 500 400 200 100 0 2005	1H 403 & 10 2006	04H-432 2007 Available	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated 28H-413 D Limiting factor: 1H-431 peaks at 430/380 Split between 104H-431	600 500 400 200 100 0 2005	1H-403 & 10 2006	2007 Available	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated 28H-413 D Limiting factor: 1H-431 peaks at 430/380 Split between 104H-431 & 104H-432	600 500 400 2000 100 0 2005	1H 403 & 10 2006	04H-432 2007 Available	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type Contingency type Contingency type Contingency type Contingency type Contingency type Comment Backup feeder Total load [A]	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated 28H-413 D Limiting factor: 1H-431 peaks at 430/380 Split between 104H-431 & 104H-432 TBD as required	600 500 400 200 100 0 2005	1H-403 & 10 2006 No Profile	D4H-432 2007 Available	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated 28H-413 D Limiting factor: 1H-431 peaks at 430/380 Split between 104H-431 & 104H-432 TBD as required	600 500 400 200 100 0 2005	1H-403 & 10 2006 No Profile No Profile	D4H-432 2007 Available Available	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated 28H-413 D Limiting factor: 1H-431 peaks at 430/380 Split between 104H-431 & 104H-432 TBD as required TBD as required D	600 500 400 200 100 0 2005	1H 403 & 10 2006 No Profile No Profile	D4H-432	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated 28H-413 D Limiting factor: 1H-431 peaks at 430/380 Split between 104H-431 & 104H-432 TBD as required TBD as required D Available	600 500 400 200 100 0 2005	1H-403 & 10	D4H-432	2003		
Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type Comment Backup feeder Total load [A] Switching device Contingency type Comment	104H-432 575/570 D4A15364 C Available but load check is recommended 1H-419 offloaded to 1H- 431 sw# L431-177 310/350 estimated 28H-413 D Limiting factor: 1H-431 peaks at 430/380 Split between 104H-431 & 104H-432 TBD as required TBD as required D Available	600 500 400 200 100 0 2005	1H-403 & 10	D4H-432	2003		

						2 of 6	
	1H-405 CONTING	Eľ	NCY O	PTIONS			
Backup feeder	1H-403			1H-403 & 1	H-405		
Total load [A] 490/440							
Switching device	L431-412		600				
Contingency type B			400 - 300 -			a the second	
Comment	This option can be		200 - 100 -				
	marginal during summer		0 -	20.06	2007	2008	
	time	_	2005	2006	2007	2005	
Backup feeder	1H-424	1		1H-405 & 1	H-424		
Total load [A]	290/320				<u> </u>		
Switching device	28H-447		400	- las main			
Contingency type	В		200				
Comment	Available.		100				
	1H-424 load is estimated		0	2000	0007		
	to be 70 A.	1000	2005	2006	-2007	2008	
					lif.		

-						3 of 6
	1H-419 CONTING	E	NCY OP	TIONS		
Backup feeder	1H-403			18-403 & 1	H-419	<u> </u>
Total load [A]	490/320]				
Switching device	28H-413]	600 500	-	A LAND	
Contingency type	В]	400		The state of the s	Column 1
Comment	Possible but load check is		200			
Δ.	recommended before		0	2022	2007	2000
	switching		2005	2006	2007	2008
Backup feeder	1H-431			1H-419 & 1	IH-431	
Total load [A]	510/440					
Switching device	L431-210 Art Gallery	1	600 500	-	-	
Contingency type	В		400	-		
Comment	Load check is		200			
	recommended before	8	0	2000	0007	10000
2	switching		2005	2006	2007	2008
Backup feeder	104H-422	100	1H-419 & 104H-422			
Total load [A]	600/500	3		an sa farana sa sa sa sa sa sa sa sa sa sa sa sa sa		
Switching device	6H-410		600 500	and the second	. Internation	
Contingency type	С		400 300			and the second
Comment	Most of the time >400 A.		200			
	Marginal		0	0000	0007	
			2005	2006	. 2007	2008
Backup feeder	104H-442		1H-419 & 104H-442			
Total load [A]	560/490	2				
Switching device	6H-430	1000	600 500			ED a
Contingency type	C		400	and the local division in the local division	a presente	
Comment	Available, but load check		200			
	is recommended before	а 2	0			
	switching		2005	2006	2007	2008
Backup feeder	Split between 1H-431 &					
	one the above					
Total load [A]	TBD as required]		No Profile	Available	
Switching device	TBD as required					
Contingency type	D					
Comment	Available					

~ .

					4 of 6
	1H-424 CONTING	ENCY OP7	FIONS		
Backup feeder	1H-405	1H-405 & 1H-424			
Total load [A]	290/320		111 100 4,1		
Switching device	28H-447	400	In man		
Contingency type	В	200			
Comment	1H-424 load is estimated	100			
	to be 70 A.	0	2000	2007	2000
		2005	2006	2007	2008
			A.		5 1994 99
		1 . A.		8	

1H-429 CONTINGENCY OPTIONS					
Backup feeder	Split between 2H-412	1H-429 is an express feeder to the			
	and 104H-413	stepdown 10H-T1 North Bus of VG			
Total load [A]	TBD as required	Hospital. At full capacity the load is 260A.			
Switching device	TBD as required				
Contingency type	D				
Comment	This backup option can				
	be marginal during				
	summer peaks.				

					6 of 6
	1H-431 CONTINGE	NCY OP	TIONS		
Backup feeder	1H-419		1H-419 & 1	H-431	
Total load [A]	510/440				
Switching device	L431-210 Art Gallery	600 500			
Contingency type	В	400	- Change and	And and the other designs	a second
Comment	Load check is	200			
	recommended before	0	2000	2007	2000
	switching	2005	2006	2007	
Backup feeder	1H-415		1H-431 & 1	H-415	
Total load [A]					
Switching device	D431-184 Hollis/Morris	700 600		b	
Contingency type	В	500 400	and the second second	a second	
Comment	The intertie switch is	200			
	close to the substation.				
	Very limited backup	2005	2006	2007	2008
	options for 1H-431				
Backup feeder	1H-427	ſ	1H-431 & 1	H-427	
Total load [A]					
Switching device	D431-266 Hollis/Morris	600 500		The lifest	
Contingency type	В	400	A DECK		100
Comment	The intertie switch is	200			
	close to the substation.				2
	Very limited backup	2005	2006	2007	2008
	options for 1H-431				
		- <i></i>			
3.3 OBSERVATIONS

<u>1H-403</u>

There are several switching options but none of them are straightforward. All of the options can be marginal during summer peaks.

<u>1H-405</u>

Feeder 1H-424 is a reliable backup for 1H-405.

<u>1H-419</u>

There are several options. During summer time the simple options become questionable. Splitting the load between 1H-431 and 1H-403 or 104H-422 would be the next option.

<u>1H-424</u>

Feeder 1H-405 is a reliable backup for 1H-424. New feeder.

<u>1H-429</u>

Complicated switching to offload the 10H-T1 transformer between 2H-412 and 104H-413. The load situation at 4 kV is expected to improve and therefore the above offloading should become more reliable. There is a suspicion of a collapsed ductbank on Morris St. The work to clarify on this issue is in progress (Summer 2008). This feeder is relatively new.

<u>1H-431</u>

The only simple backup option for this feeder is 1H-419. This option becomes questionable during summer months. For improved switching flexibility this feeder may require additional intertie. See 4.1 for details. This may be especially important considering the overhead section of the feeder that is exposed at the intersection of Hollis and Morris St.

To summarize the above:

- Feeders 1H-405 and 1H-424 have reliable backup.

- Feeders 1H-403, 1H-419 and 1H-429 have conditional backup options. An effort should be made to improve it.

- Feeder 1H-431 has a questionable backup option. There is a risk of extended outage.

Additional backup alternative(s) need to be developed.

4.0 SYSTEM IMPROVEMENTS

4.1 ART GALLERY TIE

To improve the backup options for feeders 1H-431 and 1H-419 a new tie connection is recommended between the Art Gallery vault and feeder 1H-424 in manhole #13 on Lower Water Street. This will create a simple and reliable contingency option for the above two feeders which can also be used for a cable replacement/injection or cable treatment program.

The new feeder configuration will require extending nine 100 mm ducts (3-in, 3-out, 3-spare) from MH56 to the Art Gallery vault. See Fig. 4.2 and Appendix 4 for more details. There are ducts available in the existing ductbank between MH13 and MH56 to install six 750 kcmil cables. The total length of the new cable extension is approximately 60 meters.

Fig. 4.1 New intertie between Art Gallery vault and MH13

4.2 SCOTIA SQUARE TIE

The main purpose of this proposal is to improve the backup options of the feeder 1H-403. The idea is to use the existing 3-way Vista switch at the Scotia Square vault as a universal tie for 1H-403, 1H-405 and 1H-424 feeders that will allow paralleling them in any combination. At the moment the switch is underutilized and is serving as a connection point between 1H-405 and 1H-424.

Fig. 4.7 New Connection in the Scotia Square vault

Fig. 4.9

The switch 28H-449 can be connected to one of the following devices that are on the same bus of the 28H substation: 28H-410, 28H-416, 28H-414 or 28H-445 The exact point of connection needs to be determined.

4.3 OTHER SYSTEM IMPROVEMENT OPTIONS

4.3.1 Configuration Improvements of 1H-431

Converting the o/h portion of the feeder 1H-431 would benefit the reliability of the Halifax underground system. There are six riser poles around the intersection of Hollis and Morris Streets that are exposed to traffic and weather. Also, there is a number of flying taps (two sets), quick sleeves, inline switches, communication loops and 4 kV lines sharing the same poles. The top circuits on each of the three poles on Fig. 4.10 are the feeder 1H-431.

Fig. 4.10 Intersection of Hollis and Morris St.

This project would mostly involve extending the ductbank on Hollis Street from manhole #59 (Bushop/Hollis) to #60 (Morris/Hollis) which are approximately 120 meters apart and a new manhole in the middle of the block with a submersible switch in it. The switch is required for two primary services: Waterford Apartments CS431-554 and Prince Matthew's Apartments CS431-480 and also to replace the functionality of the existing set of inline switches D431-394. Two or three overhead services would have to be converted as well.

This part of the feeder is situated within the boundaries of the existing pole-free area. This conversion would have to be supported by the HRM as a continued commitment of the current cost sharing agreement with NSPI. A new development in the area may help to trigger this process.

4.3.2 Cable Upgrades

There are two potential bottlenecks in the existing system that may be considered for an upgrade. The purpose is to increase the conductor size to the full size feeder (750 kcmil) between the Metro Center and Scotia Square and between the riser pole on Cogswell St (feeder 104H-432) and Scotia Square.

See paragraphs 5.3.1 (B) and 5.3.1 (E) further in the text for details. With the existing ductbank configuration only one of the two can be implemented.

5.0 CABLE REPLACEMENT

5.1 Cable Lengths

Table 5.1

Total Feeder Section Lengths [m]							
Part of	Cable		1]	H Undergro	ound Feede	rs	
Feeder	Size	403	405	419	424	429	431
Radial	750	1780	1440	3430	1600	2200	2130
	500	-		-	-	5 4	-
Loop	750	2240	160	-	-	-	-
	500	180	-	-	gas -		-
	350	1550	1380	- //		-	-
	4/0		180	490	m	-	
	3/0	-	- #	640		-	-
	#1	-	170	-	_	_ //	-
Tie	750	230	••	240	101	-	-
	500	H	180	-	-	(a .	-
Primary	350	100	-	-	-	-	-
Service	3/0	1260	130	100	350		270
	#1	-	10	50		1 05	280
Total		5980/	3510/	4800/	1600/	2200	2130/
without/with		7340	3650	4950	1950		2680
services				and the second sec			

Note:

1. The above numbers are 3 phase lines, not individual conductors

2. For detailed summary on feeder sections see Appendix A

3. For detailed summary on primary service cables see Appendix B

Summary:

The total length underground feeders including primary services (6 feeders): 22770 m Same for the feeders over 30 years old (4 feeders) – 18620 m This includes the feeder sections:

- a) Radial 8780 m
- b) Loops 6990 m
- c) Ties -650 m
- d) Primary services 2200 m

5.2 Cable Accessories

The following cable accessories will be referenced to in tables 5.2, 5.3 and Appendix C:

S – Splice, general.

T - 600 A deadbreak termination

LF – Life front termination

 $L-200 \ A \ loadbreak \ elbow$

SA - Support arm, 14" multi-mount, Underground Devices Inc, MM14,

X

Accessories per Feeder								
Cable	1H-403		1H-405		1H-419		1H-431	
Accessory	Feeder	Service	Feeder	Service	Feeder	Service	Feeder	Service
S.	9	-	9	-	9	-	2	-
Т	31	27	24	9	20	13	21	14
LF	31	7	36	- 🥼	15	4	2	4
L	0	33		9	- \	11	- 1000	14
SA*	60	-	34	-	60		26	-

* - the number of support arms is estimated based on the approximate number of passes through manholes for feeder cables only.

Table 5.3

Total Accessories							
Cable	Accessory	Feeder		Service			
S		25	Ű.	-			
Т		96		67			
LF		84		15			
L		0		67			
SA		180		2 -1			
Total		385		149			

Note that the accessories are shown here as three phase devices, therefore for the actual number of single phase units needs to be tripled.

5.3 Feeder Sections

Fig. 5.3 Feeder Sections for Replacement

5.3.1 FEEDER 1H-403 (A, B, C, D, E)

(A) 1H-403 - Main Radial from 1H to 28H-416

The replacement of this part of the feeder can be approached in two ways:

Option 1

Use an alternative supply for 1H-403 (See 3.2 Contingency Options). Deenergize the radial part of the feeder between 1H and 28H-416 (approx. 1.4 km) and replace it.

Option 2

Remove the old 4 kV cables 1H-243, 1H-246 and 1H-247 (#500, 3 phase PILC) along the Lower Water, Sackville and Granville Streets between 1H and MH46 (1 km). Install new cables in the freed-up ducts while the existing feeder cables are still in service. Then extend the new cables from MH46 to MH47 and further to MH125 and MH26. This is approximately 90 % of the radial section of the feeder. The remaining short run from MH26 – MH28 – MH32 to 28H does not have enough free ducts. Therefore, one of the alternative supplies will be used for the duration of the cable replacement.

Advantages of this option: a) minimizes the use of alternative supply b) one kilometer of ducts becomes available for cascade replacement of two more feeders c) old equipment is removed and salvaged.

This cable may contain PCB. Federal and provincial legislation and regulations regulate the management of PCBs. Refer to the Environmental Management Strategy for Oil-Filled Equipment ENV-2.05 (Environmental Binder) for proper procedures.

(B) 1H-403 - North Loop from 28H-410 to L431-229 Metro Center

There are three sizes of conductors in the loop: 350, 500 and 750 kcmil. It may be beneficial to upgrade a part of the loop between MH102 on Cogswell St and 28H to 750 kcmil to create a full size tie between feeder 104H-422 (SW# D4A15363) and 28H-410 in Scotia Square. There are two conditions for this upgrade:

1) Some cables would have to be swapped in MH43 to make this tie "service free". This will transfer the cs431-265 service to another shoulder of the same loop that has multiple primary services and will remain 350 kcmil.

2) There are only two free ducts available between 28H and MH32. The upgrade is still possible but this option needs to be further investigated.

(C) 1H-403 –Metro Center Loop from L431-230 to L431-232

This part of the feeder has enough spare ducts to pre-install the new switch-to-switch sections while the old cable remains in service. The switching between the old and new cable can be done without taking outages to the customers.

(D) 1H-403 – 28H-415 to Grand Parade Vault

This is a normal feed for the Metro Center loop. There are not enough spare ducts to install the replacement cable ahead of time. One of the two available backup options has to be used for the duration of the cable replacement or injection.

(E) 1H-403 - 28H-411 to L431-230 Metro Center - Tie with 1H-405

There are two sizes of conductors (500 and 750 kcmil) used in this tie. The 500 kcmil section should be upgraded to the standard 750 kcmil size. There are only two free ducts available between 28H and MH32 to exit the Scotia Square vault. The cable upgrade is possible but this option needs to be further investigated.

With the existing ductbank configuration, the two cable upgrades (B) and (E) are mutually exclusive therefore:

a) Only one of the two may be selected

b) Possibility of adding more ducts between 28H vault and MH32 to be explored

5.3.2 FEEDER 1H-405 (F, G)

(F) 1H-405 – Main Radial from 1H to 28H-417

This part of the feeder is very similar to 1H-403 (A) and can be approached in the same way. See section (A) options for details. The removal of the old 4 kV feeder cables will also benefit the 1H-405 feeder replacement.

(G) 1H-405 – 23 kV Loop

The old multi-loop configuration was recently changed. The exact configuration of the present system may need to be updated on the single line diagrams. The upcoming cable replacement may also be used as an opportunity to further optimize the existing 23 kV loop system.

5.3.3 FEEDER 1H-419 (H, I, J)

(H) 1H-419 - to L431-401 Proctor Street

The replacement of this section can be combined with the removal of the old 4 kV cables (See 5.1 Option 2). This section can be backfeed from 104H-422 or 104H-442.

(I) 1H-419 – L431-404 Proctor Street to L431-211 Art Gallery Vault

The layouts of manholes MH90, MH91 and MH92 need to be verified and completed.

(J) 1H-419 Loop from L431-211 to L431-209 Art Gallery Vault

This is a normal underground loop. There is no foreseeable reason for cable size upgrades or configuration change.

(K) 1H-419 MH22 to 28H-413

This is a normally open tie with the feeder 1H-403. There are no primary services on this feeder section. The replacement should be straightforward.

5.3.4 FEEDER 1H-431 (L)

(L) 1H-431 to Art Gallery Vault

The records on the available spare ducts are inconsistent. A detailed scoping is required. The system improvement option 4.1 is recommended for better contingency arrangements. 5.4 Budgeting for Cable Replacement

5.4.1 Estimates and Assumptions

Labour:

- One underground crew includes 3 technicians.

- A basic length of 3 phase cable would normally consist of 1, 2 or 3 runs between two electrically adjacent cable accessories. The cable runs can be: manhole-to-manhole, manhole-to-vault, vault-to-vault and in some cases riser pole to manhole.

- One crew can install in one normal day:

a) one basic length of three 750 kcmil cables, no terminations.

b) 2 basic lengths of triplexed cable, no terminations.

c) 1 basic length of triplexed cable and terminate one end.

d) 6 cable terminations

e) one primary service loop (one basic length), terminate both ends reconnect.

- One crew can remove in one normal day:

a) three old PILC cables from three manhole-to-manhole lengths. Four manholes to be entered. This is mostly applicable to the three old feeders between 1H and MH46.

b) switch from old to new pre-installed and pre-terminated length of cable, remove the old cable. Phase the cable.

- For simplicity the above installation steps can be further combined into mandays per basic length of cable (installation + termination + switching + removal):

a) 750 kcmil three 1 phase cables:

b) <750 kcmil 3 phase cable installation:

- One eight hour manday (2010) with overhead is calculated as follows:

- One eight hour overtime manday is calculated:

- Unless specified, no overtime rates have been used for calculations.

Materials:

- Primary cable:	750 kcmil Al, 28 kV	- \$25/m
•	350 kcmil Al, 28 kV, 3 phase	- \$ 40/m
	3/0 Al, 28 kV, 3 phase	- \$35/m
	#1 Al, 28 kV, 3 phase	- \$30/m
- Splice	750/750	- \$200 each
- T-Connector 600 A	(See Appendix E for details)	- \$239 each
- Loadbreak elbow 20	0 A	- \$55 each
- Synthetic terminator	· -	\$170 each
- Support arm 14" com	mplete with masonry fasteners	5
and tie wraps	for cable	- \$50 each

5.4.2 Feeder Replacement Estimates

Materials and Labour for Cable Replacement Option Evoluting Primary Services								
Feeder	Feeder Cable Accessories Labour							
100001	(refer to feeder profiles 2.2)	(refer to 5.2)	(refer to $5.4.1$)					
1H-403	$750 \text{ kcmil: } 4250 \times 1.1* \times 25 \times 3$	$S: 9 \times 6^{**} \times 239 =$	750 kcmil:					
111 105	= \$325 625	\$12,906						
	350 kcmil: 1550 x 1.1 x 40 =	$T: 31 \times 3 \times 239 = $	<750 kcmil***:					
	\$68.200	\$22.227						
	Other sizes: $360 \times 1.1 \times 35 =$	LF: $31 \times 3 \times 170 =$						
	\$13.860	\$15,810						
		SA: 60 x 50 = \$3,000						
	Total: \$407,685							
		Total: \$53,943						
1H-405	750 kcmil: 1630 x 1.1 x 25 x 3 =	$S: 9 \ge 6 \ge 239 =$	750 kcmil:					
	\$134,475	\$12,906	7 runs =					
	350 kcmil: 1380 x 1.1 x 40 =	T: 24 x 3 x 239 =	<750 kcmil:					
	\$60,720	\$17,208	6 runs =					
	Other sizes: 520 x 1.1 x 35 =	LF: 36 x 3 x 170 =						
	\$20,020	\$18,360						
	Total: \$215,215	SA: 34 x 50 = \$1,700						
		Total: \$50,174						
1H-419	750 kcmil: 3430 x 1.1 x 25 x 3 =	S: 9 x 6 x 239 =	750 kemil:					
	\$302,775	\$12,906	17 runs =					
	Other sizes: 1130 x 1.1 x 35 =	$T: 20 \ge 3 \ge 239 =$	<750 kcmil:					
	\$43,505	\$14,340	8 runs =					
		LF: $15 \times 3 \times 170 =$						
		\$7,650						
	Total: \$346,280	SA: 60 x 50 = \$3,000						
		Total: \$37,896						
1H-431	750 kcmil: $2130 \times 1.1 \times 25 \times 3 =$	$S: 2 \times 6 \times 239 =$	750 kcmil cable:					
	\$175,725	\$2,868	14 runs =					
	l l l l l l l l l l l l l l l l l l l	$ 1:21 \times 3 \times 239 =$						
		\$10,007 LT: 2 = 2 = 170 =						
		$LF: 2 \times 3 \times 1/0 =$						
		51,020 SA, 26 50 - \$1,200						
	Total . \$175 725	$SA: 20 \times 50 = $1,500$						
*	10tal: 51/5,/25	10121: \$20,245						
 * - 10% of length is added for splicing loops and waste. 								

Table 5.4

**

- 600 A deadbreak elbows are used for splicing cables.
- In this context: 3 phase cable size between #1 and 350 kcmil ***

Total:

Note that the system improvement items (4.0), old 4 kV cable removals (5.3.1 A) and proposed conductor upgrades for 1H-403 (5.3.1 B, E) are not included in the above estimate.

Materials and Labour for Replacing Primary Service Cables						
Feeder	Cable	Accessories	Labour			
	(refer to feeder profiles 2.2)	(refer to 5.2)	(refer to 5.4.1)			
1H-403	$750 \text{ kcmil: } 100 \text{ x } 1.1^* \text{ x } 25 \text{ x } 3 =$	T: 27 x 3 x 239 =	32 services =			
	\$8,250	\$19,359				
		LF: 7 x 3 x 170 =				
	350 kcmil: 100 x 1.1 x 40 = \$4,400	\$3,570				
		L: 33 x 3 x 55 =				
	Other sizes: $1680 \times 1.1 \times 35 =$	\$5,445				
	\$64,680					
	Total: 72,930	Total: \$28,374				
1H-405	3/0: 170 x 1.1 x 35 = \$6,545	$T: 9 \ge 3 \ge 239 =$	8 services =			
	<i>"</i>	\$6,453				
		L: $9 \times 3 \times 55 =$				
		\$1,485				
		Total: \$7,938				
1H - 419	$750 \text{ kcmil: } 30 \times 1.1 \times 25 \times 3 =$	$T: 13 \ge 3 \ge 239 =$	15 services =			
	\$2,475	\$9,321				
	0/0 0 //1 140 11 05 AF 000	LF: $4 \times 3 \times 170 =$				
	$3/0 \& \#1: 140 \ge 1.1 \ge 35 = \$5,390$	\$2,040				
		L: $\prod x 3 x 55 =$				
	Total \$7.965	\$1,810 Total: \$12.176				
111 /21	$\begin{array}{c} 101a1; 57,805 \\ \hline 250 \text{ transite 270 v; 1.1 v; 40 - $11,890} \\ \end{array}$	Total: $313,170$	10 comvioca -			
111-431	550 Kemii. 270 x 1.1 x 40 – \$11,880	$1.14 \times 5 \times 259 =$ (10.029)	19 services –			
	$3/0 \& #1 \cdot 480 \times 11 \times 35 = 18480	$J F \cdot 4 \times 3 \times 170 =$				
	5/0 & #1. TOV & 1.1 & 55 \$10,700	\$2 040				
×		$L: 14 \times 3 \times 55 =$				
		\$2.310				
	Total: \$30,360	Total: \$14,388				
*	100/-61-41/2-11-1611-1-1-1	· · · · · · · · · · · · · · · · · · ·	ł			

5.4.3 Service Replacement Estimates

Table 5.5

- 10% of length is added for splicing loops and waste.

Materials and Labour for Replacing Primary Service Cables						
50% Overtime						
Feeder	Cable	Accessories	Labour			
	(refer to feeder profiles 2.2)	(refer to 5.2)	(refer to 5.4.1)			
1H-403	750 kcmil: $100 \ge 1.1 \ge 25 \ge 3 =$	$T: 27 \ge 3 \ge 239 =$	32 services =			
	\$8,250	\$19,359				
		LF: 7 x 3 x 170 =				
	350 kcmil: $100 \ge 1.1 \ge 40 = 4,400$	\$3,570				
		L: 33 x 3 x 55 =				
	Other sizes: $1680 \times 1.1 \times 35 =$	\$5,445				
	\$64,680					
	Total: 72,930	Total: \$28,374				
1H-405	3/0: 170 x 1.1 x 35 = \$6,545	T: $9 x 3 x 239 =$	8 services =			
	6	\$6,453				
		L: $9 \times 3 \times 55 =$				
	· · · · · · · · · · · · · · · · · · ·	\$1,485				
		Total: \$7,938				
1H - 419	750 kcmil: $30 \ge 1.1 \ge 25 \ge 3 =$	T: $13 \times 3 \times 239 =$	15 services =			
	\$2,475	\$9,321				
		LF: 4 x 3 x 170 =				
	3/0 & #1: 140 x 1.1 x 35 = \$5,390	\$2,040				
		L: $11 \ge 3 \ge 55 =$				
		\$1,815				
	Total: \$7,865	Total: \$13,176				
1H - 431	350 kemil: $270 \times 1.1 \times 40 = $11,880$	$T: 14 \ge 3 \ge 239 =$	<u>$19 \text{ services} =$</u>			
		\$10,038				
	$3/0 \& #1: 480 \ge 1.1 \ge 35 = $18,480$	LF: $4 \times 3 \times 170 =$				
		\$2,040				
		L: $14 \times 3 \times 55 =$				
		\$2,310				
	Total: \$30,360	Total: \$14,388				

Table 5.6

- 10% of length is added for splicing loops and waste.

Jacob

5.5 Salvage

Aluminum

Table 5.7

Theoretical Weight of Aluminum Wire						
Wire size	Wire sizeDiameter [mm]Cross-section [mm2]Weight [kg/km]					
750	22	380	1026			
500	18	253	683			
350	15	177	478			
4/0	11.7	107	289			
3/0	10.4	85	230			
#1	7.4	42	113			

Table 5.8

Aluminum Salvage Weight by Feeder [kg]						
	Cable Size	1H-403	1H-405	1H-419	1H-431	
Feeder	750	13,080	4,926	11,295	6,555	
н. -	500	369	369	-	-	
	350	2,223	1,977	-	-	
	4/0	1	156	426	-	
	3/0	•	1	441	-	
	#1	-	57		-	
Service	350	144		-	-	
	3/0	849	90	69	186	
	#1	-	-	18	96	

Note: concentric neutral material is not accounted for

Salvage value of aluminum: \$1.5/kg:

- a) Feeder cables 750 kcmil = \$54,000
- b) Feeder cables <750 kcmil = \$9,000
- c) Services, all sizes = \$2,200

Copper

The salvage value of copper: \$5.00/kg. The removal of 3 km of 3 ph 500 kcmil PILC cable (5.3.1 Option 2) should produce 10 tons of salvageable copper, which is approximately \$50,000.

The total salvage value of the cables proposed for removal under this project is expected to be \$110,000.

6.0 CABLE INJECTION

6.1 Description

The cable injection option will be calculated for 750 kcmil cable only. The smaller conductor sizes for both feeder and services are considered for replacement. See Table 6.1 for summaries.

Three phase line to be injected/replaced [m]						
	Feeder Injection Feeder Replacement Service Cable					
	750 kcmil	<750 kcmil	Replacement			
1H-403	4,250	1,730	1,360			
1H-405	1,680	1,910	140			
1H - 419	3,650	1,130	150			
1H-431	2,130	0	550			
Total	11,710	4,770	2,200			

For feeder cables the injection will have to be done with de-energized cables. The injection and material installation crew would normally include 3 technicians. Time to inject will be dependent on the characteristics of the cable and type of conductors. The first draft work schedule implies up to 10 hours/day and 7 days/week. Labour fees for cable testing (TDR and pressure test) and cable injection are included in the injection price. The actual cable length is to be confirmed with TDR. Once injected the cables are protected by a 20 year warranty.

6.2 Scope

Following is a planned scope of injection work grouped by feeder# and section# (see Fig. 5.3). The sections will be (a) terminated at switching devices using livefront or deadfront terminations and (b) spliced using 600A deadbreak T-body, therefore each section will require 6 terminations. All terminations are in manholes and vaults. Some of the basic section lengths below are assumed to be equal for simplicity, but the total lengths should be fairly accurate.

Feeder 1H-403 (4250 m)

Section A: 230+230+230+230+230=1400 mSection B: 160+150+230=540 mSection C: 210+220+160+220+140+80+280+120+120+150=1700 mSection D: 190+190=380 mSection E: 230 mThree phase cable sections: 22Terminations: $22 \times 6 = 132$

Feeder 1H-405 (1680 m)

Section F: 230+230+230+230+230+270=1440 Section G: 240 Three phase cable sections: 7 Terminations: **42**

Feeder 1H-419 (3670 m)

Section H: 228+228+228+228+200+200+200+200+200=1140 m Section I: 156+156+156+110+190+240+190=1290 m Section K: 240 m Three phase cable sections: **18** Terminations: **108**

Feeder 1H-431 (2130 m)

Section L: 190+190+150+90+100+160+170+170+190+110+100+180+160+160=2130 m Three phase cable sections: **14** Terminations: **84**

Summary:

Three phase cable sections: **61** (183 1ph 750 kcmil cables) Total 3 ph. length: **11,710 m** Terminations: **366** (306 T-bodies + 60 misc. live front terminations)

6.3 Cable Replacement Part of the Cable Injection Option

The cables other than 750 kcmil will be replaced as follows

Tabla	62
Table	0.2

	Materials and Labour	for Cable Replacement	
	Excluding 750 kcmil Feeder	Cables and Primary Serv	vices
Feeder	Cable	Accessories	Labour
	(refer to feeder profiles 2.2)	(refer to 5.2)	(refer to 5.4.1)
1H-403	350 kcmil: 1550 x 1.1* x 40 =	T: $13 \times 3 \times 239 =$	<750 kcmil**:
	\$68,200	\$9,321	13 runs
	Other sizes: $360 \times 1.1 \times 35 =$	LF: $23 \times 3 \times 170 =$	
	\$13,860	\$11,730	
		SA: 60 x 50 = \$3,000	
	Total: \$82,060		
		Total: \$24,051	
1H-405	350 kcmil: 1380 x 1.1 x 40 =	T: $32 \times 3 \times 239 =$	<750 kcmil:
	\$60,720	\$22,944	6 runs =
	Other sizes: $520 \times 1.1 \times 35 =$	LF: $32 \times 3 \times 170 =$	
	\$20,020	\$16,320	
		SA: $34 \ge 50 = $1,700$	
	Total: \$80,740		
		Total: \$40,964	
1H-419	Other than 750 kcmil sizes:	T: $7 \times 3 \times 239 = $5,019$	<750 kcmil:
	1130 x 1.1 x 35 = \$43,505	LF: $10 \times 3 \times 170 =$	8 runs =
		\$5,100	
		SA: $60 \ge 50 = $3,000$	
		Total: \$13,119	
1H-431	N/A	N/A	N/A

- 10% of length is added for splicing loops and waste.
- In this context: 3 phase cable size from #1 to 350 kcmil

203

6.4 Injection Estimates

The Total price with 24.46% of contractor's overhead:

One of the NSPI underground crews will be involved with the contractor for the duration of the project which is estimated to be 8 weeks.

The Total contractor's price: Same with 24.42% of contractor's overhead:

Replacement of 750 kcmil Cable Only				
Feeder	Cable (Table 5.4)	Accessoties	Labour	
1H-403 \$325,625 Splices: 19x1,432=\$27,208 Total: \$28,158				
1H-405	\$130,475	Splices:7x1,432=\$10,024 Brackets: 7x50=\$350 Total: \$10,374		
1H-419	\$302,775	Splices: 17x1,432=\$24,344 Brackets: 17x50=\$850 Total: \$25,194		
1H-431 \$175,725 Splices: 14x1,432=\$20,048 Brackets: 14x50=\$700 Total: \$20,748				
Total:	\$934,600	\$84,474	\$325,242	

7.0 Cable Replacement vs. Cable Injection

Table 7.1

Table 7.2

Cable Replacement vs. Cable Injection Budget Summaries 750 kcmil only Cable Replacement (Table 7.1) Cable Cure Cable Injection \$ Comment \$ Comment \$ Comment \$ Comment NSPI Labour 325,242 replace redial feeder cables 114,120 working with 114,120* working with Materials 1,019,074 750 kcmil cables N/A N/A N/A N/A Cable N/A N/A N/A N/A N/A N/A Cable N/A N/A N/A N/A N/A Salvage +60,000 Al N/A N/A N/A Total: \$1,234,316 \$1,041,702 \$823,314	10010 7.2				<u> </u>		
Cable Replacement (Table 7.1)CableCureCable Injection\$Comment\$Comment\$CommentNSPI Labour325,242replace replace radial feeder cables114,120working with114,120*working withMaterials1,019,074750 kcmil cablesN/AN/AN/AN/AN/ACableN/AN/A927,582Injecting cables, 3x12km709,194Injecting cables, 3x12km10,019,014Salvage+60,000AlN/AN/AN/AN/ATotal:\$1,234,316\$1,041,702\$823,314		Cable Replacement vs. Cable Injection Budget Summaries 750 kcmil only					
\$Comment\$Comment\$CommentNSPI Labour325,242replace radial feeder 		Cable Repla (Table 7.1)	cement	CableCure		Cable Injec	ction
NSPI Labour325,242replace radial feeder 		\$	Comment	\$	Comment	\$	Comment
Materials 1,019,074 750 kcmil cables N/A N/A N/A N/A N/A Cable N/A N/A N/A 927,582 Injecting cables, 3x12km 709,194 Injecting cables, 3x12km Salvage +60,000 AI N/A N/A N/A Total: \$1,234,316 \$1,041,702 \$823,314	NSPI Labour	325,242	replace radial feeder cables	114,120	working with	114,120*	working with
Cable Injection with OH 25%N/AN/A927,582Injecting cables, 3x12km709,194Injecting cables, 3x12kmSalvage+60,000AIN/AN/AN/ATotal:\$1,234,316\$1,041,702\$823,314	Materials	1,019,074	750 kcmil cables	N/A	N/A	N/A	N/A
Salvage +60,000 AI N/A N/A +50,000 Cu N/A N/A N/A Total: \$1,234,316 \$1,041,702 \$823,314	Cable Injection with OH 25%	N/A	N/A	927,582	Injecting cables, 3x12km	709,194	Injecting cables, 3x12km
+50,000 Cu N/A N/A Total: \$1,234,316 \$1,041,702 \$823,314	Salvage	+60,000	Al	N/A		N/A	
Total: \$1,234,316 \$1,041,702 \$823,314		+50,000	Cu	N/A		N/A	
	Total:	\$1,234,316		\$1,041,702		\$823,314	

* -3 technicians,

, regular time

Calculating net present values for projects with different life spans can lead to incorrect decisions unless adjustments are made. One of the accepted techniques for dealing with this problem is the Replacement Chain Method which transforms the decision variable (NPV) into a common metric for projects of different life spans. NPV in itself does not accomplish this.

Cable Replacement vs. Cable Injection – Compare the Options of Different Life 750 kcmil only						
Cable Replacement CableCure Cable Injection						
Expected Life, years	40	20	40**			
NPV	\$1,238,000	\$1,041,702	\$823,314			
Replacement Chain Method * (i = 8%)	\$1,238,000	\$1,265,197	\$823,314			

Table 7.3

* Method: Determine the lowest common denominator of all the "project lives". Calculate the Net Present Value for the project repeated "n" times. Compare the projects; choose that project with highest NPV or less negative in our case.

Risks associated with cable injection:

a. A variety of first generation polyethylene insulation cable will remain in service.

b. After removing of the old terminations and splices some of the cables may be too short for a quality splice.

c. Some of the cable sections may not be injectable due to physical (loss of pressure) or electrical parameters and therefore will have to be replaced.

d. Need to trace another parameter of the injected cable section and having to manage the cable injection records for warranty purposes.

e. The cable injection warranty will only cover the cost of injection for the affected section. The cost of associated NSPI labour and cost of restoration will not be covered. f. Introduction of non-standard hardware to the system. All of the new terminations have features for cable injection (e.g. reticular flash preventer)

g. Working with contractor will require additional coordination effort.

h. Unforeseeable cost plus items

\$823,314 / 57 (Table 7.2) = \$14,444

When one of the three cables of the injected section fails in 20 years, NSPI will be reimbursed with: 570,000 / (57x3) = 3,333

The present value of the future warranty payment is: PV=3,333(P/F,8%,20)= \$715

8.0 BUDGETARY TIMELINES

Year 1, 2 and 3 – replace radial sections of the feeders 1H-403, 405, 419 and 431 Year 4 and 5 – replace loops and ties of the feeders 1H-403, 405 and 419

- 2010: a) 1H-403 radial section between 1H and 28H-416 Scotia Square (1,400m)
 b) 1H-405 radial section between 1H and 28H-417 Scotia Square (1,440m)
 c) PILC cable removal between 1H and MH46 on Granville St (1,000m)
- 2011: a) 1H-419 radial section between 1H and L431-401 Proctor Street (2,140m)
 b) 1H-419 half of the radial section between L431-404 and L431-211 Art Gallery Vault (645m)
- 2012: a) 1H-431 radial section between 1H and Art Gallery Vault (2,230m)
 b) 1H-419 second half of the radial section between L431-404 and L431-211
 Art Gallery Vault (645m)
- 2013: a) 1H-403 North Loop from 28H-410 to L431-229 Metro Center (2,240m)
 b) 1H-403 Metro Center Loop from L431-230 to L431-232 (1,700m)
- 2014: a) 1H-403 Scotia Square 28H-415 to Grand Parade Vault (380m)
 - b) 1H-403 Scotia Square 28H-411 to Metro Center L431-230 (410m)
 - c) 1H-405 23kV loop (1,900m)
 - d) 1H-419 Tie to Scotia Square (240m)

Budgetary Item for 2010

The underground work units and cost of materials are described in Section 5.4.1 of the Report. The RT labour is calculated as:

1. Cable NSPI# 6548-0400

(1400 + 1440) x 1.1 x \$25 x 3 = **\$234,300**

2. Accessories

Separable cable connectors as per Appendix E: $28 \times \$1,432 = \$40,095$ Support arms $-28 \times \$50 = \$1,400$

3. Labour

Cable installation (28 basic runs) 28 x 9 = 2000 Cable removal (28 basic runs) 28 x 9 = 2000 Cable removal (28 basic runs) 28 x 9 = 2000 Cable removal (28 basic runs) 28 x 9 = 2000 Cable removal (28 basic runs) 28 x 9 = 2000 Cable runs) 28 x 9 = 2000 C

4. Contracting

Traffic control - $(day: 28 \times 500 \times 1.2442 = $17,419)$

5. Salvage

 $3 \ge 3 \ge 1 \le 10,000$ km of copper PILC 500 kcmil cable = 10,000 kg of salvageable copper Assume salvage value is 5.00/kg, the total value is 50,000 $3 \ge 2.84$ km of 750 kcmil al cable = 8.740 kg of salvageable aluminum

Assume the salvage value is \$1.5/kg the total value is \$13,000

Total: \$401,419

(A) 1H-403 – Main Radial 1H to 28H-416 – 1400 m of 750 kcmil					
From	То	Available Ducts			
1H Substation	MH2	9A (A- available),			
		Remove: 243, 246, 247			
MH2	MH4	1A*			
MH4	MH5	Removals: 243, 246, 247			
MH5	MH6				
MH6	MH9				
MH9	MH10	2A*			
MH10	MH48	Removals: 243, 246, 247			
MH48	MH46				
MH46	MH26	0A, 1 cemented over,			
MH26	MH28	0A			
MH28	MH32	3A			
MH32	28H-416 Scotia Square	2A*			

APPENDIX A – Cable Lengths and Available Ducts

(B) 1H-403 – North Loop from 28H-410 to L431-229 Metro Center				
From	То	Cable	Available Ducts	
28H-410	MH32	500, 180 m	2A	
MH32	MH39		5A	
MH39	MH41	350, 530 m	4A*	
MH41	MH42		4A*	
MH42	MH43		5A	
MH43	MH126		2A	
	MH102	350, 400 m	3A*	
MH102	MH103		0A	
MH103	Police Station Vault		0A	
Police Station Vault	Citadel Inn Vault	350, 70 m	0A	
Citadel Inn Vault	MH103	350, 550 m	0A	
MH103	MH102		0A	
MH102	MH43		3A*	
MH43	MH42		5A	
MH42	MH41		4A*	
MH41	MH39		4A*	
MH39	MH38	750, 160 m	3A*	
MH38	MH40		5A	
MH40	MH38	750, 150 m	5A	
MH38	MH116		5A	
MH116	MH38	750, 230 m	5A	
MH38	MH37		9A	
MH37	MH36		9A	
MH36	L431-229 MetroCtr		8A	

(C) 1H-403 –Metro Center Loop from L431-230 to L431-232				
From	То	Cable	Available Ducts	
Metro Venter Vault	MH36	750, 210 m	11A	
MH36	MH110		4A	
MH110	MH114			
MH114	Prince George Vault			
Prince George Vault	MH114	750, 220 m		
MH114	MH124	· · · ·		
MH124	Cambridge Vault			
Cambridge Vault	MH124	750, 160 m		
MH124	MH87			
MH87	MH131		×.	
MH131	MH132	750, 220 m		
MH132	MH117	750, 140 m		
MH117	MH115	750, 80 m		
MH115	MH109	750, 280 m		
MH109	Grand Parade Vault		11	
Grand Parade Vault	MH33	750, 120 m		
MH33	MH34			
MH34	MH35	750, 120 m		
MH35	MH123			
MH123	MH35	750, 150 m		
MH35	MH36			
MH36	L431-232 Metro Ctr	<u>*</u>		

(D) 1H-403 – 28H-415 to Grand Parade Vault				
From	То	Cable	Available Ducts	
28H-415	MH30	750, 190 m	2A	
MH30	MH31		2A	
MH31	L431-187		0A	
	Barrington Place			
L431-186	MH31	750, 190 m	0A	
MH31	MH30		2A	
MH30	MH33		12A	
MH33	L431-227 Grand		9A	
· · · · · · · · · · · · · · · · · · ·	Parade Vault		:	

(E) 1H-403 – 28H-411 to L431-230 Metro Center – Tie with 1H-405				
From	То	Cable	Available Ducts	
28H-411	MH32	500, 180 m	A2, Upgrade?	
MH32	MH39		A5, Upgrade?	
MH39	MH38	750, 230 m	A3*	
MH38	MH37		A9	
MH37	MH36		A9	

MH36	L431-230	A11
	Metro Center	

(F) 1H-405 – Main F	Radial 1H to 28H-417		
From	То	Cable	Available Ducts
1H-405	MH2	750, 1050 m	9A
MH2	MH4		1A
MH4	MH5		1A
MH5	NH6		1A
MH6	MH9		1A
MH9	MH10] ///	2A
MH10	MH48		2A
MH48	MH46		2A
MH46	MH47		3A
MH47	MH133		13A
MH133	MH47	750, 390 m	13A
MH47	MH46		3A
MH46	MH26		0A //
MH26	MH28		1A
MH28	MH32		3A
MH32	28H-417		2A, may be used for
			1H-403 upgrades

		M. S. Stranger	
(G) 1H-405 – 23 kV	Loop		
From	То	Cable	Available Ducts
28H-408	MH32	350, 390 m	2A
MH32	MH39		5A
MH39	MH41		4A
28H-409	MH32	350, 390 m	2A
MH32	MH39		5A
MH39	MH41		4A
28H-408	28H-424 Center Pad	350, 110 m	
28H-409	28H-423 Center Pad	350, 110 m	
MH41	28H-419	350, 20 m	
	Scotia Tower		
MH41	28H-418	350, 20 m	
**	Scotia Tower		
MH41	MH42	350, 120 m	4A
MH41	MH42	350, 120 m	4A
MH42	28H-427 North Pad	4/0, 90 m	1A
MH42	28H-428 North Pad	4/0, 90 m	1A
MH42	28H-433	350, 50 m	0A
	MacKeen Tower		
MH42	28H-432	350, 50 m	0A
	MacKeen Tower		

28H-433	MH43	#1, 170 m	
MH43	28H-442		
28H-432	MH43	#1, 170 m	
MH43	28H-441		

(H) 1H-419 – to L431-401 Proctor Street			
From	То	Cable	Available Ducts
1H-405	MH2	750, 1140 m	9A
MH2	MH4		1A
MH4	MH5		1A
MH5	MH6		1A
MH6	MH9		1A
MH9	MH10		2A
MH10	MH48		2A
MH48	MH46	l - Alexander -	2A
MH46	MH47		3A
MH47	MH125		3A
MH125	MH26	750, 1000 m	1A 🖉
MH26	MH28		1A
MH28	MH32		3A
MH32	28H		2A*
28H	MH30		2A
MH30	MH23		6A
MH23	MH22		7A
MH22	MH21		9A
MH21	MH90		0A
MH90	MH91	. All and the second se	0A
MH91	MH92	19	
MH92	6H-401 Proctor St		

(I) 1H-419 – L431-404 Proctor Street to L431-211 Art Gallery Vault			
From	То	Cable	Available Ducts
L431-404	MH92	750, 560 m	
MH92	MH91		
MH91	MH90		0A
MH90	MH21		0A
MH21	MH20		5A
MH20	MH19		7A
MH19	L431-257		4A
	Xerox Building		
L431-256	MH19	750, 110 m	4A
MH19	L431-259		5A
	Sheraton Vault		
L431-258	MH19	750, 190 m	5A
Sheraton Vault			

MH19	MH18		15A
MH18	MH22		9A
MH22	MH18	750, 240 m	9A
MH18	MH16		14A
MH16	MH14		14A
MH14	1801 Hollis St		4A
1801 Hollis St	MH14	750, 190 m	4A
MH14	MH13		14A
MJH13	MH56		12A
MH56	L431-211 Art	, Alexandre and Alexandre and Alexandre and Alexandre and Alexandre and Alexandre and Alexandre and Alexandre a	ͺ0A
	Gallery Vault		<u>A</u>
,			

(J) 1H-419 Loop from L431-211 to L431-209 Art Gallery Vault			
From	То	Cable	Available Ducts
L431-211 Art	MH56	3/0, 140 m	0A
Gallery Vault			
MH56	MH55		13A
NH55	MH25		1A
MH25	L431-236 Royal		4A
	Bank Vault		
L431-237 Royal	MH25	3/0, 210 m	4A
Bank Vault			
MH25	MH24		4A
MH24	MH15		
MH15	MH17	×.	2A
MH17	L431-238 Historic		0A
	Properties Vault		
L431-239 Historic	MH7	4/0, 160 m	
Properties Vault			
MH7	MH15		
MH15	L431-240 Law		
	Courts Vault		
Law Courts Vault	MH111	3/0, 50 m, NB radial	
MH111	Ferry Term. Vault		
Ferry Term. Vault	MH13		
MH13	Riser Pole		
L431-241 Law	MH15	4/0, 140 m	
Courts Vault			
MH15	MH24		4A
MH24	L431-242 Hist.		
	Prop. Prom. Vault		
L431-243 Hist.	MH24	4/0, 190 m	
Prop. Prom. Vault			
MH24	MH25		4A
MH25	Royal Bank Vault		4A

Royal Bank Vault	MH25		4A
MH25	L431-244 Bank of		2A
	Montreal		
L431-245 Bank of	MH25	3/0, 70 m	2A
Montreal			
MH25	MH105		0A
MH105	MH25	3/0, 170 m	0A
MH25	MH55		1A
MH55	MH56		12A
MH56	L431-209 Art		0A
	Gallery Vault		

(K) 1H-419 MH22 t	o 28H-413		ä.
From	То	Cable	Available Ducts
L431-176 MH22	MH23	750, 240 m	
MH23	MH30		6A
MH30	28H-413		2A
	Scotia Square		

(L) 1H-431 to Art Gallery Vault			
From	То	Cable	Available Ducts
1H-431	MH2	750, 380 m	12A
MH2	MH3		2A
MH3	MH60		2A
MH60	Riser D431-001		0A
Riser D431-354	MH59	750, 150 m	0A
MH59	MH58		9A
MH58	MH57	750, 90 m	9A
MH57	MH148		
MH148	Ralston Vault	750, 100 m	
Ralston Vault	MH57	750, 160 m	
MH57	MH7		8A
MH7	Keith's Brewery		1A
	Vault		
Keith's Brewery	MH7	750, 170 m	1A
MH7	Harbour Walk Vault		5A
Harbour Walk Vault	MH7	750, 180 m	5A
MH7	MH8		15A
MH8	Summit Place Vault		
Summit Place Vault	MH89	750, 190 m	
MH89	MH49		5A
MH49	MH51		9A
MH51	Founder's Square		0A
	Vault		
Founder's Square	MH51	750, 110 m	0A

Vault			
MH51	MH52		5A
MH52	Bedford Row Vault		
Bedford Row Vault	MH52	750, 100 m	3A
MH52	MH53		12A
MH53	Public Works Vault		
Public Works Vault	MH53	750, 180 m	
MH53	MH12		
MH12	MH88		
MH88	Maritime Museum	A.	x.
	Vault		
Maritime Museum	MH88	750, 320 m	
Vault			~
MH88	MH12		
MH12	MH13		
MH13	MH56		
MH56	Art Gallery Vault	<u> Angelander (Marchaelen)</u>	

Page 1011 of 1189

APPENDIX B – Primary Service Cables

Note: Due to short cable length, the primary services located in the same with the switch vault or manhole may not be shown in the list.

·		1 of 4	
1H-403 Primary Service Cables			
CS Number	Cable Size [AWG], [kcmil]	Cable Length [m]	
CS431-139	3/0	70	
CS431-170-T2	#1	160	
CS431-150	750	10	
CS431-221	3/0	10	
CS431-227	3/0	40	
CS431-265	350	60	
CS431-426	350	40	
CS431-046	3/0	50	
CS431-182	3/0	150	
CS431-270	750	80	
CS431-001	3/0	50	
CS431-211	3/0	80	
CS431-162	3/0	100	
CS431-154	3/0	40	
CS431-402	3/0	50	
CS431-430	3/0	150	
CS431- 531	#1	100	
CS431-036	3/0	50	
CS231-012	1/0	200	
CS231-038	1/0	270	
CS431-428	3/0	10	
CS431-197	3/0	130	
CS431-137	3/0	100	
CS431-185	3/0	20	
CS431-184	3/0 4	10	

2 of 4

1H-405 Primary Service Cables			
CS Number	Cable Size [AWG], [kcmil]	Cable Length [m]	
CS431-007	3/0	50	
CS431-012	3/0	70	
CS431-005	3/0	50	
CS431-504	-	-	
CS431-505	-	-	
CS431-506	-	-	
CS431-507	-	-	
CS431-508	-	-	

3	of	4
9	UL.	T

1H-419 Primary Service Cables					
CS Number	Cable Size [AWG], [kcmil]	Cable Length [m]			
CS431-351	3/0	10			
CS431-138	3/0	70			
CS431-196-T2	750	30			
CS431-268	#1	50			
CS431-279	3/0	10			

4 of 4

1H-431 Primary Service Cables					
CS Number	Cable Size [AWG], [kcm	il] Cable Length [m]			
CS431-205	#1	55			
CS431-002	3/0	50			
CS431-345	#1	50			
CS431-247	#1	30			
CS431-049	#1	10			
CS431-217	3/0	10			
CS431-220	3/0	220			
CS431-271	3/0	50			
CS431-450	350	270			

APPENDIX C – Splices and Terminations

The allocation of the cable accessories below is assumed based on single line diagrams and may not be an exact representation of the actual type or quantity. For accessory legend see 5.2.

Splices and Terminations									
MH#	Equip.	1H-	-403	1H-	-405	1H-	-419	1H-	431
/Vault	in MH	Feeder	Service	Feeder	Service	Feeder	Service	Feeder	Service
001									
002									
003								S	
004		s		S		S			
005									
006		s		s		S			
007									
008									
009						4	×		
010		S		S 🖉	10	S			
011								J.	
012								S	
013			{	Star.					
014									
015									
016							7		
017									
018			Maria						
019						11			
020				Ň		s			
021	11								
022	TX+SW			tana.		3T	2T+2L		
023					1	S			
024	///								
025	<i>9</i>								
026	å.			s					
027			1						
028		S							
029		l i i i i i i i i i i i i i i i i i i i							
030		. ///	2						
031									
032						S			
033		- Maria - Carlo - Carl							
034	SW	2T	T+L						
035									
036		Т							
037									
038									
039		2s							
040	SW	2T	T+L						
041				2s					
042		s		2s			n		
043		s							
044									
-------	---	----------	---------------------	-----------------	--	--	--	----	--
045									
046		S				S			
047				S					
048									
049									
050									
051									
052	TX+SW								
053						:			
054									
055							Star.		
056						J.			
057							λ		
058							ite Santa	Т	
059									
060									
061						1995			
062						4.	N. N. N. N. N. N. N. N. N. N. N. N. N. N		
063									
064								J.	
065									
066			5	Se.,	, v				
067									
068									
069							1		
070					ALC: SE	an an an an an an an an an an an an an a			
071			230						
072									
073				÷.					
074	Ŷ				and the second s				
075				80	<u> </u>				
076	and the West and the State of the State of the State of the State of the State of the State of the State of the	- X	1997 - M ARA)				
077	4 (1997) 1997)	·		exection of the					
078 🧹									
079 🦯			1683	S.					
080			. J <i>P</i>						
081			×.						
082									
083									
084									
085									
086									
087									
088									
089									
090		<u> </u>				2s			
091A									
091B									
092									
093									
094									
095									

096									
097									
098									
099									
100								· · · · ·	
101								1	
102		<u>د</u>							
102									
100									
105	TY+SW					2T	T+1	·····	
100	17.000								
100									
107	ту		I						
100			L				7		
109							5. 1935.		
110									
111									
112						<u>8. 8</u> 19.		5.	
113									
114						4%), 1983,	· · · · · · · · · · · · · · · · · · ·		
115	TX+SW	<u>2T</u>	4T+4L						
116		2T	2T+2L					11 - Carlos Alexandre - Carlos A	
117	TX+SW	2T	T+L						
118			<		,				
119									
120	SW								
121							1		
122	TX					an an an an an an an an an an an an an a			
123	TX+SW	2T	2T+2L	×.					
124	ТХ			N.		1			
125	TX+SW	All L		Ň	X	2T	2T+2L		
		<u>A</u>	2LF+2						
126	Adi Sw	2LF							
127					je se se se se se se se se se se se se se				
128									
120	7								
120									
130	TY+S/V/	БТ	5T+5I						
131	TX+SW	 	01+0L						
102	TYLOW	<u> </u>	<u> </u>	٨T	47.41				
100	INTOVV		2	41	4174L				
104									
130									
130									
137		<u>M</u>							
138		~~~~~							1
139									
140									
141									
142									
143									
144									
145									
146									
147							····		
148	TX+SW							2T	2T+2L
						I			

149					I				
150									
151									
152									
153									
154	SW								
155									
156									
157									
158									
150	тх	2T	2T+21						
160									
161									
162							<u> </u>		
163							2. (20).		
164									
165				++-+,,		198			
166						119 119 - 12		λ.	
167							<u> </u>		
169								1953 (n. 1955) 1953 (n. 1955)	
160				Q				na series Ser	
170								4	
170									
200			<u> </u>	an. Malatan					
B01	TX+S\N/			No.	- A				
B02	TX+S\//						2011 17		
D02	171000								
D02	тх						·····		
D03	SW				<i></i>				
D04				¥	2	×			
D05									
D06	×		i az Alaman						
D07		N 863 (2) N 863 (2)	<u> </u>	an. Marina and d					
D08									
							······		
D10	SW	<u> </u>	line in the second second second second second second second second second second second second second second s	. A					
D11	SW	Antonio Millio		237°					
D12	000						·		
D12	TY+SW								
D14	TX+SIN/	8	27 2						
D15	17:00								
D16	TX+SW	<u> </u>							
D17	1// 0//								
D18	TX+SW								
D19	174.011								
D2	ТХ								
D20	TX								
D21	TX+SW			· · · · · · · · · · · · · · · · · · ·					
D22									
D23	TX+SW								
D24									
D25									
D26									
	L	I	I	l	1	L	1		J

D27									
D28									
D29									······
D30									
D31	······								
D32									
D32									
D33									
D34									
D35									
D36A									
D36B									
D37							<u> 1995,</u>		
D38						ja kara kara kara kara kara kara kara ka	The second second		
D39							2		
D40									
D41									
D42									
D43					n di la companya di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di se			<u>).</u>	
D44A						4			
D44B									
D44C				~			·		
			Ì						
D441									
D441									
D44J					177				
Dollar					6	<i>W</i>			
Police		41 5	1.6	÷					
Station		4LF							
Citadei				Marian.	M.				
Hotel	and a state of the	4LF			W				
Plaza									
1881	×			A					
Blue	i.								
Cross			<u> </u>						
Metro			\$* 						
Center		11LF	3LF						
Prince									
George		2T	T+L						
Cambrid									
ge		. Il							
Suites		2T	2T+2L						
Canada									
Trust									
City Hall									
Grand									
Parade		3T	3T+3L						_
Proctor									
Street									
Xerox									
Bldg						2T	2T+2L		
Sherato						2T	T+L		
·	-			·	• • • • • • • • • • • • • • • • • • • •			·····	

-	[1	[1				1
n									
Hollis									
1801						2T	T+I		
Art									
AIL							— .		
Gallery						31	T+L	1	
Roval									
Book						21 5	15		
Dalik						ZLF			
Historic									
Prop.									
Wararfro									
vvarenio									
nt						2LF	LF		
Ferry							Alle.		
Terminal						21 E			
renninai						<u> </u>			
Law						See.	21+3L		
Courts						2T	F		
Hist									
11131									
Prop.									
Promen									
ade					19	27	T+1		
aue						<u> </u>	1.6		
Bank of				-15					
Montreal				Ŷ		2LF	LF	W I	
Polaton								1	
Raiston								•T	
Building					1. Alexandre and 1. Ale	38.2h.		21	1+L
Summit			14			×			
Place								2T	T+1
					S		10.0000 (C. 10.000)	<u>~ </u>	
Founder							197 - L		
S						11			
Square						Harrisht		ЗT	T+1
Built		- 20575	· · · · · · · · · · · · · · · · · · ·			100000000 1400000		<u> </u>	
Beatora				Ne Ne	9°.	<u> </u>			
Row		1	1993 S	N.		4		2T	2T+2L
Public				Ň	3				
Manlan	10								
vvorks	×		S.						
Canada				Care.	1 and a second s			2T	2T+2L
Barringt	, estallations.			All Charles and the	4				
Durninge		от	T .1						
on Place	<i>(1</i> /2)	21	I+L						
Market 🔬	8								
St 1770		1997 - 1997 -	4	I.					
<u>ец</u>				<i>″</i>					
оп		N							
Proctor		N N							
Street		50 81				6LF			
0/14		233 /80	7			~~.			
Un									
section								2LF	4LF
Keith's									
Browoni								эт	27-21
Diewery		11						21	ZITZL
Harbour									
Walk								2T	T+L
Maritima									<u> </u>
wanume									07.0
Museum								21	21+2L
28H									
South									
Del									
Pad				36LF+					
Vault		10LF		2T		LF			
Center									
Dentel									
rad									
			1	: AT	Tul				

Scotia					
Tower					
Vault		4T	T+L		
North					
Pad					
Vault		4T	T+L		
MacKee					
n Pad					
Vault		4T	T+L		
Trade					
Mart					
Vault		 2T	T+L	<u>.</u>	

APPENDIX D – Art Gallery Tie (Details)

Fig. 4.3 Art Gallery Ductbank Extension

The inlaid brick manhole cover should be replaced with a different type of cover that can be quickly removed and reinstalled as required.

Fig. 4.4 Manhole MH56

The electrical connections in the vault will have to be modified to allow for a new switch. One of the options would be to install a new two-way 200 A VacPac switch and relocate the CS431-272 primary service from the existing four-way VacPac switch to the new switch. The source side of the new switch will be piggybacked at L431-209. See Fig. 4.5 and 4.6 for details. This will free up one of the 600 A switches on the existing VacPac which will be used to tie-in the feeder 1H-424.

Fig. 4.5 Electrical Connections Before and After

Fig. 4.6 New Two-Way Switch in the Vault

The following is the list of basic jobs for the project:

1. Install nine 100 mm ducts (3 spare) between the Art Gallery vault and MH56 (approx. 8 m).

2. Repair or replace manhole cover MH56

3. Install six 750 kcmil Al cables from MH13 through MH56 to Art Gallery vault (60 – 70 m)

4. Install new 2-way 200 A VacPac switch in the vault. Cooper model # 21VP125-22. The SMD-20 fuse mounts in the vault may need to be slightly moved to allow for proper clearance.

5. Transfer cs431-272 from four-way to two-way VacPac switch. The source side of the new switch connects to L431-209.

6. Terminate and connect the new cables to L431-212 -the freed-up switch.

7. Splice-in the other end of the cable to the feeder 1H-424 in MH13 using 600A deadbreak terminations.

8. Consider installing barriers in front of the fuses in the vault.

APPENDIX E – Deadfront Splice Specifications for 750 kcmil Cable

One three phase separable deadfront splice on the full size feeder cable will require the following materials:

#	Description	NSPI Code	QTY	Price
1	Basic Shielded Elbow 25 kV	5465-2370	6	\$76.87/ea
2	Cable Adapter #750, Compact	5465-0189	6	\$15.84/ea
3	Connecting Plug 25 kV	5465-7400	3	\$79.26/ea
4	Basic Insulating Plug	5465-7350	6	\$46.29/ea
5	Conductor Contact, #750 Compact	5465-1320	6	\$33.17/ea
6	Constant Force Spring	5465-0655	6	\$13.56/ea
7	Braid Flexible Tinned	5465-0650	3 m	\$7.98 per ft

Title:

2012 Distribution Automation

Start Date:	2012/02
Final Cost Date:	2012/12
Function:	Distribution
Forecast Amount:	\$553,965

DESCRIPTION:

This project provides for the installation of additional recloser devices to provide sectionalizing points on specified feeders. In 2012 it is planned to add or change out reclosers associated with 12 distribution circuits. Feeder selection is based on Customer Interruptions (CI) x Customer Hours (CH) weighting for full feeder outages that were not caused by loss of transmission.

Summary of Related CI's +/- 2 years: 2011 39269 Recloser Additions - \$444,765

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Outage Performance

Why do this project?

This project is designed to improve distribution reliability on feeders. By installing loop sectionalizing transfer schemes, NSPI will be able to significantly reduce the number of customer interruptions and customer hours of interruption each year through improved feeder sectionalizing and automatic restoration of unfaulted feeder segments.

Why do this project now?

This project consists of installing 7 new loop sectionalizing transfer schemes between a total of 12 distribution circuits. Feeders were selected based on a ranking that included only full feeder outages that were not the result of a loss of transmission supply. The loop sectionalizing schemes resulted in the following \$/ACHI (Avoided Customer Hour Interruptions) analysis:

- (1) Transfer scheme between 2H-413 & 1H-415 to transfer load in both directions provides a \$/ACHI of 20.7.
- (2) Transfer scheme to transfer portion of 104H-413 onto 1H-427 provides a \$/ACHI of 41.1.
- (3) Transfer scheme between 104H-431 & 1H-415 (new feeder) to transfer load in both directions provides a \$/ACHI of 93.4.
- (4) Transfer scheme between 20H-301 & 20H-303 to transfer load in both directions & upgrade of midpoint recloser on 20H-303 provides a \$/ACHI of 76.1.
- (5) Transfer scheme between 104H-431 & 104H-432 to transfer load in both directions provides a \$/ACHI of 91.5.
- (6) Transfer scheme between 113H-432 & 58H-421 to transfer load in both directions provides a \$/ACHI of 18.1.
- (7) Transfer scheme between 113H-434 & 58H-431 to transfer load in both directions

provides a \$/ACHI of 83.3.

These projects are advanced based on the \$/ACHI analysis and favourable results.

Why do this project this way?

This project targets NSPI's poor performing feeders for the purpose of improving reliability.

- 2012 Distribution Automation

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		33,107	0	33,107
094		094 - Interest Capitalized		22,327	0	22,327
095		095-Thermal Regular Labour AO		4,538	0	4,538
095		095-COPS Contracts AO			0	
095		095-COPS Regular Labour AO		50,434	0	50,434
001	035	001 - T&D Regular Labour	035 - DP - Wood Poles	6,017	0	6,017
012	035	012 - Materials	035 - DP - Wood Poles	27,570	0	27,570
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
001	039	001 - T&D Regular Labour	039 - DP - O/H Cond.	5,683	0	5,683
012	039	012 - Materials	039 - DP - O/H Cond.	8,400	0	8,400
001	040	001 - T&D Regular Labour	040 - DP - O/H Cond.Devices	46,798	0	46,798
012	040	012 - Materials	040 - DP - O/H Cond.Devices	306,066	0	306,066
001	085	001 - T&D Regular Labour	085 Design	6,841	0	6,841
001	087	001 - THERMAL Regular Labour	087 Field Super.& Ops.	18,900	0	18,900
			Total Cost:	553,965	0	553,965
			Original Cost:	91,652		

CI 41351 2012 Distribution Automation

The following is a breakdown of costs associated with the 2012 Distribution Automation project:

Administrative Overhead and Interest Materials Contracts COPS Labour Total

This project will be completed by NSPI personnel at a rate of approximately per person day. The material costs are based on estimated per-unit costs for a similar project executed in 2011. The forecast for contracts includes traffic control services.

Feeder	Cust Count	Cl/y	CH/y	Comments	ACI	ACHI	Cost	\$/ACI	\$/
2H-413	2828	4,275.2	6108.1	Tie recloser between 2H-413 & 1H-415 to transfer load in both	1332.7	1904.0	¢62 202	27.2	
1H-415	2224	1,779.2	3336.0	directions	592.7	1111.4	Ş02,282	52.5	2
104H-413	4100	6,630.0	4427.2	Tie recloser to transfer portion of 104H-413 onto 1H-427	2245.3	1499.3	\$61,567	27.4	4
104H-431	2275	3,491.6	4127.0	Tie recloser between 104H-431 & 1H-415 (new feeder) to transfer	195.3	230.8	\$61 E67	145.2	
1H-415 (new feeder)	1250	1,000.0	1875.0	load in both directions	228.6	428.6	Ş01,507	145.5	
20H-301	2141	2,701.4	2042.7	Tie recloser between 20H-301 & 20H-303 to transfer load in both	448.1	338.8	¢117 702	151 2	-
20H-303	1282	1,762.2	6437.1	directions & new midpoint recloser on 20H-303	330.9	1208.8	\$117,765	151.2	
104H-431	2275	3,491.6	4127.0	Tie recloser between 104H-431 & 104H-432 to transfer load in both	195.3	230.8	\$61 E67	0E 0	
104H-432	1831	2,819.8	2368.2	directions	526.5	442.2	Ş01,507	65.5	
113H-432	2262	1,809.6	3393.0	Transfer scheme on existing tie recloser to transfer load in both	638.4	1196.9	¢125.070	42 E	
58H-421	1246	5,599.6	11238.4	directions. Portion of double circuit is also required	2302.0	4620.1	\$125,070	42.5	
113H-434	3610	2,888.0	5415.0	Tie recloser between 113H-434 & 58H-431 to transfer load in both	373.5	700.2	¢140.470	122.6	
58H-431	2064	2,913.0	3723.0	directions. Portion of double circuit is also required	771.9	986.5	۶ <u>1</u> 40,470	122.0	

2012 ACE CI 41351 Attachment 1 Page 1 of 1

Title:

2012 Downline Recloser Additions

Start Date:	2012/02
Final Cost Date:	2012/11
Function:	Distribution
Forecast Amount:	\$543,284

DESCRIPTION:

This project provides for the installation of additional midpoint (downline) reclosers to provide sectionalizing points on specific feeders. In 2012, it is planned to add midpoint reclosers to 11 distribution circuits. Feeder selection is based on Customer Interruptions (CI) x Customer Hours (CH) weighting for full feeder outages that were not caused by loss of transmission.

Summary of Related CI's +/- 2 years: 2010 - 38022 2010 Recloser Additions \$1,400,271 2011 - 39269 2011 Recloser Additions \$444,765 2013 CI TBD Downline Recloser Additions \$TBD

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Outage Performance

Why do this project?

This project is designed to improve distribution reliability on selected feeders. An estimated 4,100 customer interruptions and 6,000 customer hours of interruption will be avoided through improved feeder sectionalizing and automatic restoration of unfaulted feeder segments. These numbers are based on the 11 new additional downline reclosers proposed for 2012

Why do this project now?

This project will provide improved reliability through avoided customer interruptions.

Why do this project this way?

The installation of a midpoint (downline) recloser is a utility standard approach to improving distribution reliability. Appropriate sectionalizing of a feeder will improve outage statistics. For instance, installing a recloser at 50% of the length of a feeder with 50% of the customer count before and after the recloser will result in a 25% (on average) improvement in both the System Average Interruption Frequency Index (SAIFI) and the System Average Interruption Duration Index (SAIDI) statistics. The reduction in customer outages will improve customer service. If the new downline feeder section can be transferred automatically to an alternate feeder when the source feeder section has tripped, the improvement in predicted reliability becomes 50%. Given the predicted improvement in CI and CH, the \$/ACI (Avoided Customer Interruptions) was evaluated to be \$128.44 /ACI and the \$/ACHI (Avoided Customer Hour Interruptions) was evaluated to be \$87.24mn /ACHI.

CI	Number : ⁴¹³⁵³	- 2012 Downline Recloser Additions		Project Number	
Parent CI I	Number :	-			
Cos	st Centre : 800	- 800-Services - Admin.		Budget Version	2012 ACE Plan
Capital Ite	m Accounts				
Acct Ac	tv Account	Activity	Forecast Amount	Amount	Variance

Total Cost:

Original Cost:

045 - DP - U/G Conduit

046 - DP - U/G Conductor

046 - DP - U/G Conductor

046 - DP - U/G Conductor

33,442

25,883

50,945

66,000

348,000

543,284

33,442

25,883

50,945

66,000

348,000

543,284

0

0

0

0

0

0

0

0

0

092

094

095

095

013

001

012

013

045

046

046

046

092-Vehicle T&D Reg. Labour AO

095-COPS Regular Labour AO

094 - Interest Capitalized

095-COPS Contracts AO

001 - T&D Regular Labour

013 - COPS Contracts

013 - COPS Contracts

012 - Materials

CI 41353 - Downline Recloser Additions

The following is a breakdown of costs associated with the Downline Recloser Additions project:

Administrative Overhead and Interest	\$ 113,884
Materials	\$ 348,000
Contracts	\$ 15,400
COPS Labour	\$ 66,000
Total	\$ 543,284

This project will be completed by NSPI personnel at a rate of approximately per person day.

The forecast for materials is based on estimated per-unit costs based on NSPI's recent experience in purchasing and installing these types of reclosers.

The forecast for contracts is for traffic control services.

							-				
								Avg \$/ACI	Avg \$/ACHI		
Feeder	Cust Count C	SILY	сну	Comments	ACI	ACHI	Units	\$/ACI	\$/ACHI	ပိ	st
1H-415	2,224.0	1,779.2	3,336.0	Midpoint recloser near D4A11644	28.8	54.0	1	1,804.51	962.41	6	51,970
1H-415 new	/ 1,250.0	1,000.0	1,875.0	Midpoint recloser at Morris and Queen	175.5	329.1	1	296.08	157.91	6	51,970
2H-412	1,207.0	3,278.4	3,229.4	Midpoint recloser at Qunipool and Vernon	402.9	396.9	1	129.00	130.95	4	51,970
104H-432	1,831.0	2,819.8	2,368.2	Midpoint recloser at D431-400	693.8	582.7	1	74.91	89.19	4	51,970
20H-301	2,141.0	2,701.4	2,042.7	Midpoint recloser at E331-011	590.0	446.2	1	67.74	89.59	4	39,970
50N-415	715.0	2,868.4	3,209.0	Midpoint recloser after Boat Harbour Tap	425.8	476.3	1	93.88	83.91	4	39,970
84W-301	1,496.0	762.8	2,298.2	Midpoint recloser at D314-045	372.1	1,121.2	1	107.41	35.65	4	39,970
58H-421	1,246.0	5,599.6	11,238.4	Midpoint recloser at D432-054	444.2	891.5	1	117.00	58.30	4	51,970
58H-431	2,064.0	2,913.0	3,723.0	Midpoint recloser at old 39H stepdown site	520.2	664.9	1	06.90	78.16	4	51,970
113H-432	2,262.0	1,809.6	3,393.0	Midpoint recloser at D4A21138	204.0	382.4	1	254.79	135.89	4	51,970
87H-313	1,767.0	2,116.0	6,327.9	Midpoint recloser after takeoffs to R332-013 and R332-022	219.8	657.4	1	181.82	60.80	\$	39,970
Totals	45,851.2	70,689.0	43,040.8		4,077.1	6,002.5	11.0			4	23,670

70,689.0 45,851.2 Totals Averages

87.24 \$ 128.44 \$ 11.0

Title:

2012 Remote Communication on Reclosers

Start Date:	2012/01
Final Cost Date:	2012/12
Function:	Distribution
Forecast Amount:	\$536,258

DESCRIPTION:

This project provides for the installation of remote communication (modems, speednets, repeaters, RTU's, etc.) on existing substation and downline reclosers. In 2012 it is proposed to add communications to 29 substation reclosers and 11 downline reclosers and install 1 new control system for an existing sectionalizer.

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2012, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Outage Performance

Why do this project?

This project is required to improve restoration time on distribution feeders. By installing remote communications on existing substation and downline reclosers NSPI can improve the restoration time on feeder outages as well as provide useful information in determining the exact fault locations.

Why do this project now?

The existing downline sectionalizer is on Henry Street in Halifax. The existing plant is deteriorated and remote communications are not installed.

Substation reclosers were selected based on the type of unit that was previously installed which has the ability to accept remote communications. Increased operating costs on the substation based units would be avoided due to the ability to remotely gather fault information, install hold-offs, and block ground trips.

Downline reclosers were selected based on a ranking that included only full feeder outages that were not the result of a loss of transmission supply. The addition of remote communications would save on average 15 min in restoration time which results in a \$/ACHI (Avoided Customer Hour Interruptions) of 100.6.

Why do this project this way?

This item targets existing electronic reclosers with high customer counts and the ability to handle the remote communications.

~		41355
- C 1	Numbor	41000
U	nunner	

- 2012 Remote Communication on Reclosers

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity		Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO			33,442	0	33,442
094		094 - Interest Capitalized			18,858	0	18,858
095		095-COPS Contracts AO			3,613	0	3,613
095		095-COPS Regular Labour AO			50,945	0	50,945
013	045	013 - COPS Contracts	045 - DP - U/G Conduit			0	
001	046	001 - T&D Regular Labour	046 - DP - U/G Conductor		66,000	0	66,000
002	046	002 - T&D Overtime Labour	046 - DP - U/G Conductor		0	0	0
012	046	012 - Materials	046 - DP - U/G Conductor		348,000	0	348,000
013	046	013 - COPS Contracts	046 - DP - U/G Conductor			0	
				Total Cost:	536,258	0	536,258

Original Cost:

CI 41355 Remote Communications on Reclosers

The following is a breakdown of costs associated with the Remote Communications on Existing Reclosers project:

Administrative Overhead and Interest	\$106,858
Materials	\$348,000
Contracts	\$15,400
COPS Labour	\$66,000
Total	\$536,258

This project will be completed by NSPI personnel at a rate of approximately per person day. The material costs are based on estimated per-unit costs for a similar project executed in 2011. The forecast for contracts includes traffic control services.

		Customers	Avg Trip to	Response	
Feeder	Device	Downstream	Lockout Per Year	Time Saved	ACHI
3S-403	R471-032	1111	2.4	0.25	666.6
50N-410	R451-025	1564	1.2	0.25	469.2
37N-412	607N-301	498	2.4	0.25	298.8
73W-411	R412-001	2782	0.8	0.25	556.4
73W-411	R412-002	1917	0.8	0.25	383.4
62N-414	R451-018	880	1.4	0.25	308
87H-313	R332-012	761	1.4	0.25	266.35
91W-411	91W-411	978	1.4	0.25	342.3
57C-426	R456-121	560	2.2	0.25	308
7N-301	7N-301	1376	0.6	0.25	206.4
7N-302	7N-302	431	1.4	0.25	150.85
				Avg ACHI:	359.7

Title:	2012 Distribution Feeder Ties
Start Date:	2012/02
Final Cost Date:	2012/12
Function:	Distribution
Forecast Amount:	\$492,873

DESCRIPTION:

This project provides for the costs associated with building spans of line, reconductoring and installing transfer switches in order to tie distribution lines together to allow for load transfer between circuits. This scope of this project will focus on four different feeder ties in 2012:

- (1) 101H-421 to 101H-422 Duke St. Construct 9 spans of line and install a gang switch. This is expected to realize an annual average savings of 11,689 Customer Hours.
- (2) 1H-427 to 1H-429 University Ave Install an underground switch. This is expected to realize an annual average savings of 366 Customer Hours.
- (3) 63V-311 to 64V-302 Bridge St. Re-conductor 1km of line to 336. This is expected to realize an annual average savings of 4943 Customer Hours.
- (4) 65V-302 to 64V-301 Torbrook Rd. Re-conductor 3km of line to 336 This is expected to realize an annual average savings of 4832 Customer Hours.

Summary of Related CI's +/- 2 years: 2010 CI 38847 2010 Distribution Feeder Ties - \$531,609 2011 CI 39272 2011 Distribution Feeder Ties - \$500,000 2013 CI TBD 2013 Distribution Feeder Ties - \$ TBD

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Outage Performance

Why do this project?

This work is being undertaken as part of the overall customer reliability improvement investment. This is year three of a five year (2010-2014) plan to improve reliability to NSPI's customers. This project is required in order to improve reliability by enabling the transfer of customers between feeders during outages.

Why do this project now?

This project will improve system reliability by providing alternate supply during outage situations.

Why do this project this way?

This is the most cost effective and efficient way to create a feeder interconnection between the circuits.

The labour for this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

Cl Number : 41339

- 2012 Distributin Feeder Ties

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		11,672	0	11,672
095		095-COPS Contracts AO		74,003	0	74,003
013	002	013 - COPS Contracts	002 - DP - Land Rights		0	
012	035	012 - Materials	035 - DP - Wood Poles	10,299	0	10,299
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
012	039	012 - Materials	039 - DP - O/H Cond.	43,971	0	43,971
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
012	040	012 - Materials	040 - DP - O/H Cond.Devices	4,512	0	4,512
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	
012	041	012 - Materials	041 - DP - O/H Line Transf.	3,863	0	3,863
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
012	050	012 - Materials	050 - DP - Street Lights	29,000	0	29,000
013	050	013 - COPS Contracts	050 - DP - Street Lights		0	
012	052	012 - Materials	052 - DP - Services	109	0	109
013	052	013 - COPS Contracts	052 - DP - Services		0	
			Total Cost:	492,873	0	492,873
			Original Cost:	39,024		

CI 41339 2012 Distribution Feeder Ties

The following is a breakdown of costs associated with the 2012 Distribution Feeder Ties project:

Administrative Overhead and Interest	\$ 85,675
Materials	\$ 91,753
Contracts	\$ 315,444
Total	\$492,872

Material – The material forecast for this project is based on similar projects which were submitted in the 2011 and 2010 Annual Capital Expenditure Plans (CI 39272 2011 Distribution Feeder Ties and CI 38847 Distribution Feeder Ties). Additionally, one Vac-Pak switch will be required.

The work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services (EUS), at a rate of approximately per compatible unit hour. Trimming, Traffic Control, Backhoe and Easements will also be funded through the Contract forecast.

Calculated \$/ACHI

Feeder	SAIDI 5 YR AVG	-1/2hr connect	customers (#)	Hours saved	Est Cost For Tie	\$/ACHI
1H-427	1.37	0.87	2348.00	244.79	\$34,128	\$93.23
1H-429	0.60	0.10	16.00	121.27		
101H-421	8.08	7.58	1362.00	9,181.85	\$37,546	\$3.21
101H-422	7.24	6.74	372.00	2,507.82		
63V-311	4.97	4.47	910.00	4,066.93	\$260,155	\$52.62
64V-302	5.02	4.52	194.00	876.64		
64V-301	9.07	8.57	200.00	1,714.65	\$91,670	\$18.97
65V-302	16.09	15.59	200.00	3,117.34		

\$/ACHI = Est Cost / ((SAIDI-.5)x(# of Cust))for both feeders

Title:

Replacement of 3H and 6H Reclosers

Start Date:	2012/02
Final Cost Date:	2013/02
Function:	Distribution
Forecast Amount:	\$465,327

DESCRIPTION:

This project provides for the replacement of the remaining 13 model 3H and 6H hydraulic reclosers. There were 35 of these reclosers in the Nova Scotia Power distribution system.

Summary of Related CI's +/- 2 years: 2010 CI 38867 Replacement of 3H and 6H Reclosers – 253,331 2011 CI 40211 2011 3H/6H Replacement Program – 306,895

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: System Protection

Why do this project?

This work is being undertaken as part of the overall customer reliability improvement investment. This is part of the five year (2010-2014) plan to improve reliability to NSPI's customers. This project is required to replace deteriorated equipment, which is having an adverse effect on distribution system reliability.

Why do this project now?

These reclosers are approximately 40 years old and are at the end of their expected product life. Deterioration of these reclosers has a negative impact on customer service reliability. Replacement of these devices in 2012 will prevent failures, thereby averting customer hours of interruption. This is the final year of the planned 3 year replacement project.

Why do this project this way?

Replacing the identified reclosers over a 3 year timeframe provides Nova Scotia Power with the flexibility needed to manage the resources to complete this work. This final year will see the replacement of 13 reclosers to complete the project.

- Replacement of 3H and 6H Reclosers

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		40,554	0	40,554
094		094 - Interest Capitalized		14,607	0	14,607
095		095-Thermal Regular Labour AO		320	0	320
095		095-COPS Regular Labour AO		61,779	0	61,779
001	040	001 - T&D Regular Labour	040 - DP - O/H Cond.Devices	52,230	0	52,230
002	040	002 - T&D Overtime Labour	040 - DP - O/H Cond.Devices	0	0	0
011	040	011 - Travel Expense	040 - DP - O/H Cond.Devices	375	0	375
012	040	012 - Materials	040 - DP - O/H Cond.Devices	260,000	0	260,000
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices	0	0	0
014	040	014 - Overtime Meals	040 - DP - O/H Cond.Devices	0	0	0
041	040	041 - Meals & Entertainment	040 - DP - O/H Cond.Devices	750	0	750
001	043	001 - T&D Regular Labour	043 - DP - Substn Dev.	14,365	0	14,365
002	043	002 - T&D Overtime Labour	043 - DP - Substn Dev.	0	0	0
011	043	011 - Travel Expense	043 - DP - Substn Dev.	125	0	125
014	043	014 - Overtime Meals	043 - DP - Substn Dev.	0	0	0
041	043	041 - Meals & Entertainment	043 - DP - Substn Dev.	250	0	250
001	085	001 - Regular Labour (No AO)	085 Design	5,200	0	5,200
001	085	001 - THERMAL Regular Labour	085 Design	1,332	0	1,332
001	085	001 - T&D Regular Labour	085 Design	13,440	0	13,440
002	085	002 - Overtime Labour (No AO)	085 Design	0	0	0
002	085	002 - THERMAL Overtime Labour	085 Design	0	0	0
002	085	002 - T&D Overtime Labour	085 Design	0	0	0
011	085	011 - Travel Expense	085 Design	0	0	0
041	085	041 - Meals & Entertainment	085 Design	0	0	0
			Total Cost:	465,327	0	465,327
			Original Cost:	61,609		

CI 41325 Replacement of 3H and 6H Reclosers

The following is a breakdown of costs associated with the 3H and 6H recloser project:

Administrative Overhead and Interest	\$117,260
Materials	\$260,000
COPS Labour	\$86,567
Other	\$1,500
Total	\$465,327

The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day. The material budget includes the cost of the reclosers (approximately each). Other forecast amounts include travel and meal costs.

Title:

82V-423 Hardwood Lands Deteriorated Plant Replacement

Start Date:	2012/06
Final Cost Date:	2012/11
Function:	Distribution
Forecast Amount:	\$437,192

DESCRIPTION:

This project provides for the reconductoring of a section of deteriorated plant in Hardwood Lands. The conductor and several poles are reaching the end of their life and need to be replaced. This project will include the replacement of some porcelain equipment in the area.

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2012, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Outage Performance

Why do this project?

NSPI's inspection program has identified a section of deteriorated plant which requires replacement. The area experiences outages during storm events and the equipment has come to the end of its service life.

Why do this project now?

The plant has reached the end of its serviceable life and is a risk to the reliability of the system.

Why do this project this way?

Replacement of the deteriorated plant is the most cost effective way to improve reliability on this section of feeder.

- 82V-423 Hardwood Lands Deteriorated Plant Replacement

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version

2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		49,769	0	49,769
094		094 - Interest Capitalized		2,603	0	2,603
095		095-COPS Regular Labour AO		75,817	0	75,817
095		095-COPS Contracts AO		22,281	0	22,281
013	002	013 - COPS Contracts	002 - DP - Land Rights		0	
020	002	020 - Royalties, Easements, App	002 - DP - Land Rights		0	
001	035	001 - T&D Regular Labour	035 - DP - Wood Poles	43,562	0	43,562
012	035	012 - Materials	035 - DP - Wood Poles	46,201	0	46,201
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
001	038	001 - T&D Regular Labour	038 - DP - Insulators	235	0	235
012	038	012 - Materials	038 - DP - Insulators	64	0	64
001	039	001 - T&D Regular Labour	039 - DP - O/H Cond.	38,741	0	38,741
012	039	012 - Materials	039 - DP - O/H Cond.	18,657	0	18,657
001	040	001 - T&D Regular Labour	040 - DP - O/H Cond.Devices	1,097	0	1,097
012	040	012 - Materials	040 - DP - O/H Cond.Devices	1,116	0	1,116
001	041	001 - T&D Regular Labour	041 - DP - O/H Line Transf.	6,999	0	6,999
012	041	012 - Materials	041 - DP - O/H Line Transf.	19,080	0	19,080
001	046	001 - T&D Regular Labour	046 - DP - U/G Conductor	418	0	418
012	046	012 - Materials	046 - DP - U/G Conductor	386	0	386
001	050	001 - T&D Regular Labour	050 - DP - Street Lights	1,149	0	1,149
012	050	012 - Materials	050 - DP - Street Lights	802	0	802
001	052	001 - T&D Regular Labour	052 - DP - Services	4,004	0	4,004
012	052	012 - Materials	052 - DP - Services	483	0	483
001	085	001 - Regular Labour (No AO)	085 Design	1,736	0	1,736
001	087	001 - T&D Regular Labour	087 Field Super.& Ops.	2,016	0	2,016
			Total Cost:	437,192	0	437,192
			Original Cost:	11,489		

CI 41360 82V-423 Hardwood Lands Deteriorated Plant

The following is a breakdown of costs associated with the 82V-423 Hardwood Lands Deteriorated Plant project:

Administrative Overhead and Interest	\$150,470
Materials	\$86,789
Contracts & Easements	\$99,977
COPS Labour	\$99,957
Total	\$437,193

The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day. The material budget includes standard structures, wire and devices for which special orders and long lead times are not required. The contracts and other forecast includes amounts for flagging, trimming and backhoe work, easements for new poles and anchors.

Title:

8H Fairview Conversion

Start Date:	2012/06
Final Cost Date:	2012/12
Function:	Distribution
Forecast Amount:	\$417,695

DESCRIPTION:

This project provides for the retirement of the Fairview Substation Transformer, 8H-T1. The transformer is approximately 60 years old and is approaching its end of life. This project will require that the two feeders currently fed from 8H-T1 be converted from 4kV to 25kV. The load will continue to be serviced from 104H-433.

Summary of Related CI's +/- 2 years: 2012 CI 41395 8H Fairview Switchgear Retirement \$213,288

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Equipment Replacement

Why do this project?

This project will increase the reliability to the 8H service area through this conversion. The 8H service area is an electrical island served at 4kV surrounded by the remaining 25kV distribution system. This conversion will allow for load switching to adjacent 25kV feeders, thereby providing an alternative to reduce outages that does not exist today. This project responds to a portion of the recommendations included in the Halifax 4kV planning study, 257-11 07-H43.

Why do this project now?

The operating equipment is approaching its end of life and the conversion will reduce potential extended unplanned outages.

Why do this project this way?

Replacement of the deteriorated equipment is the most cost effective option.

A portion of the labour associated with this project is being sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

89

- 8H Fairview Conversion

CI Number : 41389 Parent CI Number :

.

- 800-Services - Admin.

Project Number

Budget Version

2012 ACE Plan

Capital Item Accounts

Cost Centre : 800

Variance	36,075	2,102	16,429	54,957			11,451	0	0	15,949		248	145	35,574	14,802	1,456	2,191	11,245	0	125,327	06	7,036	316	3,175	4,097	417,695
Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Forecast Amount	36,075	2,102	16,429	54,957			11,451	0	0	15,949		248	145	35,574	14,802	1,456	2,191	11,245	0	125,327	06	7,036	316	3,175	4,097	417,695
Activity					002 - DP - Land Rights	002 - DP - Land Rights	035 - DP - Wood Poles	035 - DP - Wood Poles	035 - DP - Wood Poles	035 - DP - Wood Poles	035 - DP - Wood Poles	038 - DP - Insulators	038 - DP - Insulators	039 - DP - O/H Cond.	039 - DP - O/H Cond.	040 - DP - O/H Cond.Devices	040 - DP - O/H Cond.Devices	041 - DP - O/H Line Transf.	041 - DP - O/H Line Transf.	041 - DP - O/H Line Transf.	046 - DP - U/G Conductor	052 - DP - Services	052 - DP - Services	085 Design	087 Field Super.& Ops.	Total Cost:
Account	092-Vehicle T&D Reg. Labour AO	094 - Interest Capitalized	095-COPS Contracts AO	095-COPS Regular Labour AO	013 - COPS Contracts	020 - Royalties, Easements, App	001 - T&D Regular Labour	002 - CUST. SERV. Overtime Labour	002 - T&D Overtime Labour	012 - Materials	013 - COPS Contracts	001 - T&D Regular Labour	012 - Materials	001 - T&D Regular Labour	012 - Materials	001 - T&D Regular Labour	012 - Materials	001 - T&D Regular Labour	002 - T&D Overtime Labour	012 - Materials	001 - T&D Regular Labour	001 - T&D Regular Labour	012 - Materials	001 - Regular Labour (No AO)	001 - T&D Regular Labour	
Actv					002	002	035	035	035	035	035	038	038	039	039	040	040	041	041	041	046	052	052	085	087	
Acct	092	094	095	095	013	020	001	002	002	012	013	001	012	001	012	001	012	001	002	012	001	001	012	001	001	

CI 41389 - 8H Fairview Conversion

The following is a breakdown of costs associated with the 8H Conversion project:

Administrative Overhead and Interest	\$ 109,563
Materials	\$ 158,730
Contracts	
COPS Labour	\$ 74,371
Other	
Total	\$ 417,695

The Material forecast amounts are for standard wire and devices. A portion of the work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services, at a rate of approximately per compatible unit hour. Traffic control and backhoe services are also included in the contract forecast. A portion of work is planned to be completed by NSPI resources at a rate of per person day. The other account provides a forecast for potential easements.
Title: 8H Fairview Switchgear Retirement

Start Date:	2012/05
Final Cost Date:	2012/07
Function:	Transmission
Forecast Amount:	\$213,293

DESCRIPTION:

This project will cover the retirement of the metal-clad 4 kV switchgear at 8H Fairview substation. New reclosers and concrete pads will be installed to cover the load currently being supported by the metal-clad switchgear. In addition, new aerial feeder exit cables will be installed to replace the underground cable that is currently in place.

JUSTIFICATION:

Justification Criteria:

Transmission Plant

Sub-Criteria:

Equipment Replacement

Why do this project?

The 4 kV switchgear at the Fairview substation and underground feeder exit cabling is approaching the end of its useful life. Manufacturer support for maintenance or replacement components for the switchgear is no longer available. The switchgear and cabling has experienced expected age-related deterioration and replacing it will reduce maintenance requirements at the substation as well as improve reliability.

Why do this project now?

The switchgear is over 50 years old and would be difficult to repair should it fail in-service due unavailability of spare parts.

Replacing the equipment now will decrease the likelihood of an unplanned equipment failure. Availability of manufacturer support and spare parts will also ensure the duration of future potential outages is minimized.

Why do this project this way?

The condition and the age of the switchgear preclude any benefit from overhauling or refurbishment. The cost of replacement is the same or less than the cost of refurbishment.

Title:

2012 Feeder Exit Cable Replacement

Start Date:	2012/02
Final Cost Date:	2012/12
Function:	Distribution
Forecast Amount:	\$374,542

DESCRIPTION:

This project provides for the costs associated with replacing deteriorated feeder exit cables at the 50N Trenton, 3S Gannon Rd, 22V New Minas and the 70W Bridgewater substations.

Summary of Related CI's +/- 2 years: 2011 CI 40328 Feeder Exit Cable Replacements \$317,587 2013 CI TBD Feeder Exit Replacement \$TBD

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Deteriorated Conductor

Why do this project?

This work is being undertaken as part of the overall customer reliability improvement investment. This is year three of a five year (2010-2014) plan to improve reliability to NSPI's customers. Deteriorated feeder exit cables have the potential to affect the reliability of their associated feeders. Cable failures will generally result in lengthy customer outages, especially when the cables are not installed in a duct system, which is the case in three of the four locations identified for replacement.

Why do this project now?

These cables are at the end of their normal service life. Typical cables of this vintage (1970's) have an average service life of 25-30 years. Three of the installations (50N, 3S & 22V) are directly buried cables which cannot be easily replaced or repaired. The purpose of this project is to replace such cables in a proactive manner.

Why do this project this way?

The planned replacement of feeder exit cables allows for controlled upgrade of deteriorated plant focusing on those that are the greatest risk to reliability based on the age of the cables and the regular inspection data.

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		17,819	0	17,819
094		094 - Interest Capitalized		7,619	0	7,619
095		095-Thermal Regular Labour AO		739	0	739
095		095-COPS Contracts AO		36,715	0	36,715
095		095-COPS Regular Labour AO		27,146	0	27,146
013	045	013 - COPS Contracts	045 - DP - U/G Conduit		0	
001	046	001 - T&D Regular Labour	046 - DP - U/G Conductor	20,056	0	20,056
002	046	002 - T&D Overtime Labour	046 - DP - U/G Conductor	0	0	0
012	046	012 - Materials	046 - DP - U/G Conductor	40,000	0	40,000
013	046	013 - COPS Contracts	046 - DP - U/G Conductor		0	
001	047	001 - T&D Regular Labour	047 - DP - U/G Conductor Devices	1,671	0	1,671
012	047	012 - Materials	047 - DP - U/G Conductor Devices	48,000	0	48,000
013	048	013 - COPS Contracts	048 - DP - U/G Line Transf.		0	
001	085	001 - THERMAL Regular Labour	085 Design	3,077	0	3,077
001	085	001 - Regular Labour (No AO)	085 Design	1,760	0	1,760
002	085	002 - T&D Overtime Labour	085 Design	0	0	0
001	087	001 - T&D Regular Labour	087 Field Super.& Ops.	13,440	0	13,440
002	087	002 - T&D Overtime Labour	087 Field Super.& Ops.	0	0	0
			Total Cost:	374,542	0	374,542
			Original Cost:	37,156		

CI 41384 2012 Feeder Exit Cable Replacement

The following is a breakdown of costs associated with the 50N Trenton, 3S Gannon Rd, 22V New Minas and the 70W Bridgewater substations 2012 Feeder Exit Cable Replacement project:

\$ 90,038
\$ 88,000
\$ 156,500
\$ 40,004
\$ 374,542

The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day. The material budgets are based on previous estimated per-unit costs on similar projects. The contract forecasts include amounts for traffic control, crane usage and civil work for duct bank installation.

Title:

20H-301 Targeted Feeder Replacement

Start Date:	2012/01
Final Cost Date:	2012/10
Function:	Distribution
Forecast Amount:	\$371,361

DESCRIPTION:

This project is part of a program to improve customer service and reliability, as measured by System Average Interruption Duration Index (SAIDI), System Average Interruption Frequency Index (SAIFI) performance and deteriorated plant incidents on select feeders throughout the Province. Specifically, deteriorated poles and conductor, porcelain arrestors, cutouts, rusty transformers and guys will be replaced.

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2012, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Outage Performance

Why do this project?

This work is being undertaken as part of the overall customer reliability improvement investment. This is year three of a five year (2010-2014) plan to improve reliability to NSPI's customers. Distribution equipment (e.g. poles, conductor, cutouts, and transformers) failures are a primary driver of customer outages. This project will address distribution equipment issues on feeder 20H-301, out of the Spryfield Substation. This feeder, which is 62.6km in length, was selected due to past performance, customer density and feeder length.

Why do this project now?

This feeder is included in the 2012 Reliability Investment Plan based on past performance, customer density and feeder length. It is expected that targeted replacements on 20H-301 will result in annual savings of approximately 1570 customer hours of interruption.

Why do this project this way?

This project will address the distribution equipment weaknesses on this feeder.

A portion of the labour associated with this project is being sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

- 20H-301 Targeted Feeder Replacement

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		53,862	0	53,862
094		094 - Interest Capitalized		10,807	0	10,807
095		095-COPS Contracts AO		11,730	0	11,730
095		095-COPS Regular Labour AO		82,053	0	82,053
001	035	001 - T&D Regular Labour	035 - DP - Wood Poles	470	0	470
012	035	012 - Materials	035 - DP - Wood Poles	404	0	404
013	035	013 - COPS Contracts	035 - DP - Wood Poles	50,000	0	50,000
001	038	001 - T&D Regular Labour	038 - DP - Insulators	9,636	0	9,636
012	038	012 - Materials	038 - DP - Insulators	3,247	0	3,247
001	039	001 - T&D Regular Labour	039 - DP - O/H Cond.	39,917	0	39,917
012	039	012 - Materials	039 - DP - O/H Cond.	1,736	0	1,736
001	040	001 - T&D Regular Labour	040 - DP - O/H Cond.Devices	9,715	0	9,715
012	040	012 - Materials	040 - DP - O/H Cond.Devices	8,010	0	8,010
001	041	001 - T&D Regular Labour	041 - DP - O/H Line Transf.	46,302	0	46,302
012	041	012 - Materials	041 - DP - O/H Line Transf.	42,099	0	42,099
001	042	001 - T&D Regular Labour	042 - DP - O/H Ln.Transf.Dev.	209	0	209
001	052	001 - T&D Regular Labour	052 - DP - Services	52	0	52
001	085	001 - Regular Labour (No AO)	085 Design	1,110	0	1,110
			Total Cost:	371,361	0	371,361
			Original Cost:	122,394		

CI 41338 20H-301 Targeted Feeder Replacements

The following is a breakdown of costs associated with the 20H-301 Targeted Feeder Replacements project:

Administrative Overhead and Interest	\$ 158,452
Materials	\$ 55,497
Contracts	\$ 50,000
COPS Labour	\$ 107,411
Total	\$ 371,361

The Materials forecast amounts are for standard cutouts, insulators, arrestors and framing structures. A portion of the work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services, at a rate of approximately per compatible unit hour. Traffic control services are also included in the contract forecast. A portion of work is planned to be completed by NSPI resources at a rate of per person day.

Title:

16N-301 Stewiacke Re-conductor

Start Date:	2012/04
Final Cost Date:	2012/12
Function:	Distribution
Forecast Amount:	\$353,467

DESCRIPTION:

This project provides for upgrading deteriorated plant within the town of Stewiacke. This replacement will include deteriorated conductor, poles and pole top equipment that are approaching its end of life.

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2012, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Deteriorated Conductor

Why do this project?

The conductor is roughly 50 years old and is approaching its end of life. Replacing this equipment will increase the reliability in the area, through a reduction of equipment failures.

Why do this project now?

The conductor is reaching its end of life. Re-conductoring now will reduce outages due to conductor failure, increasing reliability in the area.

Why do this project this way?

This is the most effective method for increasing reliability in the area. Re-conductoring nearest to the existing source also provides the capability for load transfers.

The labour for this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

CI	Number	41333
~	INGINACI	

- 16N-301 Stewiacke Reconductor

- 800-Services - Admin.

Project Number

Parent CI Number :

Cost Centre : 800

800

-

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		6,033	0	6,033
095		095-COPS Contracts AO		53,225	0	53,225
013	002	013 - COPS Contracts	002 - DP - Land Rights		0	
012	035	012 - Materials	035 - DP - Wood Poles	34,028	0	34,028
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
012	039	012 - Materials	039 - DP - O/H Cond.	17,440	0	17,440
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
012	041	012 - Materials	041 - DP - O/H Line Transf.	15,865	0	15,865
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
			Total Cost:	353,467	0	353,467
			Original Cost:	37,953		

CI 41333 16N-301 Stewiacke Reconductor

The following is a breakdown of costs associated with the 16N-301 Stewiacke Reconductor project:

Administrative Overhead and Interest	\$59,258
Materials	\$67,333
Contracts	\$226,876
Total	\$353,467

This project provides for the costs associated with upgrading deteriorated plant within the town of Stewiacke. This replacement will include deteriorated conductor, poles and pole top equipment that is approaching its end of life. The work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services (EUS) at a rate of approximately per compatible unit hour.

Title:	103W-311 Gold River Re-conductor Phase 2
Start Date:	2012/04
Final Cost Date:	2012/09
Function:	Distribution
Forecast Amount:	\$310,296

DESCRIPTION:

This project entails the reconductoring of approximately 7 km of feeder. The project will be spread over multiple years. The current conductor size will be increased to enable a contingency for load transferring. The first phase was completed in 2011 and covered from the Delbury Road along Highway 3 south for approximately 174 spans. This second phase planned for 2012 will begin at Civic # 6736 Highway 3, and continue for approximately 210 spans to the corner of Pine Drive and Highway 3.

Summary of Related CI's +/- 2 years: 2011 CI 40203 103W-311 Gold River Phase 1 - \$434,415 2013 CI TBD 103W-311 Gold River Phase 3 \$TBD 2014 CI TBD 103W-311 Gold River Phase 4 \$TBD

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Requirement to Serve

Why do this project?

The existing conductor is a combination of #6 CU and #4 AL which are physically small, have large cumulative operating hours and have limited capacity for incremental load increase.

Why do this project now?

Re-conductoring with a larger wire will improve reliability and provide contingency at all times of year.

Why do this project this way?

This is the most effective method for increasing contingency loading in the area. Reconductoring the small wire closest to the existing source provides the required capacity for load transfers.

- 103W-311 Gold River Reconductor Phase 2

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092	2 092-Vehicle T&D Reg. Labour AO			26,596	0	26,596
094		094 - Interest Capitalized		1,932	0	1,932
095		095-COPS Contracts AO		16,051	0	16,051
095		095-COPS Regular Labour AO		40,517	0	40,517
013	002	013 - COPS Contracts	002 - DP - Land Rights		0	
001	035	001 - T&D Regular Labour	035 - DP - Wood Poles	7,109	0	7,109
012	035	012 - Materials	035 - DP - Wood Poles	6,138	0	6,138
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
098	035	098 - Salvage	035 - DP - Wood Poles	(35)	0	(35)
001	039	001 - T&D Regular Labour	039 - DP - O/H Cond.	39,634	0	39,634
012	039	012 - Materials	039 - DP - O/H Cond.	96,157	0	96,157
098	039	098 - Salvage	039 - DP - O/H Cond.	(4,128)	0	(4,128)
001	040	001 - T&D Regular Labour	040 - DP - O/H Cond.Devices	2,657	0	2,657
012	040	012 - Materials	040 - DP - O/H Cond.Devices	1,836	0	1,836
098	040	098 - Salvage	040 - DP - O/H Cond.Devices	(111)	0	(111)
001	041	001 - T&D Regular Labour	041 - DP - O/H Line Transf.	1,095	0	1,095
012	041	012 - Materials	041 - DP - O/H Line Transf.	3,981	0	3,981
098	041	098 - Salvage	041 - DP - O/H Line Transf.	(1,463)	0	(1,463)
001	050	001 - T&D Regular Labour	050 - DP - Street Lights	121	0	121
001	052	001 - T&D Regular Labour	052 - DP - Services	1,874	0	1,874
012	052	012 - Materials	052 - DP - Services	1,914	0	1,914
			Total Cost:	310,296	0	310,296
			Original Cost:	21,165		

CI 41327 103W-311 Gold River Reconductor Ph 2

The following is a breakdown of costs associated with the Gold River Reconductor Ph 2 project:

Administrative Overhead and Interest	\$85,096
Materials	\$110,026
Contracts	\$68,420
COPS Labour	\$52,490
Salvage	(\$5,737)
Total	\$310,295

The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day. The material budgets include standard distribution equipment such as 336 conductors, spot replacement of poles and framing structures. The contract forecast includes tree trimming which will be completed by a contractor and easements as required.

Title: 2012 Automatic Sleeve Replacements

Start Date:	2012/03
Final Cost Date:	2012/09
Function:	Distribution
Forecast Amount:	\$287,831

DESCRIPTION:

This project provides for the replacement of automatic sleeves on distribution feeders with compression connectors. An emerging failure mode has been encountered for automatic sleeves located close to substations with high operating and fault currents. The failure of these sleeves results in customer outages, and often affects entire feeders or substations. In some circumstances, failures have and can result in fallen conductor. All feeders from the following substations are targeted for automatic sleeve replacement in 2012:

Substation/Region/Customers 23H/Central/9,568 15N/Central/9,672 48H/Central/5,038 1N/Central/7,852 62N/Central/7,400 54H/Central/5,067 62H/Central/5,045 11S/East/9,579 81S/East/10,070 3S/East/9,423 4S/East/7,501 22V/West/6,862 70W/West/6,148

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2012, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Equipment Replacement

Why do this project?

Failure of automatic sleeves results in outages with high number of customer interruptions and customer hours of interruption. Failure of those located close to substations in urban areas can pose a risk to substation transformers due to high current faults. Automatic sleeve replacements in the targeted areas are expected to result in over 50,000 avoided customer hours of interruption (ACHI), with a unit cost of \$4.72/ACHI.

Why do this project now?

Automatic sleeve failures were recognized to be accelerating in 2010 and are expected to continue with continued operation and deterioration.

This work is being undertaken as part of the overall customer reliability improvement investment. This is year three of a five year (2010-2014) plan to improve reliability to NSPI's customers.

Why do this project this way?

Proactive replacement of automatic sleeves is the ideal way to minimize potential customer interruptions, potential safety hazards and potential damage to substation transformers. Proactive replacement will not require planned interruptions.

~		41303
CI	Numbor	41333
U	NULLINEL	

- 2012 Automatic Sleeve Replacements

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		49,627	0	49,627
095		095-COPS Contracts AO			0	
095		095-COPS Regular Labour AO		75,600	0	75,600
001	040	001 - T&D Regular Labour	040 - DP - O/H Cond.Devices	97,437	0	97,437
002	040	002 - T&D Overtime Labour	040 - DP - O/H Cond.Devices	0	0	0
012	040	012 - Materials	040 - DP - O/H Cond.Devices	23,500	0	23,500
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	
001	085	001 - T&D Regular Labour	085 Design	504	0	504
001	085	001 - Regular Labour (No AO)	085 Design	470	0	470
011	085	011 - Travel Expense	085 Design	800	0	800
041	087	041 - Meals & Entertainment	087 Field Super.& Ops.	0	0	0
			Total Cost:	287,831	0	287,831
			Original Cost:	143,212		

CI 41393 - 2012 Automatic Sleeve Replacements

The following is a breakdown of costs associated with the 2012 Automatic Sleeve Replacement project:

Administrative Overhead and Interest
Materials
Contracts
COPS Labour
Other
Total

The materials amount in this project is comprised of compression sleeves. The contract amount is for traffic control. There is COPS labour at a rate of per person day, some GIS data collection and assessment along with some engineering.

Title:

1N-405 Targeted Feeder Replacement

Start Date:	2012/01
Final Cost Date:	2012/10
Function:	Distribution
Forecast Amount:	\$283,892

DESCRIPTION:

This project is part of a program to improve customer service and reliability, as measured by System Average Interruption Duration Index (SAIDI), System Average Interruption Frequency Index (SAIFI) performance and deteriorated plant incidents on selected feeders throughout the Province. Specifically, deteriorated poles and conductor, porcelain arrestors, cutouts, rusty transformers and guys will be replaced.

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2012, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Outage Performance

Why do this project?

This work is being undertaken as part of the overall customer reliability improvement investment. This is year three of a five year (2010-2014) plan to improve reliability to NSPI's customers. Distribution equipment (e.g. poles, conductor, cutouts, and transformers) failures are a primary driver of customer outages. This project will address distribution equipment issues on feeder 1N-405, out of the Onslow Substation. This feeder, which is 108km in length, was selected due to past performance, customer density and feeder length.

Why do this project now?

This feeder is included in the 2012 Reliability Investment Plan based on past performance, customer density and feeder length. It is expected that targeted replacements on 1N-405 will result in annual savings of approximately 2485 customer hours of interruption.

Why do this project this way?

This project will address the distribution equipment issues on this feeder.

- 1N-405 Targeted Feeder Replacement

- 800-Services - Admin.

.

Parent CI Number :

Project Number

2012 ACE Plan **Budget Version**

Capital Item Accounts

Cost Centre : 800

Variance	31,602	8,165		48,143		274	92	6,424	759	8,135	6,338	46,484	99,182	52	666	283,892	
Amount	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Forecast Amount	31,602	8,165		48,143		274	92	6,424	759	8,135	6,338	46,484	99,182	52	666	283,892	62,976
Activity					035 - DP - Wood Poles	038 - DP - Insulators	038 - DP - Insulators	039 - DP - O/H Cond.	039 - DP - O/H Cond.	040 - DP - O/H Cond.Devices	040 - DP - O/H Cond.Devices	041 - DP - O/H Line Transf.	041 - DP - O/H Line Transf.	046 - DP - U/G Conductor	085 Design	Total Cost:	Original Cost:
Account	092-Vehicle T&D Reg. Labour AO	094 - Interest Capitalized	095-COPS Contracts AO	095-COPS Regular Labour AO	013 - COPS Contracts	001 - T&D Regular Labour	012 - Materials	001 - T&D Regular Labour	012 - Materials	001 - T&D Regular Labour	012 - Materials	001 - T&D Regular Labour	012 - Materials	001 - T&D Regular Labour	001 - T&D Regular Labour		
Actv					035	038	038	039	039	040	040	041	041	046	085		
Acct	092	094	095	095	013	001	012	001	012	001	012	001	012	001	001		

CI 41337 1N-405 Targeted Feeder Replacements

The following is a breakdown of costs associated with the 1N-405 Targeted Feeder Replacements project:

Administrative Overhead and Interest	
Materials	
Contracts	
COPS Labour	
Total	

\$ 106,372 \$ 62,369 \$ 283,892

The labour associated with this project will be performed by NSPI personnel at a rate of approximately per person day. The material budgets include standard distribution equipment such as cutouts, insulators, arrestors and framing structures. The contract forecast includes traffic control services.

Title:

1H-Water Street New Feeder

Start Date:	2012/03
Final Cost Date:	2012/11
Function:	Distribution
Forecast Amount:	\$280,657

DESCRIPTION:

This project includes:

- Establishing a new feeder out of substation 1H-Water St via Morris St.
- Removing de-energized cables from existing ducts on Morris St.
- Pulling in new 750kcmil cable to Manhole 65 at Morris St. and Queen St.
- Transitioning to overhead to split the existing 1H-415 into approximately equal halves

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2012, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Equipment Replacement

Why do this project?

In its nominal configuration, feeder 1H-415 has exceeded NSPI's feeder overload criterion of 325A (14MVA at 25kV) with a peak load of 349 amps in late 2010/ early 2011. Load relief is required to reduce this feeder's peak loading.

Why do this project now?

Although the load can be shared between 2H-413 and 1H-415, the peak load experienced in winter 2011 placed both at NSPI's loading limits. A large industrial customer in the area is currently increasing its capacity and is expected to increase load by 1MVA. Combined with annual area growth, the two feeders can no longer meet the area's demand without overload.

Why do this project this way?

Planning Report 278-0611-H46 evaluated alternatives to solve the overload issues at 1H-415. In addition to the preferred alternative, the possibility of investing in feeder ties to allow load to be transferred to other distribution circuits was also investigated. This project provides the most effective solution with the addition of a new distribution circuit on the Halifax Peninsula and provides for greater switching flexibility and improved reliability.

A portion of the labour associated with this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

- 1H-Water Street New Feeder

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		16,136	0	16,136
094		094 - Interest Capitalized		5,245	0	5,245
095		095-COPS Regular Labour AO		24,582	0	24,582
095		095-COPS Contracts AO		7,554	0	7,554
001	040	001 - T&D Regular Labour	040 - DP - O/H Cond.Devices	669	0	669
012	040	012 - Materials	040 - DP - O/H Cond.Devices		0	
001	043	001 - T&D Regular Labour	043 - DP - Substn Dev.	1,970	0	1,970
012	043	012 - Materials	043 - DP - Substn Dev.		0	
013	045	013 - COPS Contracts	045 - DP - U/G Conduit		0	
001	046	001 - T&D Regular Labour	046 - DP - U/G Conductor	16,045	0	16,045
012	046	012 - Materials	046 - DP - U/G Conductor		0	
013	046	013 - COPS Contracts	046 - DP - U/G Conductor		0	
001	085	001 - T&D Regular Labour	085 Design	2,842	0	2,842
001	087	001 - T&D Regular Labour	087 Field Super.& Ops.	10,320	0	10,320
			Total Cost:	280,657	0	280,657
			Original Cost:	29,728		

CI 41341 1H-Water Street New Feeder

The following is a breakdown of costs associated with the 1H-Water St New Feeder project:

Administrative Overhead and Interest	\$ 53,517
Materials	\$ 163,095
Contracts	\$ 32,200
COPS Labour	\$ 31,846
Total	\$ 280,657

A portion of the work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services (EUS), at a rate of approximately per compatible unit hour. A portion of the work is planned to be performed by NSPI personnel at a rate of approximately per person day. The material budgets include cable, terminators and overhead materials at the transition point from underground to overhead. For the NSPI portion of this work contracts also includes flagging.

Title:	88W New Feeder
Start Date:	2012/05
Final Cost Date:	2012/11
Function:	Distribution
Forecast Amount:	\$269,616

DESCRIPTION:

This project provides for the distribution line work associated with the installation of a new feeder to reduce loading on 88W-312 at Parade St. in Yarmouth. The distribution line will be underbuilt for 250 m on L-5536 from 88W to Pleasant St, and then a double-circuit line will be constructed for 300 m along Pleasant St to Parade St.

Summary of Related CI's +/- 2 years: 2012 CI 41592 - 88W New Recloser and Relocate 88W-322 \$111,171 2012 CI 41329 - 11W-202 Voltage Conversion to 12kV \$98,382

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Overloaded Equipment

Why do this project?

This project is required to relieve an existing overload condition on feeder 88W-312. The load on feeder 88W-312 exceeds NSPI's 325 amp feeder overload criteria. Load relief is required to maintain service voltage levels and to maintain reliability. It is also required to balance the load between the two transformers at 88W since 88W-T52 is approaching its winter overload capability limit. Additionally, 12 kV feeder capacity is required in order to accommodate the conversion of some 4kV load normally supplied from the 11W substation.

Why do this project now?

The load on 88W-312 exceeded NSPI's 325 amp feeder overload criteria in January 2011. There are no anticipated reductions in customer loads on feeder 88W-312 and no availability to transfer some load to another source, given the existing feeder configuration. Load relief is required as soon as practicable.

Why do this project this way?

The proposed solution is the least cost alternative, as detailed in Distribution Planning Study 242-0608-W64R (Attachment 1).

The labour for this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

- 88W New Feeder

CI Number : 41363 Parent CI Number :

- 800-Services - Admin.

Cost Centre : 800

Project Numbe

-		
പ		
z		
0		
-		
_		
_		

2012 ACE Plan

Budget Version

Capit	al Item ⊿	vccounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		1,652	0	1,652
095		095-COPS Contracts AO		46,209	0	46,209
013	002	013 - COPS Contracts	002 - DP - Land Rights		0	
012	035	012 - Materials	035 - DP - Wood Poles	18,500	0	18,500
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
012	039	012 - Materials	039 - DP - O/H Cond.	5,800	0	5,800
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
013	050	013 - COPS Contracts	050 - DP - Street Lights		0	
013	052	013 - COPS Contracts	052 - DP - Services		0	
001	085	001 - Regular Labour (No AO)	085 Design	486	0	486
			Total Cost	269,616	0	269,616
			Original Cost	: 41,897		

CI 41363 - 88W New Feeder

The following is a breakdown of costs associated with the 88W New Feeder project:

Administrative Overhead and Interest	\$ 47,861
Materials	\$ 24,300
Contracts	\$ 196,969
COPS Labour	\$ 486
Total	\$ 269,616

The work associated with this project is expected to be sourced through NSPI's existing Power Line Technician (PLT) contract with Emera Utility Services (EUS) at a rate of approximately per compatible unit hour. The material forecasts include the costs for poles, framing, conductor and standard hardware.

Title: 88W New Recloser and Relocate 88W-322

Start Date:	2012/02
Final Cost Date:	2012/12
Function:	Transmission
Forecast Amount:	\$111,171

DESCRIPTION:

This project provides for two new recloser bays on the 88W substation. One is for a new recloser to supply a new feeder required to offload 88W-312 and the second is required to allow the recloser currently in the 88W-322 bay to be relocated to bus 88W-B31.

Related CI's +/- 2 years:

2012 CI 41363 - 88W New Feeder \$98,669 2012 CI 41329 - 11W-202 Voltage Conversion to 12 kV \$269,616

JUSTIFICATION:

Justification Criteria:

Transmission Plant

Sub-Criteria:

Overloaded Equipment

Why do this project?

The load on feeder 88W-312 exceeds NSPI's 325 amp feeder overload criteria. Load relief is required to maintain service voltage levels and to maintain reliability. In addition, the load on 88W-T52 is approaching its maximum winter overload capability while 88W-T51, although a larger transformer, is lightly loaded. Relocating the 88W-322 recloser to a new recloser bay supplied from 88W-T51 will avoid an overload condition on 88W-T52.

Why do this project now?

There are no anticipated reductions in customer loads on feeder 88W-312 and no availability to transfer some load to another source, given the existing feeder configuration. While 88W-T51 has not yet reached its winter overload rating, this is projected to occur within a few years and building both recloser bays now is more cost effective than building them separately.

Why do this project this way?

The proposed solution is the least cost alternative in accordance with Distribution Planning Study 242-0608-W64.

Title: 88W New Recloser and Relocate 88W-322

Start Date:	2012/06
Final Cost Date:	2012/12
Function:	Distribution
Forecast Amount:	\$98,382

DESCRIPTION:

This project provides for the conversion of the 4.16 kV load on feeder 11W-202 to the 12 kV supply from 88W-Pleasant St. Nine transformers and 8 poles will be replaced in order to facilitate the voltage conversion.

Related CI's:

2012 - CI 41592 - 88W New Recloser and Relocate 88W-322 \$111,171 2012 - CI 41363 - 88W New Feeder \$269,616

JUSTIFICATION:

Justification Criteria:

Distribution System

Sub-Criteria:

Equipment Replacement

Why do this project?

This project is required as part of a staged process to convert the load supplied by the 11W substation to 12 kV.

Why do this project now?

The substation transformer 11W-T51 will be 53 years old in 2012 and is nearing the end of its useful life.

Why do this project this way?

The proposed solution is the least cost alternative in accordance with Distribution Planning Study 242-0608-W64. Voltage conversion results in lower distribution system losses and avoids a large future cost to replace the substation transformer 11W-T51.

Title:35V-312 Windsor Causeway

Start Date:	2012/03
Final Cost Date:	2012/10
Function:	Distribution
Forecast Amount:	\$252,137

DESCRIPTION:

This project provides for the removal of the lower circuit along the Windsor Causeway, through the conversion of the load on the eastern side of the causeway from 12kV to 25kV. This section of distribution line has been experiencing outages during storm events and removal of the distribution line will improve reliability to the area. This conversion will also reduce load on 35V-312 which is fed from a 25 kV feeder 79V-402.

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2012, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Distribution System

Sub Criteria: Overloaded Equipment

Why do this project?

Currently 25kV feeder, 79V-402, is overloaded and this project allows for the reduction of load on that system. The part of the 12kV system which crosses the Windsor Causeway has been experiencing outages during storm events and converting this area will allow this part of the distribution circuit to be removed and improves reliability to the area.

Why do this project now?

The load on the 25kV feeder 79V-402, needs to be reduced and this conversion achieves that goal. Removal of the line on the causeway will also improve reliability to the area.

Why do this project this way?

This conversion is a cost effective way to address two areas of concern on the existing system in the Windsor area.

The labour for this project will be sourced through NSPI's existing Power Line Technician (PLT) Service Agreement with EUS. This is aligned with NSPI's workforce planning model which is designed to optimize the allocation and execution of PLT resources among work requirements.

Project Number

Parent CI Number :

Cost Centre : 800

- 800-Services - Admin.

-

Budget Version 2012 ACE Plan

Capital Item Accounts

Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		4,867	0	4,867
095		095-COPS Contracts AO		34,259	0	34,259
013	002	013 - COPS Contracts	002 - DP - Land Rights		0	
020	002	020 - Royalties, Easements, App	002 - DP - Land Rights	2,000	0	2,000
012	035	012 - Materials	035 - DP - Wood Poles	9,142	0	9,142
013	035	013 - COPS Contracts	035 - DP - Wood Poles		0	
012	038	012 - Materials	038 - DP - Insulators	324	0	324
013	038	013 - COPS Contracts	038 - DP - Insulators		0	
012	039	012 - Materials	039 - DP - O/H Cond.	2,222	0	2,222
013	039	013 - COPS Contracts	039 - DP - O/H Cond.		0	
012	040	012 - Materials	040 - DP - O/H Cond.Devices	291	0	291
013	040	013 - COPS Contracts	040 - DP - O/H Cond.Devices		0	
012	041	012 - Materials	041 - DP - O/H Line Transf.	51,726	0	51,726
013	041	013 - COPS Contracts	041 - DP - O/H Line Transf.		0	
013	050	013 - COPS Contracts	050 - DP - Street Lights		0	
013	052	013 - COPS Contracts	052 - DP - Services		0	
001	085	001 - Regular Labour (No AO)	085 Design	1,274	0	1,274
			Total Cost:	252,137	0	252,137
			Original Cost:	31,839		

CI 41356 35V-312 Windsor Causeway

The following is a breakdown of costs associated with the 35V-312 Windsor Causeway project:

Administrative Overhead and Interest	\$39,126
Materials	\$63,705
Contracts	\$146,033
COPS Labour	\$1,274
Other	\$2,000
Total	\$252,138

The materials portion of this project includes standard distribution line items. Emera Utility Services (EUS) will be engaged to perform the majority of the work associated with this project at a rate of per compatible unit hour. The other account includes a forecast for traffic control.

7 General Plant

7.1 General Plant – Five-year Plan and Highlights

General Plant capital investment in 2012 focuses largely on information technology related projects and vehicle purchases:

i	New 2012 capital spending for projects with total estimated project spend greater than \$250K and for which approval is sought	\$3.5
ii	New 2012 capital spending for projects with total estimated project spend greater than \$250K for subsequent approval	\$18.4
iii	New capital spending for projects with total estimated spend less than \$250K for which approval is not sought	\$0.7
iv	Carry-over capital spending	\$9.3
v	Routine capital spending	\$16.2
vi	Total 2012 General Plant capital investment plan	\$48.1M
vii	Request for ACE approval (Items i + v)	\$19.7M

7.2 General Plant Carry-over Capital Spending Summary

Table 7.2 General Plant Carry-over Capital Spending

Project Number	CI#	Project Title	Start Date	Final Date	Previous Expenditure	2012 Budget	Subsequent Spending	Total Estimate
Buildings								
P863	38182	2010 Backup Control Centre	2010/11	2012/07	\$1,933,881	\$1,237,619	\$0	\$3,171,500
	Total Buildings					\$1,237,619	\$0	\$3,171,500
Computer	rs							
P819	34782	Oracle Financials Upgrade	2010/05	2012/12	\$224,955	\$518,884	\$0	\$743,839
P789	35742	Connectivity Upgrade	2009/05	2012/05	3,013,798	293,309	0	3,307,107
	40298	SAN and Backup Replacement	2011/07	2012/04	752,715	184,990	0	937,705
	Total C	Computers			\$3,991,467	\$997,183	\$0	\$4,988,651
Equipmen	nt Replac	cement						
	_	Protective Equip Test Center						
P860	40229	Upgrade	2011/04	2012/07	\$305,973	\$604,369	\$0	\$910,342
Total Equipment Replacement					\$205 072	\$604 360	¢ŋ	010 343
	Total E	quipment Replacement			\$305,973	3004,309	2 0	\$910,342
Overload	<u>Total E</u> ed Equip	ment Replacement			\$305,973	3004,309	Φ υ	\$910,342
Overload	<u>Total E</u> ed Equip	ment Replacement ment Harbour East Land Purchase and			\$305,973	<u> </u>	<u>\$0</u>	\$910,342
Overload	<u>Total E</u> ed Equip 38849	aupment Replacement ment Harbour East Land Purchase and Right of Way	2011/06	2012/12	\$3 05,97 3	\$94,994	\$0 \$0	\$910,342 \$179,680
Overload	Total E ed Equip 38849 Total C	Automet Replacement ment Harbour East Land Purchase and Right of Way Overloaded Equipment	2011/06	2012/12	\$305,973 \$84,686 \$84,686	\$94,994 \$94,994	\$0 \$0 \$0	\$910,342 \$179,680 \$179,680
Overloade Other Ger	Total E ed Equip 38849 Total C neral Pro	Autometic Replacement ment Harbour East Land Purchase and Right of Way Overloaded Equipment Operty	2011/06	2012/12	\$305,973 \$84,686 \$84,686	\$94,994 \$94,994 \$94,994	\$0 \$0 \$0	\$910,342 \$179,680 \$179,680
Overloade Other Ger	Total E ed Equip 38849 Total C neral Pro 40403	Autometic Replacement ment Harbour East Land Purchase and Right of Way Overloaded Equipment Operty Work & Asset Management Right of Way Purchase Northern	2011/06	2012/12 2013/03	\$305,973 \$84,686 \$84,686 \$2,240,679	\$94,994 \$94,994 \$94,994 \$3,359,065	\$0 \$0 \$216,369	\$910,342 \$179,680 \$179,680 \$5,816,113
Overloade Other Ger P833	Total E ed Equip 38849 Total C neral Pro 40403 29009	Automent Replacement ment Harbour East Land Purchase and Right of Way Overloaded Equipment Overloaded Equipment Overly Work & Asset Management Right of Way Purchase Northern NS	2011/06 2011/07 2010/09	2012/12 2013/03 2013/05	\$305,973 \$84,686 \$84,686 \$2,240,679 2,408,263	\$94,994 \$94,994 \$3,359,065 1,379,319	\$0 \$0 \$216,369 0	\$910,342 \$179,680 \$179,680 \$5,816,113 3,787,582
Overloade Other Ger P833 P834	Total E ed Equip 38849 Total C neral Pro 40403 29009 40103	Automet Keplacement ment Harbour East Land Purchase and Right of Way Overloaded Equipment Overloaded Equipment Work & Asset Management Right of Way Purchase Northern NS U&U Load Control Demo	2011/06 2011/07 2010/09 2010/10	2012/12 2013/03 2013/05 2014/03	\$305,973 \$84,686 \$84,686 \$2,240,679 2,408,263 539,033	\$94,994 \$94,994 \$3,359,065 1,379,319 1,290,353	\$0 \$0 \$216,369 0 2,233,866	\$910,342 \$179,680 \$179,680 \$5,816,113 3,787,582 4,063,252
Overload Other Ger P833 P834	Total E ed Equip 38849 Total C neral Pro 40403 29009 40103 33562	Automent Replacement ment Harbour East Land Purchase and Right of Way Overloaded Equipment Operty Work & Asset Management Right of Way Purchase Northern NS U&U Load Control Demo FAC Land Registration Act	2011/06 2011/07 2010/09 2010/10 2010/10	2012/12 2013/03 2013/05 2014/03 2014/12	\$305,973 \$84,686 \$84,686 \$2,240,679 2,408,263 539,033 105,144	\$94,994 \$94,994 \$3,359,065 1,379,319 1,290,353 332,152	\$0 \$0 \$216,369 0 2,233,866 750,833	\$910,342 \$179,680 \$179,680 \$5,816,113 3,787,582 4,063,252 1,188,129
Overloade Other Ger P833 P834	Total E ed Equip 38849 Total C neral Pro 40403 29009 40103 33562 Total C	Automent Replacement ment Harbour East Land Purchase and Right of Way Overloaded Equipment Operty Work & Asset Management Right of Way Purchase Northern NS U&U Load Control Demo FAC Land Registration Act	2011/06 2011/07 2010/09 2010/10 2010/10	2012/12 2013/03 2013/05 2014/03 2014/12	\$305,973 \$84,686 \$84,686 \$2,240,679 2,408,263 539,033 105,144 \$5,293,120	\$94,994 \$94,994 \$3,359,065 1,379,319 1,290,353 332,152 \$6,360,889	\$0 \$0 \$216,369 0 2,233,866 750,833 \$3,201,068	\$910,342 \$179,680 \$5,816,113 3,787,582 4,063,252 1,188,129 \$14,855,077
Overloade Other Ger P833 P834	Total E ed Equip 38849 Total C neral Pro 40403 29009 40103 33562 Total C	Automent Replacement ment Harbour East Land Purchase and Right of Way Overloaded Equipment Operty Work & Asset Management Right of Way Purchase Northern NS U&U Load Control Demo FAC Land Registration Act	2011/06 2011/07 2010/09 2010/10 2010/10	2012/12 2013/03 2013/05 2014/03 2014/12	\$305,973 \$84,686 \$84,686 \$2,240,679 2,408,263 539,033 105,144 \$5,293,120	\$94,994 \$94,994 \$3,359,065 1,379,319 1,290,353 332,152 \$6,360,889	\$0 \$0 \$216,369 0 2,233,866 750,833 \$3,201,068	\$910,342 \$179,680 \$5,816,113 3,787,582 4,063,252 1,188,129 \$14,855,077

7.3 General Plant – New 2012 Capital Items for ACE Approval

Tab #	CI#	Project Title	2012 Budget	Project Total
General Plant				
		PeopleSoft (Human Resource		
GP02	40649	Management)	\$403,131	\$633,487
GP03	41424	PeopleSoft Self Service Module	413,859	413,859
GP04	41425	Cognos Upgrade	186,933	254,413
Total New Co	mnutars Snandi	na	\$1 003 023	\$1 301 759
Outage Barfor	moneo		\$1,005,725	\$1,501,757
Outage Ferior	mance			
GP05	41433	2012 New RTU Deployment	\$1,062,700	\$1,062,700
GP06	41428	2012 RTU Capital Replacement	314,026	314,026
Total Outage	Performance		\$1,376,725	\$1,376,725
Furniture & F	Fixtures			
GP07	41763	Warehouse Racking System	\$262,402	\$262,402
Total Furnitu	re & Fixtures		\$262,402	\$262,402
Telecommuni	cations			
		2012 Replace Microwave Radio		
GP08	41419	System	\$601,339	\$601,339
		Upgrade Multiplexer Network		
GP09	41420	Manager	294 571	294 571
610)	41420	Mulluger	274,571	294,371
Total New Tel	ecommunication	ns Spending	\$895,910	\$895,910
Total New Ge	neral Plant Spen	nding	\$3,538,960	\$3,836,796

General Plant Cls 1 - 8

Title:

PeopleSoft (Human Resource Management)

Start Date:	2012/07
Final Cost Date:	2013/05
Function:	General Plant
Forecast Amount:	\$633,487

DESCRIPTION:

NSPI uses five PeopleSoft application modules to support and undertake Human Resource management. These include: Human Resource Management, Payroll, Time and Labour, Benefits and Training. Not all functionality has been activated within these existing modules. This project will enable functionality to define and centrally manage all positions within the organization.

Summary of Related CI's +/- 2 years: 2011 CI 40294 People Soft HRMS License \$94,190 2011 CI 40293 People Soft Workflow \$276,578 2012 CI 41424 PeopleSoft Self Service Module \$413,859

JUSTIFICATION:

Justification Criteria: Work Support Facilities

Sub Criteria: Computers

Why do this project?

This project will provide the capability to track and report on budgeted vs non-budgeted positions, determine the location of positions and keep track of position history to ensure the accuracy and consistency of department headcount and complement. Position management will be utilized across various business processes such as recruiting, employee transfers, leave of absence management, succession planning, job evaluations, reorganizations, etc.

Why do this project now?

Position Management functionality previously would have required a separate technology investment. The licensing associated with this project will enable NSPI's current investment to deliver this functionality and provides an opportunity for NSPI to plan, monitor and control positions across the company.

Why do this project this way?

This project will allow NSPI to leverage existing investments while utilizing the same technology architecture. It also makes the transition for employees smoother based on existing proficiency in the existing PeopleSoft environment.

- PeopleSoft (Human Resource Mgt)

.

- 027-Administration

Project Number

2012 ACE Plan **Budget Version**

Cost Centre : 027

Parent CI Number :

Capit	al Item ⊿	Accounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		15,835	0	15,835
095		095-IT Regular Labour AO		58,652	0	58,652
001	072	001 - IT Regular Labour	072 - GP - Computer Equipment	110,000	0	110,000
001	072	001 - Regular Labour (No AO)	072 - GP - Computer Equipment		0	
011	072	011 - Travel Expense	072 - GP - Computer Equipment	12,000	0	12,000
028	072	028 - Consulting	072 - GP - Computer Equipment		0	
041	072	041 - Meals & Entertainment	072 - GP - Computer Equipment	7,000	0	7,000
056	072	056 - Training & Development	072 - GP - Computer Equipment	30,000	0	30,000
			Total Cost:	633,487	0	633,487
			Original Cost:			

Page 1149 of 1189
Nova Scotia Power Information Technology Capital Support Information

Project #	CI 40649
Project Name	PeopleSoft Position Management

Key Capital Expense Components

Expense Type	Key Driver	Comments
IT Regular Labour	Project Manager – 92 days at	Project Management support
	Ş m /day	for the duration of the project.
	IT Technical Resources – 90 Days	Technical support for the
	at Ş ala /day	duration of the project (Data
		Base Administration, Security,
		trouble shooting interface
		management)
Consulting	Technical	Peoplesoft technical support to
	100 days at \$/day	the project team and train HR
		and IT employees on technical
		management of the application.
	Functional	Position Management
	Consulting – 120 days	functional expertise. This
	\$ <mark></mark> /day	resource(s) will be working
		closely with HR for the duration
De sude a la bassa Na AQ		of the product.
Regular Labour No AO	110 days at Ş ray /day	Nova Scotia Power Peoplesoft
		functional experts for testing,
		documentation and training
		design and development.

Nova Scotia Power PeopleSoft Investment Plan 2009-2013

A number of related investments are planned for the Human Resource application PeopleSoft. PeopleSoft is a best in category computer application consistent with NSPI's information technology strategy. It enables major human resource processes supporting all employees of Nova Scotia Power. The table below summarizes the related planned investments providing an overall view of the investment, benefits and timing.

Capital	Year	Project Name	Benefits
Item #			
Item # 40294 40293	2011 2011	HRMS Software Licenses WorkFlow	 The current PeopleSoft software license requires NSPI to maintain active licenses for the full number of employees. This investment was to purchase enough licenses to maintain compliancy with the software contract. The scope of this project is to introduce a PeopleSoft automation tool called Workflow. This will enable NSPI to automate the flow of HR related information throughout the enterprise. Time consuming business processes that are currently run manually can be automated and setup to deliver the right information to the right people at the right time. By introducing Workflow, NSPI will be able to take advantage of the following features. Automate approval process for various HR business processes. (New Hires, Termination) Enable workflow triggers from other applications Automated notifications. Batch Workflow processing (Monitoring for a specific criteria to initiate a Workflow trigger – e.g. Employee
			 criteria to initiate a Workflow trigger – e.g Employee years of service or days absent) 5. Activity Guides – An on-line support or help feature used to lead employees through a multi-step task in PeopleSoft. This will be especially useful for new HR employees and for guiding untrained employees through future self-service options.
40649	2012- 2013	Position Management	NSPI uses 5 PeopleSoft application modules to assist in the management of Human Resources. These include (1) Human Resource Management, (2) Payroll, (3) Time and Labour, (4) Benefits and (5) Training. These applications enable some components of key human resource processes. Not all functionality has been activated within these modules. This project is to enable the functionality that will define and

			centrally manage all positions within the organization. Today
			all human resource processes are employee based. From this
			centrally managed data, various stakeholders distributed
			throughout the organization will have the capability to track
			and report on budgeted vs non-budgeted positions
			determine the location of nositions and keen track of
			nosition history thus ensuring that accuracy of department
			headcount and complement Position Management can be
			integrated with various internal husiness processes such as
			recruiting employee transfers leave of absence
			management succession planning job evaluations re-
			organizations, etc. This module will allow for tighter
			integration to other applications such as organizational
			charts and other administrative functions such as the
			Personal Action notices (PANs) used by HR. This functionality
			will help to:
			win help to.
			•Ensure the right person is being paid from the right funds
			for the right position
			•Ability to manage Nova Scotia Power's workforce by
			position in addition to tracking by employee
			•Streamline processes for recruiting and hiring employees
			and consultants
			 Provides a clear view of the organizational structure and
			staffing needs
			•Real-time, consistent and reliable workforce information
			 Provides committed funding (budget) and salary expenses
			by position, both vacant and filled
			 Improved reporting and analysis capabilities. i.e Org Charts
41424	2012	Self-Serve	This project will enable employee self-service functionality
			for all Nova Scotia Power employees. It allows employees to
			enter, update and review personal and job information that
			they would now have to contact an HR employee to
			complete. It provides employees with more control over
			their information and easier and more timely access to
			information for key planning events such as retirement,
			joining the company, changing benefits with marriages,
			births or other critical events. This will allow HR staff to
			focus their activities towards more pressing matters such as
			recruitment, training, performance management,
			orientations, labour relations and resolving employee issues
			with leaders. The PeopleSoft employee self-service feature
			reduces the amount of time and manual paperwork
			necessary to complete transactional HR tasks as it will
			provide employees with direct access to the system to
			complete transactions at any time.

	Implementing employee self-service will allow Nova Scotia
	Power to further leverage the investment that has been
	made in PeopleSoft over the last number of years including a
	recent upgrade in 2010 to PeopleSoft 9.1.

Title: PeopleSoft Self Service Module

Start Date:	2012/07
Final Cost Date:	2012/12
Function:	General Plant
Forecast Amount:	\$413,859

DESCRIPTION:

NSPI utilizes Oracle PeopleSoft for Human Resource (HR) Management. PeopleSoft delivers a set of standard employee self-service functions that must be licensed in order to be used across the organization. The HR Department currently manages employee changes and updates for approximately 2,000 employees resulting in a large amount of time being consumed by HR on administrative tasks; preventing staff from focusing on more value add tasks and initiatives. The addition of employee self-service will allow employees to manage a subset of their information within the PeopleSoft system and enhance efficiencies. These changes include but are not limited to: address changes; marital status changes; time entry; beneficiary/depending changes; benefit program enrolment; and electronic paystubs.

Summary of Related CI's +/- 2 years: 2011 CI 40294 People Soft HRMS License \$94,190 2011 CI 40293 People Soft Workflow \$276,578 2012 CI 40649 PeopleSoft (Human Resource Management) \$633,487

JUSTIFICATION:

Justification Criteria: Work Support Facilities

Sub Criteria: Computers

Why do this project?

This project will enable employee self-service functionality for NSPI employees, allowing employees to enter, update and review personal and job information that they currently contact a Human Resources (HR) employee to complete for them. This will allow HR staff to focus their activities towards more value added tasks such as recruitment, training, performance management, orientations, labour relations and resolving employee issues with leaders. The PeopleSoft employee self-service feature reduces the amount of time and manual paperwork necessary to complete transactional HR tasks through employee direct access to the system to complete transactions themselves.

Implementing employee self-service will allow NSPI to further leverage the investment that has been made in PeopleSoft over the last number of years including a recent 2010 upgrade to PeopleSoft 9.1.

Why do this project now?

NSPI's PeopleSoft system was upgraded to the most recent release in November of 2010 and the addition of the self service module now enables the latest functionality for end-users and to leverage the recent investment that has been made in PeopleSoft. Leveraging technology to do manual transactional work allows for increased efficiencies.

Why do this project this way?

The implementation of this module is an extension of the core PeopleSoft application and will best integrate with the current environment as well as providing the opportunity to further leverage existing assets.

- PeopleSoft Self Service Module

Project Number

Parent CI Number :

Cost Centre : 027

- 027-Administration

.

2012 ACE Plan **Budget Version**

Capit	tal Item /	Accounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		6,699	0	6,699
095		095-IT Regular Labour AO		26,660	0	26,660
001	072	001 - Regular Labour (No AO)	072 - GP - Computer Equipment	62,000	0	62,000
001	072	001 - IT Regular Labour	072 - GP - Computer Equipment	76,000	0	76,000
028	072	028 - Consulting	072 - GP - Computer Equipment		0	
034	072	034 - Appl. Software	072 - GP - Computer Equipment		0	
041	072	041 - Meals & Entertainment	072 - GP - Computer Equipment	2,500	0	2,500
056	072	056 - Training & Development	072 - GP - Computer Equipment	30,000	0	30,000
			Total Cost:	413,859	0	413,859
			Original Cost:			

Nova Scotia Power Information Technology Capital Support Information

Project #	CI 41424
Project Name	PeopleSoft Self Service

Key Capital Expense Components

Expense Type	Key Driver	Comments
IT Regular Labour	Project Manager – 50 days at	Project Management support for the
	\$ /day	duration of the project through project
		start-up, design, configuration, testing,
		training, implementation and support.
	IT Technical Analyst	Peoplesoft technical support for the
	75 Days at \$ 600 min /day	duration of the project.
Consulting	Technical	Peoplesoft technical support to the
	35 days at \$ 666 /day	project team and transfer Peoplesoft
		technical self-service knowledge to
		NSPI
	Functional	To provide and transfer Peoplesoft
	100 days at \$ /day	self- functional expertise.
HR Regular Labour	days at \$ /day (Two	
	resources)	
Training	Training on the new functionality	
	employees using Universal	
	Productivity Kit online tutorials	
Comp. Hardware and	Upgrades to current servers to	
Opr. Software	support increased load on server.	

Nova Scotia Power PeopleSoft Investment Plan 2009-2013

A number of related investments are planned for the Human Resource application PeopleSoft. PeopleSoft is a best in category computer application consistent with NSPI's information technology strategy. It enables major human resource processes supporting all employees of Nova Scotia Power. The table below summarizes the related planned investments providing an overall view of the investment, benefits and timing.

Capital	Year	Project Name	Benefits
Item #			
40294 40293	2011 2011	HRMS Software Licenses WorkFlow	The current PeopleSoft software license requires NSPI to maintain active licenses for the full number of employees. This investment was to purchase enough licenses to maintain compliancy with the software contract. The scope of this project is to introduce a PeopleSoft automation tool called Workflow. This will enable NSPI to
			 automate the flow of HR related information throughout the enterprise. Time consuming business processes that are currently run manually can be automated and setup to deliver the right information to the right people at the right time. By introducing Workflow, NSPI will be able to take advantage of the following features. 1. Automate approval process for various HR business processes. (New Hires, Termination) 2. Enable workflow triggers from other applications 3. Automated notifications. 4. Batch Workflow processing (Monitoring for a specific criteria to initiate a Workflow trigger – e.g Employee years of service or days absent) 5. Activity Guides – An on-line support or help feature used to lead employees through a multi-step task in PeopleSoft. This will be especially useful for new HR employees and for guiding untrained employees through future self-service options.
40649	2012- 2013	Position Management	NSPI uses 5 PeopleSoft application modules to assist in the management of Human Resources. These include (1) Human Resource Management, (2) Payroll, (3) Time and Labour, (4) Benefits and (5) Training. These applications enable some components of key human resource processes. Not all functionality has been activated within these modules. This project is to enable the functionality that will define and

			centrally manage all positions within the organization. Today
			all human resource processes are employee based. From this
			centrally managed data, various stakeholders distributed
			throughout the organization will have the capability to track
			and report on budgeted vs non-budgeted positions
			determine the location of nositions and keen track of
			nosition history thus ensuring that accuracy of department
			headcount and complement Position Management can be
			integrated with various internal husiness processes such as
			recruiting employee transfers leave of absence
			management succession planning job evaluations re-
			organizations, etc. This module will allow for tighter
			integration to other applications such as organizational
			charts and other administrative functions such as the
			Personal Action notices (PANs) used by HR. This functionality
			will help to:
			win help to.
			•Ensure the right person is being paid from the right funds
			for the right position
			•Ability to manage Nova Scotia Power's workforce by
			position in addition to tracking by employee
			•Streamline processes for recruiting and hiring employees
			and consultants
			 Provides a clear view of the organizational structure and
			staffing needs
			•Real-time, consistent and reliable workforce information
			 Provides committed funding (budget) and salary expenses
			by position, both vacant and filled
			 Improved reporting and analysis capabilities. i.e Org Charts
41424	2012	Self-Serve	This project will enable employee self-service functionality
			for all Nova Scotia Power employees. It allows employees to
			enter, update and review personal and job information that
			they would now have to contact an HR employee to
			complete. It provides employees with more control over
			their information and easier and more timely access to
			information for key planning events such as retirement,
			joining the company, changing benefits with marriages,
			births or other critical events. This will allow HR staff to
			focus their activities towards more pressing matters such as
			recruitment, training, performance management,
			orientations, labour relations and resolving employee issues
			with leaders. The PeopleSoft employee self-service feature
			reduces the amount of time and manual paperwork
			necessary to complete transactional HR tasks as it will
			provide employees with direct access to the system to
			complete transactions at any time.

	Implementing employee self-service will allow Nova Scotia
	Power to further leverage the investment that has been
	made in PeopleSoft over the last number of years including a
	recent upgrade in 2010 to PeopleSoft 9.1.

Title:	Cognos Upgrade
--------	----------------

Start Date:	2012/09
Final Cost Date:	2013/04
Function:	General Plant
Forecast Amount:	\$254,413

DESCRIPTION:

The Company utilizes Cognos reporting for a large portion of the financial reports produced within the organization. The purpose of this project is to upgrade the existing Cognos platform from version 7.4 to version 10 and to increase the number of licenses available to the organization. Increasing the license count will allow Cognos to be offered to departments in the Company currently not using the application.

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Work Support Facilities

Sub Criteria: Computers

Why do this project?

Cognos is used throughout the organization to provide secure access to financial information from the Oracle Financials General Ledger, Accounts Payable and Procurement modules. It is also used to provide historical labour information from the Human Resources PeopleSoft platform.

An increasing number of users are requesting access to Cognos reporting functionality. Due to a licensing limitation, the application cannot be rolled out to additional users. Users of the application are also requesting functionality that does not exist in the current version such as the ability to create and customize their own reports.

Why do this project now?

Support for Cognos Impromptu 7.4 and Cognos PowerPlay 7.4 will be unavailable after September 30th, 2012. Issues encountered with the software after September 30th, 2012 will no longer be investigated by the vendor.

Why do this project this way?

This project will be executed with a combination of internal and external resources. This approach will allow the Company to ramp up the resource complement with contractor resources and then return the resource complement to normal operating levels when the project is concluded. This approach also ensures that knowledge and skills are developed internally and sustained beyond the life of the project.

The project will employ industry standard approaches, processes, and tools that have been proven successful by Cognos contractors and endorsed by IBM (the Cognos vendor).

- Cognos Upgrade

	•
Number	
ē	5
Daront	

- 027-Administration

.

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 027

Actv	Account	Activity	Amount	Amount	Variance
	094 - Interest Capitalized		4,186	0	4,186
	095-IT Regular Labour AO		27,726	0	27,726
072	001 - IT Regular Labour	072 - GP - Computer Equipment	52,000	0	52,000
072	011 - Travel Expense	072 - GP - Computer Equipment	9,000	0	9,000
072	028 - Consulting	072 - GP - Computer Equipment		0	
072	034 - Appl. Software	072 - GP - Computer Equipment		0	
072	035 - Comp.Hrdwr & Op.Sftwr	072 - GP - Computer Equipment		0	
072	041 - Meals & Entertainment	072 - GP - Computer Equipment	1,500	0	1,500
072	056 - Training & Development	072 - GP - Computer Equipment	15,000	0	15,000
		Total Cost:	254,413	0	254,413
		Original Cost:			

Nova Scotia Power Information Technology Capital Support Information

Project #	CI 41425
Project Name	Cognos Upgrade

Key Capital Expense Components

Expense Type	Key Driver	Comments
IT Regular Labour	Project Manager – days at \$	To provide Project Management support for the duration of the project.
	IT Technical Analyst Days at \$/day	To provide technical support to the project team.
Consulting	Technical days at \$ 1100 /day	To provide assistance with setting up new environment, upgrading software and rewriting reports as required.
Training	Development of training material for end users.	Training will be delivered using online tutorials.
Comp. Hardware and Opr. Software	Server upgrade to support increased load on server.	
Appl. Software (Licenses)	Cognos license purchase.	

Title:2012 New RTU DeploymentStart Date:2012/03Final Cost Date:2012/12Function:General Plant

\$1,062,700

Forecast Amount: DESCRIPTION:

This project provides for the installation of Remote Terminal Units (RTUs) at 6 substations to provide remote monitoring and control of selected substations and provides for the upgrade of some exiting RTUs to further enhance their communication capabilities. The sites planned for installation in 2012 are as follows:

22V NEW MINAS 62N BRIDGE AVE 79V 3 MILE PLN 70W HIGH ST 73W AUBURNDALE 75W WESTHAVERS

Summary of Related CI's +/- 2 years: 2010 38142 RTU Replacement Program \$780,137 2011 40274 New RTU Deployment \$509,706 2013, 2014 CI TBD New RTU Deployment \$TBD

JUSTIFICATION:

Justification Criteria: Work Support Facilities

Sub Criteria: Equipment Replacement

Why do this project?

Completion of these new RTU installations and communication upgrades will provide remote monitoring and control capacity to System Operators at the Energy Control Centre which will improve outage prediction, and improve reliability through reduction of power outage duration. A total of more than 35,651 customers are served by these four stations

Why do this project now?

Increasing operational visibility of distribution substations by the addition of RTU'S and enhancing the operator's ability to perform remote switching will provide a subsequent reduction in customer interruption hours.

Why do this project this way?

The technology that will be used in this project aligns with the communication methods employed in the over 120 other RTU's across the province.

- 800-Services - Admin.

.

2012 ACE Plan **Budget Version**

Capital Item Accounts

Cost Centre : 800

Acto 092-Vehicle T&D Reg. Labour AO Activity Forecast Amount Amount Amount Variance 092-Vehicle T&D Reg. Labour AO 092-Vehicle T&D Reg. Labour AO 91,206 0 91,206 91,206 094 Interest Capitalized 095-COPS Regular Labour AO 138,942 0 0 138,942 0 064 001 - T&D Regular Labour 064 - DP - Sup. Control and DA 180,000 0 180,000 0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
092-Vehicle T&D Reg. Labour AO 91,206 0 91,206 094 - Interest Capitalized 28,284 0 28,284 095-COPS Regular Labour AO 138,942 0 138,942 064 001 - T&D Regular Labour 064 - DP - Sup. Control and DA 180,000 0 180,000 064 002 - T&D Overtime Labour 064 - DP - Sup. Control and DA 180,000 0 0 0 064 012 - Travel Expense 064 - DP - Sup. Control and DA 50,000 0 0 0 0 064 012 - Travel Expense 064 - DP - Sup. Control and DA 551,768 0 15,000 0 15,000 064 012 - Materials 064 - DP - Sup. Control and DA 551,768 0 15,000 0 15,000 064 012 - Materials 064 - DP - Sup. Control and DA 551,768 0 15,000 15,000 0 15,000 064 012 - Materials 064 - DP - Sup. Control and DA 7,500 0 15,000 0 15,000 0 15,000 064 041 - Meals & Entertrainment 064 - DP - Sup. Control and DA 7,500		Actv	Account	Activity	Forecast Amount	Amount	Variance
094 - Interest Capitalized 28,284 0 28,284 0 28,284 0 28,342 28,342 28,342 28,342 28,342 28,342 28,342 28,342 28,342 138,942 138,942 138,942 0 138,942 0 138,942 0 138,942 0 138,942 0 138,942 0 138,942 0 138,942 0 138,942 0 138,942 0 138,942 0 0 138,942 0 138,942 0 0 138,942 0 0 180,000 0 0 180,000 0 </td <td>1 </td> <td></td> <td>092-Vehicle T&D Reg. Labour AO</td> <td></td> <td>91,206</td> <td>0</td> <td>91,206</td>	1 		092-Vehicle T&D Reg. Labour AO		91,206	0	91,206
095-COPS Regular Labour AO 138,942 0 138,942 064 001 - T&D Regular Labour 064 - DP - Sup. Control and DA 180,000 0 180,000 064 002 - T&D Overtime Labour 064 - DP - Sup. Control and DA 0 0 0 0 064 002 - T&D Overtime Labour 064 - DP - Sup. Control and DA 0			094 - Interest Capitalized		28,284	0	28,284
064 001 - T&D Regular Labour 064 - DP - Sup. Control and DA 180,000 0 180,000 064 002 - T&D Overtime Labour 064 - DP - Sup. Control and DA 0<			095-COPS Regular Labour AO		138,942	0	138,942
064 002 - T&D Overtime Labour 064 - DP - Sup. Control and DA 0 0 0 0 064 011 - Travel Expense 064 - DP - Sup. Control and DA 50,000 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 15,000 0 551,768 0 15,000 0 551,768 0 15,000 0 551,768 0 15,000 0 551,768 0 15,000 0 551,768 0 15,000 0 551,768 0 0 15,000 0	õ	64	001 - T&D Regular Labour	064 - DP - Sup. Control and DA	180,000	0	180,000
064 011 - Travel Expense 064 - DP - Sup. Control and DA 50,000 0 50,000 064 012 - Materials 064 - DP - Sup. Control and DA 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 15,000 0 15,000 0 15,000 0 15,000 0 15,000 0 0 7,500 0 7,500 7,500 0 7,500 7,500 7,500 0 1,062,700 1,062,700 0 1,062,700 0 1,062,700 0 1,062,700 0 1,062,700 0 1,062,700 0 1,062,700 0 1,062,700 0 1,062,700 0 1,062,700 0 1,062,700	õ	64	002 - T&D Overtime Labour	064 - DP - Sup. Control and DA	0	0	0
064 012 - Materials 064 - DP - Sup. Control and DA 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 551,768 0 15,000 0 15,000 0 15,000 0 15,000 0 15,000 0 15,000 0 15,000 0 15,000 0 15,000 0 15,000 0 15,000 0 15,000 0 15,000 1	ŏ	64	011 - Travel Expense	064 - DP - Sup. Control and DA	50,000	0	50,000
064 041 - Meals & Entertrainment 064 - DP - Sup. Control and DA 15,000 0 15,000 064 066 - Other Goods & Services 064 - DP - Sup. Control and DA 7,500 0 7,500 07 Total Cost: 1,062,700 0 0 1,062,700 0	õ	64	012 - Materials	064 - DP - Sup. Control and DA	551,768	0	551,768
064 066 - Other Goods & Services 064 - DP - Sup. Control and DA 7,500 0 7,500 0 7,500 0 7,500 0 7,500 0 7,500 0 7,500 0 7,500 0 7,500 0 7,500 0 7,500 0 1,062,700	ŏ	64	041 - Meals & Entertainment	064 - DP - Sup. Control and DA	15,000	0	15,000
Total Cost: 1,062,700 0 1,062,700	õ	64	066 - Other Goods & Services	064 - DP - Sup. Control and DA	7,500	0	7,500
				Total Cost:	1,062,700	0	1,062,700

Original Cost:

CI 41433 2012 New RTU Deployment

The following is a breakdown of costs associated with the 2012 New RTU Deployment project:

Administrative Overhead and Interest	\$ 258,432
Materials	\$ 551,768
COPS Labour	\$ 180,000
Other	\$ 72,500
Total	\$ 1,062,700

The material costs associated with this item are for the purchase of RTUs and associated accessories and are based on similar units purchased in 2011. The labour costs associated with this project are for engineering design, as well as for the installation of the RTUs.

Title:2012 RTU Capital Replacement

Start Date:	2012/03
Final Cost Date:	2012/12
Function:	General Plant
Forecast Amount:	\$314,026

DESCRIPTION:

The 2012 Remote Terminal Unit (RTU) capital replacement program will replace select RTUs, enabling NSPI to redeploy spare parts for other RTUs. In 2012 this project provides for the replacement of the 6V Weymouth and 5W Deep Brook RTU sites.

Summary of Related CI's +/- 2 years: 2010 CI 38142 RTU Replacement Program \$780,137 2011CI 40245 2011 RTU Replacement Program \$459,517 This is a multi-year project that will continue beyond 2012. Future CIs TBD

JUSTIFICATION:

Justification Criteria: Work Support Facilities

Sub Criteria: Equipment Replacement

Why do this project?

Due to evolving industry standards, technology, and product lifespan, approximately 90 of the RTU's that are currently in service have been deemed as obsolete by the original equipment manufacturers. These unreliable RTU operations will have impacts on both generation and customer reliability. The commercial availability of spare parts is becoming increasingly difficult to manage effectively.

Replacement of part of the operating inventory creates spares for use as necessary.

Why do this project now?

The inventory of RTU spare parts has become sparse. Most of the existing RTUs have reached the end of their useful life. RTU installations require extensive time and effort to complete and having an effective RTU management plan is critical for the orderly replacement of units that are experiencing reliability issues and to gradually modernize the fleet.

Why do this project this way?

Most of NSPI's RTUs have reached the end of their useful life and through a measured replacement plan it is possible to supplement the spares in inventory.

- 2012 RTU Capital Replacement

Parent CI Number :

- 620-Control Centre Operations

.

Project Number

Budget Version 2012 ACE Plan

Conital Itam Accounts

Cost Centre : 620

Capit	al Item A	ccounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		38,003	0	38,003
094		094 - Interest Capitalized		5,637	0	5,637
095		095-COPS Regular Labour AO		57,893	0	57,893
001	064	001 - T&D Regular Labour	064 - GP - Sup. Control and DA	75,000	0	75,000
011	064	011 - Travel Expense	064 - GP - Sup. Control and DA	10,000	0	10,000
012	064	012 - Materials	064 - DP - Sup. Control and DA	62,494	0	62,494
012	064	012 - Materials	064 - GP - Sup. Control and DA	60,000	0	60,000
041	064	041 - Meals & Entertainment	064 - GP - Sup. Control and DA	5,000	0	5,000
			Total Cost:	314,026	0	314,026
			Original Cost:	103,390		

CI 41428 2012 RTU Capital Replacement

The following is a breakdown of costs associated with the 2012 RTU Capital Replacement project:

Administrative Overhead and Interest	\$ 101,533
Materials	\$ 122,494
COPS Labour	\$ 75,000
Other	\$ 15,000
Total	\$ 314,027

The material forecast associated with this project is for the purchase of RTUs. The labour cost associated with this project is for engineering design, as well as for the installation of the RTU's. Other expenses include travel and meals.

Title: Warehouse

Warehouse Racking System

Start Date:	2012/02
Final Cost Date:	2012/04
Function:	General Plant
Forecast Amount:	\$262,402

DESCRIPTION:

This project serves to replace an existing warehouse racking system at the Central Stores location in Lakeside to optimize and increase the storage capacity and manage the safety risks to warehouse storekeepers.

Summary of Related CI's +/- 2 years: No projects in 2010, 2011, 2013 and 2014

JUSTIFICATION:

Justification Criteria: Work Support Facilities

Sub Criteria: Furniture and Fixtures

Why do this project?

The existing racking system does not accommodate the current pallet storage configuration.

Why do this project now?

The racking does not technically support the current pallet storage configuration and presents a safety risk to the employees working in the storeroom.

Why do this project this way?

Replacing the existing warehouse racking system is the most effective approach to allow for proper storage and minimize safety risks for employees.

CI Number : ⁴¹⁷⁶³		ımber : ⁴¹⁷⁶³	- Warehouse Racking System	Project Number	Project Number	
Parer	nt CI Nur	nber :				
	Cost C	Centre : 032	- 032-Facilities		Budget Version	2012 ACE Plan
Capit	al Item A	Accounts				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
094		094 - Interest Capitalized		3,061	0	3,061
001	003	001 - Regular Labour (No AO)	003 - GP - Bldg.,Struct.Grnd.	26,000	0	26,000
012	003	012 - Materials	003 - GP - Bldg.,Struct.Grnd.	233,341	0	233,341
			Total Cost:	262,402	0	262,402
			Original Cost:			

2012 Replace Microwave Radio System

Start Date:	2012/02
Final Cost Date:	2012/12
Function:	General Plant
Forecast Amount:	\$601,339

DESCRIPTION:

Title:

This project provides for the replacement of existing microwave radio equipment on two radio hops in the South Shore: Shelburne to Granite Village and Granite Village to Great Hill. This equipment and systems allow for transfer of critical Supervisory Control and Data Acquisition (SCADA), teleprotection, voice and data traffic on NSPI telecommunication network infrastructure. This project allows for the planned completion of a microwave radio ring around the South Shore and the Valley providing a redundant system to improve reliability and flexibility.

The project involves the installation of a new telecommunications tower at Shelburne as well as the upgrade of towers at the Great Hill.

In 2013, a similar project will install new radios on the remaining two South Shore hops, Tusket Falls to French Lake and French Lake to Shelburne, completing the microwave ring around the South Shore and Valley.

Summary of Related CI's +/- 2 years: 2010 - 38244 P812 Replace Microwave Radio Systems \$410,068 2011 - 40521 P849 Replace Microwave Radio Systems \$351,658 2011 - 40249 P848 New Chester Microwave Radio Link \$407,925 2011 - 40247 P847 Radio Tower Upgrades \$324,686 2013 - CI TBD Replace Microwave Radio System \$TBD

JUSTIFICATION:

Justification Criteria: Work Support Facilities

Sub Criteria: Telecommunication

Why do this project?

Replacement of the equipment for two radio hops is required to provide reliability and the required system capacity of the telecom network infrastructure.

Why do this project now?

The project will improve the reliability of these critical radio links. The existing radios on these two links are unlicensed spread spectrum radios with poor reliability that do not meet NSPI's standards for critical traffic such as SCADA and teleprotection.

It is necessary to upgrade these radio links now due to the need for redundancy and disaster scenario planning recovery. The new Backup Control Centre is scheduled to be operational in 2012 to meet NERC's requirements. This project allows for circuits to be easily re-routed to the Backup Control Centre if required because of the loss of the primary Control Centre.

With the recent additions of new generation and the associated transmission system expansion, it is necessary to upgrade these communication links to be able to handle the additional telecom circuit requirements.

- 2012 Replace Microwave Radio System

Project Number

2012 ACE Plan

Budget Version

•• Parent CI Number - 625-Control Centre Operations - Tel Cost Centre : 625

.

Capital Item Accounts

Capit	al Item A	ACCOUNTS				
Acct	Actv	Account	Activity	Forecast Amount	Amount	Variance
092		092-Vehicle T&D Reg. Labour AO		2,662	0	2,662
092		092-Vehicle T&D OT Labour AO		2,594	0	2,594
094		094 - Interest Capitalized		19,083	0	19,083
095		095-Thermal Regular Labour AO		1,585	0	1,585
095		095-COPS Regular Labour AO		4,055	0	4,055
095		095-COPS Overtime Labour AO		3,952	0	3,952
095		095-COPS Contracts AO			0	
012	054	012 - Materials	054 - GP - Remote Monitoring		0	
001	090	001 - T&D Regular Labour	060 - GP - Broadband Radio	5,253	0	5,253
002	090	002 - T&D Overtime Labour	060 - GP - Broadband Radio	10,240	0	10,240
011	090	011 - Travel Expense	060 - GP - Broadband Radio	3,000	0	3,000
012	090	012 - Materials	060 - GP - Broadband Radio		0	
013	090	013 - COPS Contracts	060 - GP - Broadband Radio		0	
028	090	028 - Consulting	060 - GP - Broadband Radio		0	
041	090	041 - Meals & Entertainment	060 - GP - Broadband Radio	3,000	0	3,000
012	061	012 - Materials	061 - GP - Switched Telecomm. Sys		0	
012	063	012 - Materials	063 - GP - Mobile Radio Infrastru		0	
001	085	001 - THERMAL Regular Labour	085 Design	6,600	0	6,600
002	085	002 - THERMAL Overtime Labour	085 Design	0	0	0
			Total Cost:	601,339	0	601,339
			Original Cost:	377,787		

Original Cost:

CI 41419 Replace Microwave Radio System

The following is a breakdown of costs associated with the Replace Microwave Radio System project:

Administrative Overhead and Interest Materials Contracts COPS Labour Other Total

The materials forecast provides for the purchase of 2 Alcatel Microwave radios, as well as the supply of a new tower for Shelburne.

The contracts forecast provides for the engineering and installation of a new tower in Shelburne. It also allows for the installation of new microwave dishes as well as microwave waveguides and other accessories. A portion of this forecast also provides for a consultant to carry out tower analyses to determine recommended modifications ensuring the towers meet safety standards.

NSPI personnel will complete the work associated with this project at a rate of approximately \$ person day.

Title: Upgrade Multiplexer Network Manager

Start Date:	2012/02
Final Cost Date:	2012/12
Function:	General Plant
Forecast Amount:	\$294,571

DESCRIPTION:

This project provides an upgrade to the Multiplexer Network Manager to provide for future expansion capabilities.

Summary of Related CI's +/- 2 years: 2012 C I 41404 Multiplexer Group Replacement \$146,131 2013, 2014 CI TBDF Replace Multiplexer and Teleprotection Equipment \$TBD

JUSTIFICATION:

Justification Criteria: Work Support Facilities

Sub Criteria: Telecommunication

Why do this project?

Nova Scotia Power's existing Newbridge Multiplexer network supports communication between substations and plants for the majority of the teleprotection circuits, SCADA circuits, System Ops Voice circuits, four-digit dial circuits, mobile radio circuits and corporate network access. This system is monitored and controlled by a Network Manager located in the Telecom Point of Contact (POC) area at the Ragged Lake Control Center.

The existing Newbridge Multiplexer network and Network Manager has been discontinued by the manufacturer, Alcatel-Lucent, and will only be supported until 2015. NSPI requires a new Network Management system to support future installations and new technologies.

Why do this project now?

Though the manufacturer's discontinuation of the currently installed Multiplexers was expected and spares are in place for failures, expansion for new sites, such as new windfarms and other renewable energy projects will not be possible within the existing Newbridge Multiplexer network and Network Management system. To allow for future growth and the incorporation of new generation sources, a new Network Management system is required that can integrate with the existing system as well as provide the same level of maintenance and control for the new model of multiplexer that will be purchased for future sites.

Why do this project this way?

The proposed system, the Alcatel 5620SAM, will allow integration with the existing Network Manager and grooming of circuits on the existing 3600 and 3630 model multiplexers as well as the 7705 model which will be installed in future sites. This will save time for new installations by allowing more of the process to be completed from Ragged Lake by provisioning the circuits remotely from the new Network Manager. A different type of multiplexer would be required for new installations at future sites that would not be compatible with the existing multiplexers or Network Manager would result in a more complicated and expensive installations to facilitate new sites.

- Upgrade Multiplexer Network Manager

Parent CI Number :

.

- 625-Control Centre Operations - Tel

Project Number

Budget Version 2012 ACE Plan

Capital Item Accounts

Cost Centre : 625

Original Cost:

CI 41420 Upgrade Multiplexer Network Manager

The following is a breakdown of costs associated with the 2012 Multiplexer Network Manager Upgrade.

Administrative Overhead and Interest	\$ 18,261
Materials	
Consulting	
Other	\$ 86,000
COPS Labor	\$ 13,160
Total	\$ 294,571

The materials forecast provides for the multiplexer upgrade equipment. NSPI personnel will perform the installation at a rate of per person day.

The consulting and other forecasts were developed to allow for training of NSPI personnel associated with the new system.

Title: Multiplexer Group Replacement

Start Date:	2012/03
Final Cost Date:	2012/12
Function:	General Plant
Forecast Amount:	\$146,131

DESCRIPTION:

This project provides for the costs to remove several obsolete multiplexer groups and associated teleprotection equipment for the following sites:

DM102 - 138kV Teleprotection and 230kV 'A' SPS

- 1) 2C-Port Hastings Sub
- 2) 5S-Glentosh Substation
- 3) 85S-Wreck Cove Sub
- 4) 88S-Lingan 230kV Sub

DM22 – 230kV 'B' Teleprotection and 345 'A' SPS

- 1) 88S-Lingan Sub
- 2) 101S-Woodbine Sub
- 3) 89S1-Point Aconi Sub
- 4) 79N-Hopewell Sub
- 5) 67N2-Onslow Sub

DM16-230kV 'A' Teleprotection and SCADA data circuits

- 1) 101S-Woodbine Sub
- 2) 88S-Lingan Sub
- 3) 89S-Point Aconi Sub
- 4) 415H-Ragged Lake
- 5) Various SCADA RTUs

The 'B' side Teleprotection circuits in group DM22 will be replaced with new RFL multiplex and teleprotection equipment at 88S-Lingan, 101S-Woodbine and 89S1-Point Aconi. All of the 'A' side protection circuits, as well as any other functions will be moved to the existing Newbridge 'A' side multiplexers at each of the above mentioned sites.

JUSTIFICATION:

Justification Criteria: Work Support Facilities

Sub-Criteria: Telecommunication

Why do this project?

Nova Scotia Power's existing Multiplexer groups DM102, DM22 and DM16 support teleprotection and other functions for the sites and systems listed above. The existing equipment in these groups is now obsolete and the inventory of spare parts has been depleted. New spare parts are no longer available and replacement is required to mitigate the risk of unplanned extended outages.

Why do this project now?

As spare parts are no longer available for the existing multiplexer and teleprotection equipment, this equipment must be replaced to mitigate the risk of unplanned failures and potential for extended outages.

Why do this project this way?

The addition of 'A' circuits and data circuits is the most economical solution. The RFL equipment proposed for the 'B' side protection circuits is the same design as equipment installed in other parts of the system. NSPI technicians are trained on this equipment and an inventory of spare parts exists. In addition, the existing RFL equipment installations have been performing very well.

8 Glossary of Terms

Capacitor	A device used by electrical utilities to maintain voltage on a distribution or a transmission line.
Capacity	The load for which a generating unit, generating station, or other electrical apparatus is rated. Several capacity values may be identified as follows:
Maximum:	the maximum output that can be achieved.
Nameplate:	the maximum output specified by the manufacturer.
Dependable:	the maximum output that can be reliably supplied during peak load months (December, January, and February).
Firm:	based on dependable capacity, unit availability and system characteristics.
Cogeneration	The generation of electricity in conjunction with the production of useful heat, usually steam.
Conductor	One or more wires, usually aluminum or copper, connected together and designed to carry an electrical current. These wires may be bare or insulated.
Demand	The rate at which electric energy is delivered at a given instant or averaged over some designated period of time, expressed in kilowatts, megawatts, and other larger units. Also called "load" or "power."
Distribution System	The facilities (i.e. lines, transformers, switches and sub-stations) used to distribute electricity over short distances from the transmission system to the customer, generally at voltages below 69 kV.
Energy Terms	A kWh is a measure of energy equal to 1000 watts, over a period of one hour.
	A MWh is a measure of energy equal to 1000 kilowatt hours.
	A GWh is a measure of energy equal to 1000 megawatt hours.
Electrical Generation	The process of transforming other forms of energy into electrical energy. At Nova Scotia Power, this means using coal, oil, natural gas, diesel fuel, water or wind as fuel for the process to create electrical energy.
Feeder	An electric line for supplying electrical energy within an electric service

area or subarea.

Heat Rate	A measure of the thermal efficiency of a generation station, generally expressed as Btu per net kWh. The lower the heat rate (the fewer Btu's required to produce a kilowatt hour of electricity), the more efficient the generating unit.
Line Load	A term used to describe a section of either distribution or transmission conductor, and its supporting hardware towers and insulators. See Demand.
Load Factor	The ratio of energy supplied during a given period to the maximum that could have been supplied had the peak load in that period been maintained in all hours.
Recloser	A heavy duty power switch capable of detecting abnormal power flows, then automatically opening and closing according to preset instructions.
Relay	A piece of equipment used to monitor quantities such as current, pressure, liquid levels, voltage or temperature and take action when these quantities are outside prescribed limits.
Substation	A facility for switching circuits and/or transforming electrical energy from one voltage to another.
Three Phase	Three separate conductors, each at the same nominal voltage, used to supply power primarily to large customers.
Transformer	An electromagnetic device for changing voltage from one level to another.
Transmission System	The facilities (i.e. lines, transformers, switches and substations) used to transmit electrical energy from the generating stations throughout the province and NB Power/NSPI interconnection to various parts of the transmission system, generally at voltages of 69 kV and higher.

9 NSPI 2012 Quick Reference Sheet

2012 AFUDC Rate 7.97%

2012 O/H Rates

Generation		Customer Operations		Shared Services	
PP Regular	24.0%	Regular	77.2%	Regular	53.3%
Hydro	18.5%	Contract	23.5%	-	
Contractor	5.0%	Vehicle	50.7%		

10. 2012 Depreciation Rates

2012 Deprecation Rates

	2012
Steam Production Plant	
Lingan	
Lingan 1-2	4.12%
Lingan 3-4	2.28%
Lingan - Common	4.48%
Total Lingan	3.35%
Point Aconi 1	2.27%
Point Tupper	
Point Tupper 1	3.97%
Point Tupper 2	2.82%
Total Point Tupper	2.89%
Trenton	
Trenton 5	3.10%
Trenton 6	2.34%
Trenton - Common	0.47%
Total Trenton	2.47%
Tufts Cove	
Tufts Cove 1	4.24%
Tufts Cove 2	3.68%
Tufts Cove 3	2.33%
Tufts Cove - Common	3.44%
Total Tufts Cove	3.27%
Point Tupper Marine Terminal	4.06%
General	2.82%
Total Steam Production Plant	2.82%

	2012
Hydraulic Production Plant	
Avon	3.02%
Bear River	1.80%
Black River	2.04%
Dickie Brook	3.16%
Fall River	1.82%
Harmony	4.55%
Lequille System	2.33%
Roseway	2.29%
St. Margaret's	2.85%
Sheet Harbour	3.38%
Tusket	2.64%
Wreck Cove System	1.67%
Annapolis Tidal	2.32%
General	2.10%
Total Hydraulic Production	2.10%
Other Production - Gas Turbines	
Burnside	2.40%
Tusket	6.42%
Victoria Junction	3.17%
Tufts Cove Unit 4	2.55%
Tufts Cove Unit 5	2.77%
Total Other Production - Gas Turbines	2.81%
nd Turbines	
Pre 2009 Wind	5.52%
Post 2009 Wind	4.0%
Total Wind Turbines	5.52%
Transmission Plant	
Land Rights - Easements	1.26%
Station Equipment	2.14%
Towers & Fixtures	1.26%
Poles & Fixtures	4.32%
Overhead Conductors & Devices	1.96%
Underground Conduit	1.53%
Underground Conductors & Devices	2.61%
Roads, Trails & Bridges	1.74%
Total Transmission Plant	2.35%

	2012
Distribution Plant	
Land Rights - Easements, Surveys & Clearing	1.56%
Structures & Improvements	5.31%
Station Equipment	1.28%
SCADA Equipment	9.68%
Remote Monitoring Equipment	10.32%
Station Equipment - Miscellaneous	12.49%
Poles. Towers & Fixtures	3.79%
Overhead Conductors & Devices	3.33%
Underground Conduit	1.51%
Underground Conductors & Devices	3.17%
Line Transformers	4.09%
Services	5.33%
Meters	6.87%
Street Lighting & Signal Systems	5.33%
Total Distribution Plant	3.89%
Conoral Plant	
I and Rights - General Plant	1 93%
Structures & improvements	2 85%
Office Furniture & Fauinment	9.26%
Office Furniture & Equipment	20.00%
Office Furniture & Equip - Comp Software	10.00%
Transportation Equipment	9 55%
Stores Equipment	14 97%
Communication Equipment	4 38%
Communication Equipment - SCADA Eq	1 33%
Remote Monitoring Fauinment	10.27%
Miscellaneous Equipment	5 02%
Roads, Bridges & Traps (Kelly Rock)	2.58%
Mining Equipment (Kelly Rock)	2.92%
8 - 1 - F	
Total General Plant	8.16%